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Abstract Planetary turbulent flows are observed to self-organize into large scale
structures such as zonal jets and coherent vortices. In this work, the eddy-mean flow
dynamics underlying the formation of both zonal and nonzonal coherent structures
in a barotropic turbulent flow is investigated within the statistical framework of
stochastic structural stability theory (S3T). Previous studies have shown that the
coherent structures emerge due to the instability of the homogeneous turbulent flow
in the statistical dynamical S3T system and that the statistical predictions of S3T are
reflected in direct numerical simulations. In this work, the dynamics underlying the
structure forming S3T instability are studied. It is shown that, for weak planetary
vorticity gradient beta, both zonal jets and non-zonal large-scale structures form
from upgradient momentum fluxes due to shearing of the eddies by the emerging
flow. For large beta, the dynamics of the S3T instability differs for zonal and
non-zonal flows. Shearing of the eddies by the mean flow continues to be the
mechanism for the emergence of zonal jets while non-zonal large-scale flows
emerge from resonant and near-resonant triad interactions between the large-scale
flow and the stochastically forced eddies.

1 Introduction

Atmospheric turbulence is commonly observed to be organized into large scale
zonal jets with coherent waves embedded in them. The jets control the transport of
heat in the atmosphere, while the coherent waves produce significant spatiotem-
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poral variability. It is therefore important to understand the mechanisms for the
emergence, equilibration, and maintenance of these coherent structures.

A simple model that exhibits many aspects of turbulent self-organization into
coherent structures, is a barotropic flow on a β-plane with turbulence sustained by
random stirring. Numerical simulations of this model have shown that robust, large
scale zonal jets and coherent westward propagating waves emerge in the flow and
are sustained at finite amplitude (Galperin et al. 2010). Recently, it was shown that
the formation of these coherent structures occurs as a bifurcation phenomenon. As
the energy input of the stochastic forcing is increased, the flow bifurcates from a
turbulent, spatially homogeneous state to a state in which zonal jets and/or nonzonal
coherent structures emerge and are maintained by turbulence (Bakas and Ioannou
2014). In this work, we address the eddy-mean flow dynamics underlying the
emergence of both zonal and nonzonal structures.

Since organization of turbulence into coherent structures involves complex
nonlinear interactions among disparate scales, an attractive approach is to study the
statistical state dynamics of the flow rather than single realizations of the turbulent
field, an approach that is followed in stochastic structural stability theory (S3T;
Farrell and Ioannou 2003). Recent studies employing S3T addressed the bifurcation
from a homogeneous turbulent regime to a structure-forming regime and identified
the emerging structures as linearly unstable modes of the homogeneous turbulent
state equilibrium. Comparisons of the structure characteristics predicted by S3T
with direct numerical simulations have shown that the predictions of S3T are
reflected in direct numerical simulations. In this work we investigate the eddy-mean
flow dynamics underlying this cooperative eddy-mean flow instability.

2 Formulation of Stochastic Structural Stability Theory

Consider a non-divergent barotropic flow with velocity field u = (u, v) on a β-plane
with cartesian coordinates x = (x, y). Relative vorticity f ¼ @xv� @yu, evolves
according to:

@t þ u � rð Þfþ bv ¼ �rfþ fe ð1Þ

where β is the gradient of planetary vorticity. Linear dissipation at the rate r pa-
rameterizes Ekman drag at the surface. Turbulence is supported by the random
stirring fe that models vorticity sources from convection and baroclinic instability,
that are absent in barotropic dynamics. We assume that fe is temporally delta
correlated, spatially homogeneous and isotropic, injecting energy at a rate ε in a
narrow ring of wavenumbers with radius Kf.

S3T describes the statistical dynamics of the first two same time moments of (1).
The first moment is the ensemble mean of the vorticity Z(x, t) ≡ fh i; where the
brackets denote an ensemble average over forcing realizations. The second moment
C x1; x2; tð Þ � f01f

0
2

� �
; is the two point correlation function of the vorticity deviation

362 N.A. Bakas et al.



from the mean ζ′i ≡ ζi − Zi, where the subscript i = 1, 2 refers to the value of
relative vorticity at xi. We adopt the general interpretation that the ensemble
average is a Reynolds average over the fast turbulent motions (Bakas and Ioannou
2014). With this definition of the ensemble mean, we seek to obtain the statistical
dynamics of the interaction of the coarse-grained ensemble average field Z, which
can be zonal or non-zonal coherent structures, with the fine-grained incoherent field
represented by the vorticity covariance C. The equations governing the evolution of
the first two moments are:

