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Summary

SpeedyWeather.jl is a library to simulate and analyze the global atmospheric circulation on the
sphere. It implements several 2D and 3D models which solve different sets of equations:

= the primitive equations with and without humidity (Figure 1),
= the shallow water equations (Figure 2), and
= the barotropic vorticity equation (Figure 3).

The primitive equation model in SpeedyWeather.jl is an atmospheric general circulation model
(Kucharski et al.; 2013) with simple parameterizations for unresolved physical processes including
precipitation or boundary layer mixing. It can be thought of as a conceptual reinvention of the
Fortran SPEEDY model (Molteni, 2003) in the Julia programming language (Bezanson et al.,
2017). However, all models here are written in a modular way to make its components easily
extensible. For example, a new parameterization can be externally defined and passed as an
argument to the model constructor. Operators used inside SpeedyWeather.jl are exposed to
the user, facilitating analysis of the simulation data. SpeedyWeather jl is therefore, beyond its
main purpose of simulating atmospheric motion, also a library for the analysis of gridded data
on the sphere. Running and analyzing simulations can be interactively combined, enhancing
user experience and productivity.

The user interface of SpeedyWeather.jl is heavily influenced by the Julia ocean model Oceanani-
gans.jl (Ramadhan et al., 2020). A monolithic interface (Mazlami et al., 2017), controlling
most of the model’s functionality through arguments of a single function or through parameter
files (often called namelists in Fortran), is avoided in favor of a library-style interface. A model
is constructed bottom-up by first defining the discretization and any non-default model compo-
nents with their respective parameters. All components are then collected into a single model
object which, once initialized, returns a simulation object. A simulation contains everything,
the model with all parameters as constructed before but also all prognostic and diagnostic
variables. Such a simulation can then be run, but also accessed before and after to analyze or
visualize the current variables, or individual terms of the equations. One can also adjust some
parameters before resuming the simulation. While these steps can be written into a script
for reproducibility, the same steps can be executed and interacted with one-by-one in Julia's
read-evaluate-print loop (REPL) or in a Jupyter or Pluto notebook. We thereby achieve an
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interactivity of a simulation and its various model components far beyond the options provided
in a monolithic interface. At the same time, defaults, set to well-established test cases, enable
even inexperienced users to run simulations in just a few lines of code.

Surface specific humidity Surface air temperature

Surface wind speed

Figure 1: Surface humidity, air temperature, wind speed and precipitation simulated with the primitive
equation model in SpeedyWeather.jl. Spectral resolution is T340 (about 40km) on an octahedral Gaussian
grid (Malardel et al., 2016) with simple physics to represent unresolved processes such as surface fluxes
including evaporation, and precipitation due to large-scale condensation and convection.

SpeedyWeather.jl relies on Julia's multiple dispatch programming paradigm (Bezanson et al.,
2017) to be extensible with new components including parameterizations, forcing, drag, or even
the grid. All such supported model components define an abstract type that can be subtyped to
introduce, for example, a new parameterization. To define a new parameterization for convection
in a given vertical column of the atmosphere, one would define MyConvection as a new subtype
of AbstractConvection. One then only needs to extend the initialize! (executed once
during model initialization) and convection! (executed on every time step) functions for
this new type. Passing on convection = MyConvection() to the model constructor then
implements this new model component without the need to branch off or overwrite existing
model components. Conceptually similar scientific modelling paradigms have been very
successful in the Python-based generic partial differential equation solver Dedalus (Burns et
al., 2020), the process-oriented climate model CLIMLAB (Rose, 2018), and the Julia ocean
model Oceananigans.jl (Ramadhan et al., 2020).

