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1. Motivation and objectives

Turbulence is widely understood as the primary example of a highly nonlinear phe-
nomenon. However, there is evidence that some processes of shear turbulence are con-
trolled by linear dynamics, in particular, the mechanism by which energy is transferred
from the mean velocity component of the flow to the spatially and temporally evolving
perturbations (e.g., Farrell & Ioannou 1998; Kim & Lim 2000; Jiménez 2013). The goal
of the present work is to investigate the mechanism dominating the energy transfer from
the mean flow to the fluctuating field in wall-bounded turbulence.
It is widely agreed that the streamwise rolls and streaks are ubiquitous in wall-shear

flow (Klebanoff et al. 1962; Kline et al. 1967), and that they are involved in a quasi-
periodic regeneration cycle (Panton 2001; Adrian 2007; Smits et al. 2011; Jiménez 2012;
Jiménez 2018). The space-time structure of rolls and streaks is believed to play an im-
portant role in sustaining and carrying shear-driven turbulence (e.g., Kim et al. 1971;
Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe 1997; Schoppa & Hussain 2002;
Jiménez 2012). The ultimate cause maintaining this self-sustaining cycle, and hence tur-
bulence, is the energy extraction from the flow mean shear. Within the fluid mechanics
community, there have been several mechanisms proposed as plausible scenarios. Con-
ceptually, we can divide these mechanisms into three categories: (i) modal inflectional
instability of the mean cross-flow, (ii) non-modal transient growth, and (iii) non-modal
transient growth assisted by parametric instability of the time-varying mean cross-flow.
In the first mechanism, it is hypothesized that the energy is transferred from the cross-

flow mean profile U(y, z, t) (y is the wall-normal and z the spanwise directions) to the
flow fluctuations through a modal inflectional instability (Waleffe 1997) or by modal in-
stability of a corrugated vortex sheet (Kawahara et al. 2003). The second mechanism
involves the collection of fluid near the wall by streamwise vortices that is subsequently
organized into streaks via the lift-up mechanism (Landahl 1975; Butler & Farrell 1992;
Jiménez 2012). In this case, the mean flow, while modally stable, it is able to support the
growth of perturbations for a transient time due to the non-normality of the linear oper-
ator that governs the evolution of fluctuations. This process is referred to as non-modal
transient growth (e.g., Schmid 2007). Alternative studies suggest that the generation
of streaks are due to the structure-forming properties of the linearized Navier–Stokes
operator, independent of any organized vortices (Chernyshenko & Baig 2005), but the
non-modal transient growth is still invoked. The transient growth scenario gained even
more popularity since the work by Schoppa & Hussain (2002) who argued that transient
growth may be the most relevant mechanism not only for streaks formation but also
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for their eventual breakdown. Schoppa & Hussain (2002) showed that most streaks de-
tected in actual wall-turbulence simulations are indeed modally stable and their loss of
stability is better explained by transient growth of perturbations leading vorticity sheet
formation and non-linear saturation. Finally, a third mechanism has been proposed in the
recent years by Farrell & Ioannou (2012) and Farrell et al. (2016). Farrell and co-workers
adopted the perspective of statistical state dynamics (SSD) to develop a theory for the
maintenance of wall turbulence. Through the SSD framework, it is revealed that the
perturbations are maintained by an essentially time-dependent parametric non-normal
interaction with the streak, rather than by the inflectional instability of the streaky flow
discussed above (see also Farrell & Ioannou 2017).

The three different mechanisms, each capable of leading to the observed turbulence
structure, are rooted in theoretical or conceptual arguments. Whether the energy trans-
fer from the mean cross-flow to fluctuations in wall-bounded turbulence occurs through
any or a combination of these mechanisms remains unclear. Most of the theories stem
from linear stability theory, which has proved very successful in providing a theoreti-
cal framework to explain the lengths and time scales observed in the flow. However, an
appropriate base flow for the linearization must be selected a priori depending on the
flow state of interest; this introduces some degree of arbitrariness. Moreover, quantita-
tive results are known to be sensitive to the details of the base state (Vaughan & Zaki
2011). For example, there has been considerable efforts to explain and control turbulent
structure and length scales by linearizing around the turbulent mean profile obtained by
averaging in homogeneous directions and time (e.g., Högberg et al. 2003; del Álamo &
Jiménez 2006; Hwang & Cossu 2010). However, the turbulent mean profile is known to
be always modally stable and, thus, mechanisms (i) and (iii) are precluded. The self-
sustained turbulent state is intimately related with the roll–streak structure (e.g., Waleffe
1997) and this suggests that the rolls–streaks should be part of the base flow. One of the
contributions of SSD studies is the identification of the instantaneous mean cross-flow as
the proper “base flow” around which linearization should take place.