@t þU � rð ÞZþ bV þ rZ ¼ �r � u0f0h i ¼ GðCÞ ð2Þ

@tCþ A1 þA2ð ÞC ¼ N ð3Þ

where U, u′ are the ensemble mean and the eddy velocity fields respectively, u0f0h i
is the ensemble mean vorticity flux, whose divergence can be expressed as a
function of the vorticity covariance r � u0f0h i ¼ GðCÞ,

A ¼ �U � r � bþ @yZ
� �

@xD
�1 þ @xZ@yD

�1 � r

governs the dynamics of linear perturbations about the instantaneous mean flow
U and Ξ is the spatial correlation function of the external forcing. In obtaining (3),
we have ignored the eddy-eddy interactions or equivalently the third cumulant, so
that (2–3) form a closed deterministic system.

3 Dynamics Underlying the Structure Forming Instability

The S3T system (2), (3) has the statistical equilibrium ZE = 0, CE = Ξ/2r, that has
zero large scale flow and a homogeneous eddy field with the spatial covariance of
the forcing. The stability of the homogeneous equilibrium is assessed by intro-
ducing perturbations dZ ¼ einxþ rt and dC ¼ Chðxa � xbÞeinðxa þ xbÞ=2þrt, where n is
the perturbation wavevector, linearizing (2–3) about the equilibrium and calculating
the eigenvalues σ. The resulting equation for σ is (Bakas et al. 2015):

rþ 1 ¼ ef ðrjdU;CEÞ

where f is the vorticity flux induced by the distortion of the incoherent homoge-
neous eddy field with covariance CE by the mean flow δU. We will call this induced
flux as the vorticity flux feedback on δU. If the real part of the feedback is positive,
it has the tendency to reinforce the preexisting jet perturbation and therefore
destabilizes it. In order to illuminate the eddy-mean flow dynamics underlying the
instability, we will study the vorticity flux feedback at the stability boundary (real
(σ) = 0), at which the growing eigenfunctions follow the Rossby wave dispersion
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ri ¼ imag rð Þ ¼ bnx=ðn2x þ n2yÞ. At the stability boundary the real part of the vor-
ticity flux feedback can be written as:

fr ¼ real f ðr ¼ rijdU;CEÞ� � ¼
Zp

0

Fdh

where F(θ, n) is the contribution to fr from the stochastically forced waves with
wavevectors k and −k that are characterized only by the angle θ between their
phase lines and the direction perpendicular to the mean flow wavevector n ¼
nx; ny
� � ¼ ðn cosu; n sinuÞ (cf Fig. 1). We will now determine the contribution of
the various waves to the vorticity flux feedback and identify the angle θ that
produces the most significant contribution to this feedback for both zonal jet
(u ¼ 0) and non-zonal wave (u 6¼ 0) perturbations.

Consider first the limit of small non-dimensional planetary vorticity gradient
~b ¼ b=Kf r � 1, in which we can expand the integrand F in powers of ~b:

F ¼ F0 þ ~b2F2 þ � � �. The leading-order term F0 is shown in Fig. 2a. For β = 0, the
dynamics are rotationally symmetric and for isotropic forcing fr, is independent of
φ. Therefore all zonal and non-zonal eigenfunctions with the same wavenumber
n grow at the same rate. Upgradient fluxes (F0 [ 0) to a mean flow with
wavenumber n are induced by waves with phase lines inclined at angles hj j � 30�.
The eddy-mean flow dynamics was investigated in the limit of ~n ¼ n=Kf � 1 by
Bakas and Ioannou (2013). It was shown that the vorticity fluxes can be calculated
by time averaging the fluxes over the life cycle of an ensemble of localized
stochastically forced wavepackets. The wavepackets evolve under the influence of
the infinitesimal local shear and are rapidly dissipated before they shear over. As a
result, their effect on the mean flow is dictated by the instantaneous change in their
momentum fluxes. Any pair of wavepackets having a central wavevector with
phase lines forming angles hj j � 30� surrender instantaneously momentum to the

Fig. 1 A non-zonal perturbation with wavevector n at an angle φ to the northward direction
interacts with the stochastically forced waves with wavevector k at an angle θ with respect to the
direction of n. The vorticity flux feedback fr arises from the contribution of the eddies with
wavevectors k and −k
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mean flow and reinforce it, whereas pairs with hj j � 30� gain instantaneously
momentum and oppose jet formation. For isotropic forcing, the net vorticity flux
produced when integrated over all angles vanishes. However, a net feedback is
produced at order ~b2.

