The Journal of Open Source Software

DOI: 10.xxxxxx/draft

Software
= Review &7 13

= Repository 7

= Archive &7 14

15

16

Editor: Open Journals @@ 17
Reviewers: 18

= @openjournals

Submitted: 01 January 1970
Published: unpublished

22
License -
Authors of papers retain copyrigh,
and release the work under a .
Creative Commons Attribution 4.0
International License (CC BY 4.0’

27
28

29

30
31
32
33
34
35
36
37
38
39
40
4

42

SpeedyWeather.jl: Reinventing atmospheric general
circulation models towards interactivity and
extensibility

Milan Klower ©® 127, Maximilian Gelbrecht ®3#, Daisuke Hotta ® %%, Justin
Willmert © 7, Simone Silvestri ©!, Gregory L Wagner © !, Alistair White © 34,
Sam Hatfield ©®°, Tom Kimpson © 22, Navid C Constantinou ©2, and Chris
Hill!

1 Massachusetts Institute of Technology, Cambridge, MA, USA 2 University of Oxford, UK 3 Technical
University of Munich, Germany 4 Potsdam Institute for Climate Impact Research, Germany 5 Japan
Meteorological Agency, Tsukuba, Japan 6 European Centre for Medium-Range Weather Forecasts,
Reading, UK 7 University of Minnesota, Minneapolis, MN, USA 8 The University of Melbourne,
Parkville, VIC, Australia § Corresponding author

Summary

SpeedyWeather.jl is a library to simulate and analyze the global atmospheric circulation on the
sphere. It implements several 2D and 3D models which solve different sets of equations:

= the primitive equations with and without humidity (Figure 1),
= the shallow water equations (Figure 2), and
= the barotropic vorticity equation (Figure 3).

The primitive equation model in SpeedyWeather.jl is an atmospheric general circulation model
(Kucharski et al.; 2013) with simple parameterizations for unresolved physical processes including
precipitation or boundary layer mixing. It can be thought of as a conceptual reinvention of the
Fortran SPEEDY model (Molteni, 2003) in the Julia programming language (Bezanson et al.,
2017). However, all models here are written in a modular way to make its components easily
extensible. For example, a new parameterization can be externally defined and passed as an
argument to the model constructor. Operators used inside SpeedyWeather.jl are exposed to
the user, facilitating analysis of the simulation data. SpeedyWeather jl is therefore, beyond its
main purpose of simulating atmospheric motion, also a library for the analysis of gridded data
on the sphere. Running and analyzing simulations can be interactively combined, enhancing
user experience and productivity.

The user interface of SpeedyWeather.jl is heavily influenced by the Julia ocean model Oceanani-
gans.jl (Ramadhan et al., 2020). A monolithic interface (Mazlami et al., 2017), controlling
most of the model’s functionality through arguments of a single function or through parameter
files (often called namelists in Fortran), is avoided in favor of a library-style interface. A model
is constructed bottom-up by first defining the discretization and any non-default model compo-
nents with their respective parameters. All components are then collected into a single model
object which, once initialized, returns a simulation object. A simulation contains everything,
the model with all parameters as constructed before but also all prognostic and diagnostic
variables. Such a simulation can then be run, but also accessed before and after to analyze or
visualize the current variables, or individual terms of the equations. One can also adjust some
parameters before resuming the simulation. While these steps can be written into a script
for reproducibility, the same steps can be executed and interacted with one-by-one in Julia's
read-evaluate-print loop (REPL) or in a Jupyter or Pluto notebook. We thereby achieve an

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 1
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://orcid.org/0000-0002-3920-4356
https://orcid.org/0000-0002-0729-6671
https://orcid.org/0000-0003-2287-0608
https://orcid.org/0000-0002-6452-4693
https://orcid.org/0000-0002-7156-946X
https://orcid.org/0000-0001-5317-2445
https://orcid.org/0000-0003-3377-6852
https://orcid.org/0000-0001-7235-6450
https://orcid.org/0000-0002-6542-6032
https://orcid.org/0000-0002-8149-4094
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft

SS

The Journal of Open Source Software

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

interactivity of a simulation and its various model components far beyond the options provided
in a monolithic interface. At the same time, defaults, set to well-established test cases, enable
even inexperienced users to run simulations in just a few lines of code.

Surface specific humidity Surface air temperature

Surface wind speed

Figure 1: Surface humidity, air temperature, wind speed and precipitation simulated with the primitive
equation model in SpeedyWeather.jl. Spectral resolution is T340 (about 40km) on an octahedral Gaussian
grid (Malardel et al., 2016) with simple physics to represent unresolved processes such as surface fluxes
including evaporation, and precipitation due to large-scale condensation and convection.