Another criticism of linear studies is that turbulence is a highly nonlinear phenomenon,
and a full self-sustained cycle is not expect to be uncovered from a single set of linearized
equations. For example, in turbulent channel flows, the classic linearization around the
mean velocity profile does not account for the redistribution of energy from the stream-
wise velocity component to the cross-flow, which is the prevailing energy transfer on
average (Mansour et al. 1988). In order to capture different energy transfer mechanisms,
the base state for linearization should be selected accordingly. In this regard, eigenmodes
or optimal solutions should not be taken as representative of the actual flow and, if so,
the time and length-scales for which linearization remains meaningful becomes a relevant
issue barely discussed in the literature.

Here, we attempt to distinguish and assess the relative importance of the three pro-
posed mechanisms for energy extraction from the mean flow in wall turbulence. Firstly,
we present some diagnostics from direct numerical simulations of wall turbulence. Sec-
ondly, we designed three numerical experiments each of which is dominated by the energy
extraction from modal instability: non-modal transient growth, or transient growth with
parametric instability, respectively. The proposed experiments are fully non-linear sys-
tems to close the feedback loop between mean cross-flow and perturbations, enabling in
this manner the possibility of sustained turbulence. The experiments are accompained
by some preliminary results.

The Brief is organized as follows. Section 2 contains the numerical details of the sim-
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ulations and the stability analysis of the mean-cross flow. The results are presented in
section 3 which is further subdivided into three subsections describing the details of the
flow set-up and the corresponding results. Finally, conclusions and future directions are
offered in Section 4.

2. Numerical experiments of turbulent channel flow

2.1. Numerical setup

The baseline case is a plane turbulent channel flow at Reτ = 184, with streamwise,
wall-normal and spanwise domain sizes equal to L+

x ≈ 337, L+
y ≈ 368 and L+

z ≈ 168,
respectively, where + denotes wall units defined in terms of the kinematic viscosity ν and
friction velocity at the wall uτ . Jiménez & Moin (1991) showed that simulations in this
domain constitute an elemental structural unit containing a single streamwise streak and
a pair of staggered quasi-streamwise vortices, which reproduce fairly well the statistics
of the flow in larger domains. We refer to this case as CH180.
We consider three additional numerical set-ups by solving

∂ui

∂t
= −

∂uiuj

∂xj

−
∂p

∂xi

+ ν
∂2ui

∂xk∂xk

+ fi,
∂ui

∂xi

= 0, (2.1)

where repeated indices imply summation, (u1, u2, u3) = (u, v, w) are streamwise, wall-
normal, and spanwise velocities with respective coordinates (x1, x2, x3) = (x, y, z), p is
the pressure, and fi = fi(x, y, z, t) is a forcing term aiming to prevent one or several of
the proposed energy injection mechanisms. The functional form of fi is discussed below
for each particular case.
The simulations are performed with a staggered second-order finite differences Orlandi

(2000) and a fractional-step method Kim & Moin (1985) with a third-order Runge-
Kutta time-advancing scheme (Wray 1990). The solution is advanced in time using a
constant time step such that the Courant–Friedrichs–Lewy condition is below 0.5. The
streamwise and spanwise resolutions are ∆x+ ≈ 6.5 and ∆z+ ≈ 3.3, respectively, and
the minimum and maximum wall-normal resolutions are ∆y+min ≈ 0.2 and ∆y+max ≈ 6.1.
All the simulations were run for at least 100h/uτ after transients. The code has been
validated in previous studies in turbulent channel flows (Lozano-Durán & Bae 2016; Bae
et al. 2018a,b) and flat-plate boundary layers (Lozano-Durán et al. 2018).
We introduce the averaging operators 〈 · 〉x, 〈 · 〉xz, and 〈 · 〉xzt which denote averaging

in x direction, x and z directions, and x, z and t, respectively. The mean velocity profile
is defined as 〈u〉xzt, the mean cross-flow velocity profile is U = 〈u〉x, and the fluctuating
velocities (or perturbations) are given by u′

1 = u1 − U , u′

2 = u2, and u′

3 = u3.

