

Emergence and equilibration of jets in planetary turbulence

Navid Constantinou and Petros Ioannou
National and Kapodistrian University of Athens
and
Brian Farrell
Harvard University

Zonal flows coexist with turbulence

banded Jovian jets

NASA/Cassini Jupiter Images

polar front jet

NASA/Goddard Space Flight Center

jets in tokamaks

courtesy: L. Villard

Zonal flows coexist with turbulence

banded Jovian jets

NASA/Cassini Jupiter Images

observed Jovian zonal winds at cloud level Vasadava & Showman, 2005

Zonal flows are maintained by eddies

Barotropic vorticity equation on a beta-plane

$$\partial_t q + u \partial_x q + v \partial_y q + \beta v = \sqrt{\epsilon} f - rq$$

stochastic forcing

$$q = v_x - u_y$$
relative vorticity

Zonal - Eddy field decomposition

$$\varphi(\mathbf{x}, \mathbf{y}, \mathbf{t}) = \Phi(\mathbf{y}, \mathbf{t}) + \varphi'(\mathbf{x}, \mathbf{y}, \mathbf{t})$$
zonal mean eddy

where
$$\Phi(\mathbf{y}, t) = \overline{\varphi}(\mathbf{y}, t) = \frac{1}{L_x} \int_0^{L_x} \varphi(\mathbf{x}', \mathbf{y}, t) \, \mathrm{d}\mathbf{x}'$$

NL (nonlinear) System

$$\begin{split} \partial_t U &= \overline{v'q'} - r_m U \\ \partial_t q' &= -U \partial_x q' + \left(U_{yy} - \beta \right) v' - r q' + F_e + \sqrt{\epsilon} \, f \end{split}$$
 where

$$F_{e} = \left(\partial_{y}\left(\overline{v'q'}\right) - \partial_{y}(v'q')\right) - \partial_{x}(u'q')$$

QL (quasi-linear) System

$$\begin{split} \partial_t U &= \overline{v'q'} - r_m U \\ \partial_t q' &= -U \partial_x q' + \left(U_{yy} - \beta \right) v' - r q' + F_* + \sqrt{\epsilon} \, f \\ \text{where} \end{split}$$

$$F_{e} = \left(\partial_{y}\left(\overline{v'q'}\right) - \partial_{y}(v'q')\right) - \partial_{x}(u'q')$$

eddy-eddy interaction term

QL captures the NL dynamics

NL vorticity snapshot

mean flow comparison

QL vorticity snapshot

Our goal

While QL captures and elucidates the jet-eddy dynamics it does not provide a predictive theory

Can we construct a theory that predicts

- a) When organized flows emerge?
- b) What is structure and the stability of the emergent zonal flows?

Such a theory can be constructed. It is based on the statistical dynamics associated with the QL equations

The theory:

Stochastic Structural Stability Theory (SSST)

SSST system
U, C

ensemble average dynamics of the QL system

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \langle v'q' \rangle - r_{\mathrm{m}}U$$

$$\frac{\mathrm{d}C}{\mathrm{d}t} = (A_{1} + A_{2})C + \epsilon Q$$

$$C = \langle q'(x_1, y_1, t) q'(x_2, y_2, t) \rangle$$

$$Q = \langle f(x_1, y_1, t) f(x_2, y_2, t) \rangle$$

$$A_j = -U(y_j) \partial_{x_j} + (\beta - U''(y_j)) \partial_{x_j} \Delta_j^{-1} - r$$

$$\overline{v'q'} = \langle v'q' \rangle = R(C) \qquad (j = 1, 2)$$

SSST equilibria

$$\frac{\mathrm{d}U}{\mathrm{d}t} = R(C) - r_{\mathrm{m}}U$$

$$\frac{\mathrm{d}C}{\mathrm{d}t} = (A_{1} + A_{2})C + \epsilon Q$$

SSST system admits equilibria (U^E, C^E)

For example, when we have homogeneity then

$$U^{E} = 0$$
 and $C^{E} = \frac{\epsilon Q}{2r}$

is an equilibrium for all β , dissipation values r > 0 and energy input rates $\epsilon > 0$.

SSST stability

perturbing the SSST equilibrium: $(U^E + \delta U, C^E + \delta C)$

$$\frac{d}{dt} \begin{pmatrix} \delta U \\ \delta C \end{pmatrix} = \mathbb{L} \begin{pmatrix} \delta U \\ \delta C \end{pmatrix} \qquad (\mathbb{L}$$

$$\left(\mathbb{L} = \mathbb{L}(U^{E}, C^{E})\right)$$

In this way we can check the stability of these ideal equilibrium states

SSST stability

Stability analysis of the ideal states predicts:

- formation of jets
- existence of multiple equilibria and their domain of attraction
- merging of jets

SSST stability

Stability analysis of the ideal states predicts:

- formation of jets
- existence of multiple equilibria and their domain of attraction
- merging of jets

A comparison of NL, QL and SSST

A comparison of NL, QL and SSST

Agreement between NL, QL and SSST

bifurcation diagram of

$$\mathsf{zmf} = rac{\mathsf{E}_{\mathsf{mean}}}{\mathsf{E}_{\mathsf{mean}} + \mathsf{E}_{\mathsf{pert}}}$$

as a function of energy input rate, ϵ/ϵ_c

(ϵ_c is the critical energy input rate for SSST instability of the homogeneous ideal state)

Conclusions

- QL dynamics captures the jet formation process The turbulent state is essentially determined by a wave/mean flow interaction
- SSST provides a closure of this turbulent system and a theory for the emergence, equilibration and the structural stability of the associated turbulent equilibria
- SSST introduces a new concept of instability arising from the interaction between turbulence with the large scale flow
- SSST predicts:
 - * the formation of jets as an eddy/mean flow SSST instability
 - * the existence of multiple equilibria as climate states and their stability
 - * jet merger dynamics

Thank you

This work has been supported by

Constantinou, N.C, Ioannou, P.J. and Farrell, B.F., 2012: Emergence and equilibration of jets in beta-plane turbulence. (submitted to J.Atmos. Sci., arXiv:1208.5665 [physics.flu-dyn])