To understand the contribution of β to the vorticity flux feedback, we plot F2=~n4

for a zonal jet (Fig. 2b) as a function of the mean-flow wavenumber ~n and wave
angle θ. It can be seen that at every point, F2 has the opposite sign to F0, implying
that β tempers the fluxes of β = 0. However, in the sector hj j � 30� the values of F2

are much larger than in the sector hj j � 30� and the net fluxes integrated over all
angles are upgradient. This behavior can be explained as follows. Any pair of
wavepackets with wavevectors at angles hj j � 30� apart from the instantaneous
momentum gain described above, have their group velocity increased (decreased)
while propagating northward (southward), as shearing changes their meridional
wavenumber. The instantaneous change in the momentum fluxes resulting from this
speed up (slow down) of the wavepackets is positive in the region of excitation
leading to upgradient fluxes. The opposite happens for pairs with hj j � 30�. In the
case of a nonzonal perturbation (not shown), the angles for which the waves have
significant positive or negative contributions to the flux feedback are roughly the
same as in the case of zonal jets. Τhese results therefore show that, for ~b � 1, the
instability mechanism for nonzonal structures is the same as the mechanism for
zonal jet formation, which is shearing of the eddies by the mean flow.

Consider now the emergence of coherent structures in the limit ~b 	 1. The
contribution F of each wave to the vorticity flux feedback fr for the case of non-
zonal structures at ~b ¼ 100 is shown in Fig. 3. In contrast to the case with ~b � 1,
there is only a small band of waves that contribute significantly to the flux feedback,
as indicated with the narrow tongues in Fig. 3a. The reason for this selectivity in the
response is that for ~b 	 1 the components that produce appreciable fluxes are
concentrated on the (θ, n) curves that satisfy the resonant condition
xkþ n ¼ xk þxn. This is the resonant condition satisfied when a Rossby wave with
wavevector k and frequency xk forms a resonant triad with the nonzonal structure
with wavevector n and frequency xn. It is found that the largest destabilizing
feedback occurs when two positively contributing resonances are near coalescence.
The reason is that when the resonances are apart, the significant contributions come

Fig. 2 Contours of a F0ðh; ~nÞ and b F2ðh; ~nÞ=~n4 for a zonal jet perturbation in a polar plot (~n
radial and θ azimuthal). The thick line is the zero contour and the radial grid interval is δn = 0.25
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from near-resonant waves with angles within a band of O(1/~b) around the resonant
angles and the net contribution to the vorticity flux are O(1/~b). When the resonances

are near coalescence, the band of near-resonant waves increases (Oð1=
ffiffiffi
~b

q
Þ) and the

flux feedback increases proportionally.
An interesting exception to the results discussed above occurs for zonal jet

perturbations. In that case, the resonant contribution is exactly zero and the positive
vorticity flux feedback is obtained from a broad band of the non-resonant waves
with h 
 0 (cf.Fig. 3b). The reason is that the stochastically forced eddies for
~b 	 1 propagate with O(β) group velocities. Therefore, in contrast to the limit of
~b � 1 in which they evolve according to their local shear, the forced waves will
respond to the integrated shear of the sinusoidal perturbation over their large
propagation extent, which will be very weak. As a result only waves with small
group velocities can have a significant contribution.

4 Conclusions

We examined the eddy-mean flow dynamics underlying the instability that gives
rise to large scale structures in barotropic turbulence within the statistical frame-
work of S3T. In the limit of weak planetary vorticity gradient, the dynamics are
similar for both emerging zonal jets and non-zonal structures. In this limit, shearing
of the forced eddies by the infinitesimal mean flow changes at leading order their
momentum fluxes and at second order their group velocity. For an isotropic forcing
the instability is controlled by the second order effect that produces upgradient
fluxes. In the limit of strong planetary vorticity gradient, the eddy-mean flow
dynamics are different for zonal and non-zonal perturbations. Zonal jets continue to
induce upgradient fluxes through wave shearing. The dynamics underlying the
emergence of non-zonal structures are dominated by near resonant interactions.
Resonance occurs between the emerging structure, which close to the stability

Fig. 3 Contours of F ðh; ~nÞ for a a non-zonal jet perturbation (φ = 15°) and b a zonal jet
perturbation (φ = 0°) in a ð~n; hÞ polar plot (~n radial and θ azimuthal) for ~b ¼ 100. The thick line is
the zero contour and the radial grid interval is δn = 0.25
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boundary satisfies the Rossby wave dispersion, and the stochastically forced waves
satisfying the Rossby wave frequency resonant condition.
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