SpeedyWeather.jl relies on Julia's multiple dispatch programming paradigm (Bezanson et al.,
2017) to be extensible with new components including parameterizations, forcing, drag, or even
the grid. All such supported model components define an abstract type that can be subtyped to
introduce, for example, a new parameterization. To define a new parameterization for convection
in a given vertical column of the atmosphere, one would define MyConvection as a new subtype
of AbstractConvection. One then only needs to extend the initialize! (executed once
during model initialization) and convection! (executed on every time step) functions for
this new type. Passing on convection = MyConvection() to the model constructor then
implements this new model component without the need to branch off or overwrite existing
model components. Conceptually similar scientific modelling paradigms have been very
successful in the Python-based generic partial differential equation solver Dedalus (Burns et
al., 2020), the process-oriented climate model CLIMLAB (Rose, 2018), and the Julia ocean
model Oceananigans.jl (Ramadhan et al., 2020).

The dynamical core of SpeedyWeather.jl uses established numerics (Bourke, 1972; Hoskins
& Simmons, 1975; Simmons et al., 1978; Simmons & Burridge, 1981), widely adopted in
numerical weather prediction. It is based on the spherical harmonic transform (Reinecke &
Seljebotn, 2013; Stompor, 2011) with a leapfrog-based semi-implicit time integration (Hoskins
& Simmons, 1975) and a Robert-Asselin-Williams filter (Amezcua et al., 2011; Williams, 2011).
The spherical harmonic transform is grid-flexible (Willmert, 2020). Any iso-latitude ring-based
grid can be used and new grids can be externally defined and passed in as an argument. Many
grids are already implemented: the conventional Gaussian grid, a regular longitude-latitude
grid, the octahedral Gaussian grid (Malardel et al., 2016), the octahedral Clenshaw-Curtis grid
(Hotta & Ujiie, 2018), and the HEALPix grid (Gérski et al., 2005). Both SpeedyWeather.jl and
its spherical harmonic transform are also number format-flexible. Single-precision floating-point
numbers (Float32) are the default as adopted by other modelling efforts (Nakano et al., 2018;

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 2
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.xxxxxx/draft

SS

The Journal of Open Source Software

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Vana et al., 2017), but Float64 and other custom number formats can be used with a single
code basis (Klower et al., 2020; Klower et al., 2022). Julia will compile to the choice of number
format, the grid, and and other model components just-in-time. A simple parallelization (across
vertical layers for the dynamical core, across horizontal grid points for the parameterizations)
is supported by Julia’s multithreading. No distributed-memory parallelization is currently
supported, GPU support is planned.

SpeedyWeather.jl internally uses three sub-modules RingGrids, LowerTriangularMatrices,
and SpeedyTransforms. RingGrids is a module that discretizes the sphere on iso-latitude
rings and implements interpolations between various such grids. LowerTriangularMatrices
facilitates the implementation of the spherical harmonics by organizing their coefficients in a
lower triangular matrix representation. SpeedyTransforms implements the spectral transform
between the grid-point space as defined by RingGrids and the spectral space defined in
LowerTriangularMatrices. These three modules are independently usable and therefore
support SpeedyWeather's library-like user interface. Output is stored as NetCDF files using
NCDatasets.jl(Barth, 2023).

Figure 2: Relative vorticity simulated with the shallow water model in SpeedyWeather.jl. The simulation
used a spectral resolution of T1023 (about 20 km) and Float32 arithmetic on an octahedral Clenshaw-
Curtis grid (Hotta & Ujiie, 2018). Relative vorticity is visualized with Matplotlib (Hunter, 2007) and
Cartopy (Met Office, 2010 - 2015) using a transparent-to-white colormap to mimic the appearance of
clouds. Underlaid is NASA's blue marble from June 2004.