2.2. Linear stability of the mean cross-flow for case CH180

We will investigate the linear stability of ∂u′
/

∂t = A(U)u′ governing the linear evolution
of the fluctuating velocity vector u′ = (u′, v′, w′). The analysis is performed for different
times to by assuming a constant-in-time mean cross-flow U(y, z, to). Occasionally, we will
refer to the stability of A as the stability of U . The details of the analysis are provided
in the Appendix. Figure 1(a) shows the time evolution of the maximum growth rate of A
denoted by σmax (largest real part of the eigenvalues of A). Since we have assumed that
U does not evolve in time, it is pertinent to discuss the validity of such assumption. The
time auto-correlation of U is plotted in figure 1(b), which reveals that the de-correlation
time for U is about 4h/uτ . Hence, only growth rates with characteristic times 1/σmax
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Figure 1: (a) The evolution of the maximum growth rate of the mean cross-flow U(y, z, t).
(b) The auto-correlation of the cross-flow 〈U(y, z, t)〉z. The different lines are for y/h =
0.01, 0.04, 0.10, 0.22, 0.45, 0.80.

shorter than 4h/uτ should be taken as representative of the linear stability of U . Overall,
the flow is modally unstable 90% of the time, with growth rates larger than uτ/h/4 for
80% of the time history.

3. Experiments for discerning energy transfer mechanisms and preliminary

results

3.1. Primary energy injection by modal instability

The effect of modal instability is assessed by freezing in time the mean cross-flow for case
CH180 at time t0 when U(y, z, t) is modally unstable. At each time step, f1 is computed
such that U(y, z, t) = U(y, z, t0) with f2 = f3 = 0. Additionally, 〈u〉xzt is set to the
same value as in case CH180. The lack of time evolution in U eliminates the ability of
energy extraction through parametric instability. The cross-flow though can still support
transient growth, but the algebraic growth of perturbations is expected to be overcome
by the faster exponential growth provided by the modal instability of U . A total number
of 100 uncorrelated flow fields with modally unstable U(y, z, t0) were selected to run
simulations. As an example, Figure 2 shows the instantaneous velocity field for one case
after transients.
The resulting root-mean-squared (rms) fluctuating velocities for the statistical steady

state are shown in Figure 3(a), together with those from CH180. Unsurprisingly, turbulent
channel flows with persistent modally unstable mean cross-flow are capable of sustaining
turbulence. The new flow reaches statistical equilibrium at a higher level of turbulence
intensities due to the additional mean tangential stress introduced by f1, but the trends
observed in Figure 3(a) are consistent with CH180 in terms of relative magnitude and
wall-normal behavior. The transition to the new steady state is evidenced by Figure 3(b),
which shows the time evolution of a selection of streamwise Fourier components before
and after freezing the mean cross-flow. The adaptation time of turbulence upon imposi-
tion of constant U is roughly 2uτ/h, consistent with the lifespan of the largest eddies in
the flow.
The results reported above correspond to one particular U(y, z, t0), but the conclusions
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Figure 2: Experiment with fixed, unstable U : (a) Instantaneous velocity field in a z − y
plane at x = 0h. (b) Instantaneous streamwise velocity in a x − z plane at y = 0.1h.
Colors represent streamwise velocity and arrows are cross-flow velocities. Velocities are
scaled in wall units of the baseline case.
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Figure 3: Experiment with fixed, unstable U : (a) Root-mean-squared fluctuating ve-
locities for case CH180 (dashed lines) and channel with frozen-in-time modally unstable
mean cross-flow (symbols). Colors are red, streamwise; blue, wall-normal; black, spanwise
velocity fluctuations. (b) Time evolution of the energy associated to streamwise Fourier
modes, ûikû

∗

ik, for i = 1, 2, 3 and k = 0, 1, 2 at y = 0.1h, where ∗ denotes complex
conjugation. The mean cross-flow is frozen at tuτ/h = 10 (dashed black line).

are found to be robust for all mean cross-flows examined. Finally, it is important to
highlight that while fixing the mean flow to a modally unstable mean cross-flow profile
U(y, z, t0) does lead to sustained turbulence, whether this new state is similar in nature
to unforced wall turbulence is an important question that is not investigated here and
should be carefully addressed in future studies.