The dynamical core of SpeedyWeather.jl uses established numerics (Bourke, 1972; Hoskins
& Simmons, 1975; Simmons et al., 1978; Simmons & Burridge, 1981), widely adopted in
numerical weather prediction. It is based on the spherical harmonic transform (Reinecke &
Seljebotn, 2013; Stompor, 2011) with a leapfrog-based semi-implicit time integration (Hoskins
& Simmons, 1975) and a Robert-Asselin-Williams filter (Amezcua et al., 2011; Williams, 2011).
The spherical harmonic transform is grid-flexible (Willmert, 2020). Any iso-latitude ring-based
grid can be used and new grids can be externally defined and passed in as an argument. Many
grids are already implemented: the conventional Gaussian grid, a regular longitude-latitude
grid, the octahedral Gaussian grid (Malardel et al., 2016), the octahedral Clenshaw-Curtis grid
(Hotta & Ujiie, 2018), and the HEALPix grid (Gérski et al., 2005). Both SpeedyWeather.jl and
its spherical harmonic transform are also number format-flexible. Single-precision floating-point
numbers (Float32) are the default as adopted by other modelling efforts (Nakano et al., 2018;
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Vana et al., 2017), but Float64 and other custom number formats can be used with a single
code basis (Klower et al., 2020; Klower et al., 2022). Julia will compile to the choice of number
format, the grid, and and other model components just-in-time. A simple parallelization (across
vertical layers for the dynamical core, across horizontal grid points for the parameterizations)
is supported by Julia’s multithreading. No distributed-memory parallelization is currently
supported, GPU support is planned.

SpeedyWeather.jl internally uses three sub-modules RingGrids, LowerTriangularMatrices,
and SpeedyTransforms. RingGrids is a module that discretizes the sphere on iso-latitude
rings and implements interpolations between various such grids. LowerTriangularMatrices
facilitates the implementation of the spherical harmonics by organizing their coefficients in a
lower triangular matrix representation. SpeedyTransforms implements the spectral transform
between the grid-point space as defined by RingGrids and the spectral space defined in
LowerTriangularMatrices. These three modules are independently usable and therefore
support SpeedyWeather's library-like user interface. Output is stored as NetCDF files using
NCDatasets.jl(Barth, 2023).

Figure 2: Relative vorticity simulated with the shallow water model in SpeedyWeather.jl. The simulation
used a spectral resolution of T1023 (about 20 km) and Float32 arithmetic on an octahedral Clenshaw-
Curtis grid (Hotta & Ujiie, 2018). Relative vorticity is visualized with Matplotlib (Hunter, 2007) and
Cartopy (Met Office, 2010 - 2015) using a transparent-to-white colormap to mimic the appearance of
clouds. Underlaid is NASA's blue marble from June 2004.

Statement of need

SpeedyWeather jl is a fresh approach to atmospheric models that have been very influential in
many areas of scientific and high-performance computing as well as climate change mitigation
and adaptation. Most weather, ocean and climate models are written in Fortran (e.g. ICON
(Giorgetta et al., 2018), CESM (Hurrell et al., 2013), MITgem (Marshall et al., 1997), NEMO
(Madec et al., 2017)) and have been developed over decades. From this tradition follows a
specific programming style and associated user interface. SpeedyWeather.jl aims to overcome
the constraints of traditional Fortran-based models. The modern trend sees simulations in
Fortran and data analysis in Python (e.g. NumPy (Harris et al., 2020), Xarray (Hoyer &
Hamman, 2017), Dask (Dask Development Team, 2016), Matplotlib (Hunter, 2007)), making
it virtually impossible to interact with various model components directly. In SpeedyWeather jl,
interfaces to the model components are exposed to the user. Furthermore, data-driven climate
modelling (Rasp et al., 2018; Schneider et al., 2023), which replaces existing model components
with machine learning, is more difficult in Fortran due to the lack of established machine

Kléwer et al. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. Journal of 3
Open Source Software, 0(0), i PAGE? https://doi.org/10.xxxxxx/draft.


https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

learning frameworks (Meyer et al., 2022). In Julia, Flux.jl (Innes et al., 2019) is available for
machine learning as well as automatic differentiation with Enzyme (Moses & Churavy, 2020)
for gradients-based optimization.

With SpeedyWeather.jl we hope to provide a platform for data-driven atmospheric modelling
and in general an interactive model that makes difficult problems easy to simulate. Climate
models that are user-friendly, trainable, but also easily extensible will suddenly make many
complex research ideas possible.

Figure 3: Particle trajectories advected in the barotropic vorticity model. The barotropic vorticity
equations were stochastically stirred at wave numbers 8 to 40 for homogeneous turbulence on the sphere.
The simulation was computed at T340 (about 40km global resolution). Visualized are 20,000 particles
(white dots) with trajectories (colored randomly) for the previous 6 hours.
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