Statement of need

SpeedyWeather jl is a fresh approach to atmospheric models that have been very influential in
many areas of scientific and high-performance computing as well as climate change mitigation
and adaptation. Most weather, ocean and climate models are written in Fortran (e.g. ICON
(Giorgetta et al., 2018), CESM (Hurrell et al., 2013), MITgem (Marshall et al., 1997), NEMO
(Madec et al., 2017)) and have been developed over decades. From this tradition follows a
specific programming style and associated user interface. SpeedyWeather.jl aims to overcome
the constraints of traditional Fortran-based models. The modern trend sees simulations in
Fortran and data analysis in Python (e.g. NumPy (Harris et al., 2020), Xarray (Hoyer &
Hamman, 2017), Dask (Dask Development Team, 2016), Matplotlib (Hunter, 2007)), making
it virtually impossible to interact with various model components directly. In SpeedyWeather jl,
interfaces to the model components are exposed to the user. Furthermore, data-driven climate
modelling (Rasp et al., 2018; Schneider et al., 2023), which replaces existing model components
with machine learning, is more difficult in Fortran due to the lack of established machine

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 3
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

learning frameworks (Meyer et al., 2022). In Julia, Flux.jl (Innes et al., 2019) is available for
machine learning as well as automatic differentiation with Enzyme (Moses & Churavy, 2020)
for gradients-based optimization.

With SpeedyWeather.jl we hope to provide a platform for data-driven atmospheric modelling
and in general an interactive model that makes difficult problems easy to simulate. Climate
models that are user-friendly, trainable, but also easily extensible will suddenly make many
complex research ideas possible.

Figure 3: Particle trajectories advected in the barotropic vorticity model. The barotropic vorticity
equations were stochastically stirred at wave numbers 8 to 40 for homogeneous turbulence on the sphere.
The simulation was computed at T340 (about 40km global resolution). Visualized are 20,000 particles
(white dots) with trajectories (colored randomly) for the previous 6 hours.

Acknowledgements

We acknowledge contributions from David Meyer, Mosé Giordano, Valentin Churavy, and
Pietro Monticone who have also committed to the SpeedyWeather.jl repository, and the wider
Julia community for help and support. MK acknowledges funding from the National Science
Foundation. MK and TK acknowledge funding from the European Research Council under the
European Union’s Horizon 2020 research and innovation programme for the ITHACA grant (no.
741112). NCC acknowledges support by the Australian Research Council DECRA Fellowship
DE210100749.

References

Amezcua, J., Kalnay, E., & Williams, P. D. (2011). The Effects of the RAW Filter on the
Climatology and Forecast Skill of the SPEEDY Model. Monthly Weather Review, 139(2),
608-619. https://doi.org/10.1175/2010MWR3530.1

Barth, A. (2023). NCDatasets: A julia package for manipulating netCDF data sets. In GitHub
repository. https://github.com/Alexander-Barth/NCDatasets.jl; GitHub.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to
Numerical Computing. SIAM Review, 59(1), 65-98. https://doi.org/10.1137/141000671

Bourke, W. (1972). An Efficient, One-Level, Primitive-Equation Spectral Model. Monthly
Weather Review, 100(9), 683-689. https://doi.org/10.1175/1520-0493(1972)100%
3C0683:AEOPSM%3E2.3.CO;2

Kldwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 4
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.1175/2010MWR3530.1
https://github.com/Alexander-Barth/NCDatasets.jl
https://doi.org/10.1137/141000671
https://doi.org/10.1175/1520-0493(1972)100%3C0683:AEOPSM%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100%3C0683:AEOPSM%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100%3C0683:AEOPSM%3E2.3.CO;2
https://doi.org/10.xxxxxx/draft

@SS

The Journal of Open Source Software

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review
Research, 2(2), 023068. https://doi.org/10.1103/PhysRevResearch.2.023068

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. http://dask.
pydata.org

Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger,
C., Kornblueh, L., Kéhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast,
S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., .. Stevens, B.
(2018). ICON-a, the atmosphere component of the ICON earth system model: |. Model
description. Journal of Advances in Modeling Earth Systems, 10(7), 1613-1637. https:
//doi.org/10.1029,/2017MS001242

Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., &
Bartelmann, M. (2005). HEALPix: A Framework for High-Resolution Discretization and
Fast Analysis of Data Distributed on the Sphere. The Astrophysical Journal, 622(2), 759.
https://doi.org/10.1086/427976

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P., ..
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362.
https://doi.org/10.1038/s41586-020-2649-2

Hoskins, B. J., & Simmons, A. J. (1975). A multi-layer spectral model and the semi-implicit
method. Quarterly Journal of the Royal Meteorological Society, 101(429), 637-655.
https://doi.org/10.1002/qj.49710142918

Hotta, D., & Ujiie, M. (2018). A nestable, multigrid-friendly grid on a sphere for global
spectral models based on Clenshaw—Curtis quadrature. Quarterly Journal of the Royal
Meteorological Society, 144(714), 1382-1397. https://doi.org/10.1002/qj.3282