3.2. Energy injection by transient growth

The effect of non-modal transient growth as main cause for energy injection is assessed
by following a similar approach to that in Section 3.1. In this case, the cross-flow U
from CH180 is frozen at the instant t0, when the flow is modally stable. The mean flow
〈u〉xzt is set to the same value as in case CH180. The set-up disposes of energy transfers
due to both modal instability and due to parametric instabilities, while maintaining
the transient growth of perturbations. The expected scenario consistent with sustained
turbulence (e.g. Schoppa & Hussain 2002) is the non-modal amplification of perturbations
until saturation followed by non-linear scattering and generation of new disturbances.
However, plain visual inspection of the velocity field in Figure 4, reveals that this is not
the case, and turbulence is distinctly lessen.
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Figure 4: Experiment with fixed, stable U : (a) Instantaneous velocity field in a z − y
plane at x = 0h. (b) Instantaneous streamwise velocity in a x − z plane at y = 0.1h.
Colors represent streamwise velocity and arrows are cross-flow velocities. Velocities are
scaled in wall units of the baseline case. Arrows in panel (a) are amplified by a factor of
10.
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Figure 5: Experiment with fixed, stable U : (a) Root-mean-squared fluctuating velocities
for case CH180 (dashed lines) and channel with frozen-in-time modally stable mean cross-
flow (symbols). Colors are red, streamwise; blue, wall-normal; black, spanwise velocity
fluctuations. (b) Time evolution of the energy associated to streamwise Fourier modes,
ûikû

∗

ik, for i = 1, 2, 3 and k = 0, 1, 2 at y = 0.1h, where ∗ denotes complex conjugate.
The mean cross-flow is frozen in time at tuτ/h = 29 (dashed black line).

The rms fluctuating velocities for one experiment are shown in Figure 5(a). Turbulence
reaches a quasi-laminar state with residual cross-flow turbulence intensities, and non-
negligible streamwise fluctuations required to support the prescribed U(y, z, t0). The
exponential decay of Fourier modes after freezing the mean cross-flow is clearly seen in
Figure 5(b). The simulation was repeated for 100 different modally stable mean cross-flow
U(y, z, t0) and, without exception, all cases decayed similarly to the example discussed
above.

3.3. Energy injection by transient growth with parametric instability

The maintenance of turbulence exclusively by transient growth with parametric insta-
bility is analyzed by a time-dependent mean cross-flow which is altered to be free of
modal instabilities. To that end, we introduce the linear damping f1 = −µ(U − 〈u〉xz),
f2 = f3 = 0, where the parameter µ is a coefficient to be determined such that U is
modally stable for all times. The goal is to investigate the existence of self-sustained wall
turbulence without any energy extraction from the mean cross-flow via modal instabili-
ties.
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Figure 6: Experiment with linear drag on U : (a,d) Mean velocity profile for case CH180
(black dashed line) and channel with linear damping −µ(U −〈u〉xz) (solid red line). (b,e)
Root-mean-squared fluctuating velocities for case CH180 (dashed lines) and channel with
−µ(U −〈u〉xz) (symbols). Colors are red, streamwise; blue, wall-normal; black, spanwise
velocity fluctuations. (c,g) Time evolution of the maximum growth rate of A for channel
flow with linear damping −µ(U − 〈u〉xz). (a,b,c) are for µ = 1.2uτ/h > µc and (d,e,f)
are for µ = 1.4uτ/h < µc.