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334 /jors.148

Hunter, J. D: (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque,
J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald,
N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., ..
Marshall”, S. (2013). The community earth system model: A framework for collaborative
research. Bulletin of the American Meteorological Society, 94(9), 1339-1360. https:
//déi.org/10.1175/BAMS-D-12-00121.1

Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B., & Tebbutt, W.
(2019). A Differentiable Programming System to Bridge Machine Learning and Scientific
Computing (No. arXiv:1907.07587). arXiv. https://doi.org/10.48550/arXiv.1907.07587

Kléwer, M., Diiben, P. D., & Palmer, T. N. (2020). Number formats, error mitigation, and
scope for 16-bit arithmetics in weather and climate modeling analyzed with a shallow
water model. Journal of Advances in Modeling Earth Systems, 12(10), e2020MS002246.
https://doi.org/10.1029/2020MS002246

Kléwer, M., Hatfield, S., Croci, M., Diiben, P. D., & Palmer, T. N. (2022). Fluid Sim-
ulations Accelerated With 16 Bits: Approaching 4x Speedup on A64FX by Squeezing
ShallowWaters.jl Into Floatl6. Journal of Advances in Modeling Earth Systems, 14(2),
€2021MS002684. https://doi.org/10.1029/2021MS002684

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 5
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.1103/PhysRevResearch.2.023068
http://dask.pydata.org
http://dask.pydata.org
http://dask.pydata.org
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1086/427976
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1002/qj.49710142918
https://doi.org/10.1002/qj.3282
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.48550/arXiv.1907.07587
https://doi.org/10.1029/2020MS002246
https://doi.org/10.1029/2021MS002684
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Kucharski, F., Molteni, F., King, M. P., Farneti, R., Kang, 1.-S., & Feudale, L. (2013). On
the Need of Intermediate Complexity General Circulation Models: A “SPEEDY" Example.
Bulletin of the American Meteorological Society, 94(1), 25-30. https://doi.org/10.1175/
BAMS-D-11-00238.1

Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D.,
Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T.,
Harle, J., lovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., .. Vancoppenolle, M. (2017).
NEMO ocean engine. https://doi.org/10.5281/zenodo.3248739

Malardel, S., Wedi, N., Deconinck, N., Diamantakis, M., Kuehnlein, C., Mozdzynski, G.,
Hamrud, M., & Smolarkiewicz, P. (2016). A new grid for the IFS. In ECMWF Newsletter.
https://www.ecmwf.int/node/15041. https://doi.org/10.21957 /zwdu9ubi

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume,
incompressible navier stokes model for studies of the ocean on parallel computers. Journal
of Geophysical Research: Oceans, 102(C3), 5753-5766. https://doi.org/https://doi.org/
10.1029/96JC02775

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of microservices from monolithic
software architectures. 2017 IEEE International Conference on Web Services (ICWS),
524-531. https://doi.org/10.1109/ICWS.2017.61

Met Office. (2010 - 2015). Cartopy: A cartographic python library with a matplotlib interface.
https://scitools.org.uk/cartopy

Meyer, D., Grimmond, S., Dueben, P., Hogan, R., & Reeuwijk, M. van. (2022). Machine
learning emulation of urban land surface processes. Journal of Advances in Modeling Earth
Systems, 14(3). https://doi.org/10.1029/2021ms002744

Molteni, F. (2003). Atmospheric simulations using a GCM with simplified physical param-
etrizations. |: Model climatology and variability in multi-decadal experiments. Climate
Dynamics, 20(2), 175-191. https://doi.org/10.1007 /s00382-002-0268-2

Moses, W., & Churavy, V. (2020). Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients. Advances in Neural Information Processing
Systems, 33, 12472-12485. https://doi.org/10.48550/arXiv.2010.01709

Nakano, M., Yashiro, H., Kodama, C., & Tomita, H. (2018). Single Precision in the Dynamical
Core of a Nonhydrostatic Global Atmospheric Model: Evaluation Using a Baroclinic
Wave Test Case. Monthly Weather Review, 146(2), 409-416. https://doi.org/10.1175/
MWR-D-17-0257.1

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza,
A., Edelman, A., Ferrari, R., & Marshall, J. (2020). Oceananigans.jl: Fast and friendly
geophysical fluid dynamics on GPUs. Journal of Open Source Software, 5(53), 2018.
https://doi.org/10.21105/joss.02018

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes
in climate models. Proceedings of the National Academy of Sciences, 115(39), 9684-9689.
https://doi.org/10.1073/pnas.1810286115