Ideally, if ∂u′
/

∂t = A(µ)u′ is the linear equation governing the fluctuating velocities,
the drag coefficient µ should be adjusted at each time step to bring the most unstable
eigenvalue of A to neutrality. In the present preliminary version of the work, we adopt
a simplified approach where the value of µ is set constant in time. Then, a campaign of
channel flow simulations driven by a constant streamwise mass flux was performed for
values of µ ranging from 0 up to µc ≈ 1.3uτ/h, above which the flow laminarizes.
The mean and rms velocity profiles for µ = 1.4uτ/h > µc are shown in Figures 6(a,b).

The flow is laminar with zero velocity fluctuations. Figure 6(c) shows the time history of
the most unstable growth rate of A, which is constant and negative. Figures 6(d,e,f) are
equivalent to Figures 6(a,b,c) but for µ = 1.2uτ/h < µc, which is the maximum value of
µ that allows for turbulence in a statistical steady state. The rms velocities are weaker
with respect to case CH180, but they still resemble qualitatively those encountered in
real turbulence. Figure 6(f) shows that U(z, y, t) is modally unstable ∼60% of the time.
The percentage is below the value obtained for case CH180 (∼90%) which suggests that
not all of the modal instabilities are neccessary to maintained turbulence with realistic
one-point statistics.
Finally, an slightly different numerical experiment is performed in which now we include

linear damping into the equation for the fluctuating velocities, i.e., fi = −µ′u′

i, i = 1, 2, 3.
In this new set-up, we directly target the eigenvalues of A, whose real parts are reduced
exactly by µ′ compared to the eigenvalues of A(µ′ = 0). The maximum value of µ′ that
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Figure 7: Experiment with linear drag on u
′: (a,d) Mean velocity profile for case CH180

(black dashed line) and channel with linear damping −µ′u′

i (solid red line). (b,e) Root-
mean-squared fluctuating velocities for case CH180 (dashed lines) and channel with−µ′u′

i

(symbols). Colors are red, streamwise; blue, wall-normal; black, spanwise velocity fluctu-
ations. (c,g) Time evolution of the maximum growth rate of A for channel flow with linear
damping −µ′u′

i. (a,b,c) are for µ = 1.1uτ/h > µc and (d,e,f) are for µ = 0.9uτ/h < µc.

allows for sustained turbulence is found to be µ′

c ≈ 1uτ/h. The resulted flow statistics for
µ′ that is marginally above and marginally below µ′

c (Figure 7) yield similar conclusions
as those reported above: turbulence only survives when A is modally unstable for a
substantial fraction of the time simulated, in this case, for ∼60% of the time when
µ′ = 0.9h/uτ < µ′

c.

4. Conclusions

We have studied the mechanism of energy injection from the mean flow to the fluctuat-
ing velocity necessary to maintain wall turbulence. This process is believed to be correctly
represented by the linearized Navier–Stokes equations, and three potential linear mecha-
nisms have been considered, namely, modal instability of the streamwise mean cross-flow
U(y, z, t), non-modal transient growth, and non-modal transient growth supported by
parametric instability.
We have designed three numerical experiments of plane turbulent channel flow with

additional forcing terms aiming to neutralize one or various linear mechanism for energy
extraction. To assess the effect of modal instabilities and non-modal transient growth
of U(y, z, t), we have computed turbulent channel flows with prescribed modally sta-
ble/unstable mean cross-flows frozen in time. In addition, transient growth with para-
metric instability was evaluated by adding a linear damping to the momentum equation
of the mean cross-flow or to the fluctuation equations. This additional linear damping
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was chosen accordingly to render any modal instabilities stable and thus preclude energy
transfer to the fluctuations from modal instabilities.
From our preliminary experiments, only cases with mean cross-flows capable of sup-

porting modal instabilities were found to sustain turbulence. However, the question
whether such a new turbulence complies with the same physical mechanisms as those
occurring in actual (unforced) turbulence remains unanswered. On the other hand, cases
exclusively supported by transient growth decayed until laminarization. For this prelim-
inary study, this outcome should not be taken as a demonstration that transient growth
aided or not by parametric instability is unable to maintain turbulence in actual flows,
but just as an indication that we could not find a self-sustained turbulent system without
the contribution of modal instabilities.
Future work will be devoted to the careful design of modified turbulent channel flows

providing clear causal inference and quantification of the energy injection mechanisms
in wall turbulence. Moreover, if indeed modal instability (or other) is the dominant
mechanism responsible for transferring energy from the mean flow to the fluctuations, it
should detectable from unforced wall-turbulence simulation (e.g., CH180), and additional
efforts will be carried on to analyze DNS data using non-intrusive techniques.
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Appendix: Stability analysis

This appendix describes the linear stability analysis of a base flow which is inhomoge-
neous in two spatial directions. We assume the following velocity field

u = (U(y, z), 0, 0) + εud, (A 1)

where the base flow U is assumed parallel, steady and streamwise independent, and ud

is the disturbance. Substituting the velocity field into the incompressible Navier-Stokes
equations and neglecting the nonlinear terms we obtain

∂ud

∂x
+

∂vd
∂y

+
∂wd

∂z
= 0, (A 2a)

∂ud

∂t
+ U

∂ud

∂x
+ vd

∂U

∂y
+ wd

∂U

∂z
= −

∂pd
∂x

+
1

Re
∇

2ud, (A 2b)

∂vd
∂t

+ U
∂vd
∂x

= −
∂pd
∂y

+
1

Re
∇

2vd, (A 2c)

∂wd

∂t
+ U

∂wd

∂x
= −

∂pd
∂z

+
1

Re
∇

2wd, (A 2d)

where pd is the disturbance pressure. The boundary conditions are no slip and imper-
meability on the channel walls. In the current study the stability analysis has been
performed only on a half-channel. Therefore, no slip and impermeability were imposed
on the channel center, as we are interested only in the instabilities close to the wall.
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The base flow is periodic along the spanwise direction and often it is useful to describe
it in terms of a truncated Fourier expansion. In such cases a Floquet analysis is performed
with respect to the span (see e.g. Karp & Cohen 2014). Nevertheless, for an arbitrary
base flow, such as the one considered here, it is not beneficial to invoke Floquet theory.
Therefore, we assume the following form for the disturbance

qd = q̂d(y, z)e
i(αdx−ωdt), (A 3)

where qd = (ud, vd, wd, pd)
T , αd is the streamwise wavenumber and ωd is the temporal

complex eigenvalue. The eigenvalue can be written as ωd = λ + iσ, where λ is the
frequency and σ is the growth rate. The linearized equations above are discretized along
both inhomogeneous directions using spectral methods. Along the wall-normal direction
a Chebyshev grid is used for y ∈ [0, 1] and along the spanwise direction a Fourier grid is
used for z ∈ [0, Lz].
Substituting the disturbance into the linearized equations, they can be rearranged as

an eigenvalue problem for the calculation of ωd









Dx Dy Dz O

C Uy Uz Dx

O C O Dy

O O C Dz























ũd

ṽd
w̃d

p̃d















= ωd









O O O O

iI O O O

O iI O O

O O iI O























ũd

ṽd
w̃d

p̃d















. (A 4)

Here I is the identity matrix, O is a zero matrix, ũd (and similarly ṽd, w̃d, p̃d) is a one-
dimensional representation of a two-dimensional vector

ũd = (ûd(y, z1); ûd(y, z2); ..; ûd(y, zNz
)), (A 5)

and the matrices C , Uy , Uz , Dx , Dy and Dz are given by

C = iα diag (U)−
1

Re

(

Īz ⊗ D̄
2
y + D̄

2
z ⊗ Īy − α2

Īz ⊗ Īy

)

, (A 6a)

Uy = diag
{(

Īz ⊗ D̄y

)

U
}

, (A 6b)

Uz = diag
{(

D̄z ⊗ Īy

)

U
}

, (A 6c)

Dx = iα Īz ⊗ Īy , (A 6d)

Dy = Īz ⊗ D̄y , (A 6e)

Dz = D̄z ⊗ Īy , (A 6f )

where ⊗ is the Kronecker product and U is a one-dimensional representation of U (sim-
ilarly to ũd). The matrices Īy and Īz are identity matrices of dimensions Ny × Ny and
Nz ×Nz, respectively and D̄y and D̄z are matrices that represent derivation with respect
to the y and z coordinates, respectively. The eigenvalue problem is solved numerically
using the Matlab software, with Ny = 101 and Nz = 32.
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