Reinecke, M., & Seljebotn, D. S. (2013). Libsharp - spherical harmonic transforms revisited.
Astronomy and Astrophysics, 554, A112. https://doi.org/10.1051/0004-6361/201321494

Rose, B. E. J. (2018). CLIMLAB: A Python toolkit for interactive, process-oriented climate
modeling. Journal of Open Source Software, 3(24), 659. https://doi.org/10.21105/joss.
00659

Schneider, T., Behera, S., Boccaletti, G., Deser, C., Emanuel, K., Ferrari, R, Leung, L. R., Lin,
N., Miiller, T., Navarra, A., Ndiaye, O., Stuart, A., Tribbia, J., & Yamagata, T. (2023).

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 6
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.1175/BAMS-D-11-00238.1
https://doi.org/10.1175/BAMS-D-11-00238.1
https://doi.org/10.1175/BAMS-D-11-00238.1
https://doi.org/10.5281/zenodo.3248739
https://doi.org/10.21957/zwdu9u5i
https://doi.org/10.1029/96JC02775
https://doi.org/10.1029/96JC02775
https://doi.org/10.1029/96JC02775
https://doi.org/10.1109/ICWS.2017.61
https://scitools.org.uk/cartopy
https://doi.org/10.1029/2021ms002744
https://doi.org/10.1007/s00382-002-0268-2
https://doi.org/10.48550/arXiv.2010.01709
https://doi.org/10.1175/MWR-D-17-0257.1
https://doi.org/10.1175/MWR-D-17-0257.1
https://doi.org/10.1175/MWR-D-17-0257.1
https://doi.org/10.21105/joss.02018
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1051/0004-6361/201321494
https://doi.org/10.21105/joss.00659
https://doi.org/10.21105/joss.00659
https://doi.org/10.21105/joss.00659
https://doi.org/10.xxxxxx/draft

SS

The Journal of Open Source Software

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Harnessing Al and computing to advance climate modelling and prediction. Nature Climate
Change, 13(9), 887-889. https://doi.org/10.1038/s41558-023-01769-3

Simmons, A. J., & Burridge, D. M. (1981). An Energy and Angular-Momentum Conserving Ver-
tical Finite-Difference Scheme and Hybrid Vertical Coordinates. Monthly Weather Review,
109(4), 758-766. https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E?2.
0.CO;2

Simmons, A. J., Hoskins, B. J., & Burridge, D. M. (1978). Stability of the Semi-Implicit
Method of Time Integration. Monthly Weather Review, 106(3), 405-412. https://doi.org/
10.1175/1520-0493(1978)106%3C0405:SOTSIM%3E2.0.CO;2

Stompor, R. (2011). S2HAT: Scalable Spherical Harmonic Transform Library. https://ascl.
net/1110.013.

Viéna, F., Diiben, P., Lang, S., Palmer, T., Leutbecher, M., Salmond, D., & Carver, G. (2017).
Single Precision in Weather Forecasting Models: An Evaluation with the IFS. Monthly
Weather Review, 145(2), 495-502. https://doi.org/10.1175/MWR-D-16-0228.1

Williams, P. D. (2011). The RAW Filter: An Improvement to the Robert—Asselin Filter
in Semi-Implicit Integrations. Monthly Weather Review, 139(6), 1996-2007. https:
//doi.org/10.1175/2010MWR3604.1

Willmert, J. (2020). Blog series: . Notes on calculating the spherical harmon-
ics. http://web.archive.org/web/*/https://justinwillmert.com /articles/2020/
notes-on-calculating-the-spherical-harmonics/.

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 7
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.1038/s41558-023-01769-3
https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106%3C0405:SOTSIM%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106%3C0405:SOTSIM%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106%3C0405:SOTSIM%3E2.0.CO;2
https://ascl.net/1110.013
https://ascl.net/1110.013
https://ascl.net/1110.013
https://doi.org/10.1175/MWR-D-16-0228.1
https://doi.org/10.1175/2010MWR3601.1
https://doi.org/10.1175/2010MWR3601.1
https://doi.org/10.1175/2010MWR3601.1
http://web.archive.org/web/*/https://justinwillmert.com/articles/2020/notes-on-calculating-the-spherical-harmonics/
http://web.archive.org/web/*/https://justinwillmert.com/articles/2020/notes-on-calculating-the-spherical-harmonics/
http://web.archive.org/web/*/https://justinwillmert.com/articles/2020/notes-on-calculating-the-spherical-harmonics/
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Acknowledgements
	References

