
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ

Τομέας Αστροφυσικής, Αστρονομίας & Μηχανικής

Μεταβατική αύξηση ενέργειας

σε αστάθειες Holmboe

Ναβίτ Κ. Κωνσταντίνου

200820

Απρίλιος 2010



ii

Acknowledgements

I would like to thank Petros Ioannou and Katerina. The first for being

my teacher and my supervisor, for his help in all academic difficulties

that came in my way and for his fruitful discussions, which are my main

source of inspiration. The second for the times she cooked lunch, for her

mental support through the last three years and for caring. Both of them

for showing patience with me when needed.

Also, I would like to thank Alexander S. Onassis Public Benefit Foun-

dation for funding the second year of my Master Degree education.



Contents

1 Theoretical development 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Couette flow . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Kelvin-Helmholtz instability . . . . . . . . . . . . . . 3

1.1.3 Rayleigh instability . . . . . . . . . . . . . . . . . . . 6

1.1.4 Kelvin-Helmhotz instability with stratification . . . . 8

1.1.5 Taylor instability . . . . . . . . . . . . . . . . . . . . 9

1.1.6 Holmboe instability . . . . . . . . . . . . . . . . . . . 12

1.1.7 Finite amplitude . . . . . . . . . . . . . . . . . . . . 12

1.2 Formulation of the problem . . . . . . . . . . . . . . . . . . 14

1.3 Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Non-normal growth . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Pseudospectra . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Construction of the adjoint perturbation system . . . . . . . 28

1.7 Orthogonality relation . . . . . . . . . . . . . . . . . . . . . 30

2 Applications 33

2.1 Holmboe’s classical problem . . . . . . . . . . . . . . . . . . 33

2.2 Holmboe smoothed profiles . . . . . . . . . . . . . . . . . . 44

iii



iv

3 Conclusions 55

Appendices 57

A Adjoint operator properties . . . . . . . . . . . . . . . . . . 57

B Singular value decomposition . . . . . . . . . . . . . . . . . 61

C Miles & Howard criterion . . . . . . . . . . . . . . . . . . . 63

Bibliography 65



Chapter 1

Theoretical development

1.1 Introduction

In all problems of hydrodynamic stability the main question is whether

a flow, that is a solution of the Navier-Stokes equations subject to specific

boundary conditions, is stable or not if perturbed infinitesimally at some

instant. It is exactly like the question of whether an equilibrium point in a

dynamical system is stable or unstable when the equilibrium is perturbed

at a point in time.

The state of the fluid is described in general by the velocity, density,

temperature and pressure field over the volume occupied by the fluid. The

usual procedure for asking whether an equilibrium state is stable or not

starts by perturbing the mean fields (often called profiles in this text), then

writing the Navier-Stokes equations of motion plus appropriate boundary

conditions and linearizing in terms of the perturbation fields. We will be

dealing with one-dimensional mean velocity flows that are unidirectional,

this streamwise direction of flow will be taken as the x-axis. Moreover the

flows we will consider vary only in the cross-stream direction, taken here

1



2 Chapter 1

as the z-direction. The mean flows that will be considered are thus of the

form U⃗ = U(z)x̂, where x̂ is the unit vector in the x-direction. We will

consider no dependence of the mean state on the third direction (the span-

wise direction) y. Thus, also mean pressure, density and temperature will

vary only in z-direction.

The system of linearized equations we will get will be homogeneous

in x, y and t and therefore the perturbations can be written as a sum of

Fourier modes with dependance ei(kx+ℓy)−ikct. After this expansion we

are left with an eigenvalue problem with eigenvalue c for every choice of

the pair (k, ℓ). As we will see in hydrodynamics c is in general complex,

and if c ≡ cr + ici then the (k, ℓ) mode is of form

ekcitei(kx+ℓy−kcrt)

i.e. it is a wave which propagates in the direction (k, ℓ) with phase velocity

kcr/
√
k2 + ℓ2 while growing (or decaying) at the exponential rate kci.

We say that the flow is modally stable if and only if ci ≡ ℑ(c) is less

or equal to zero for all choices of (k, ℓ). Otherwise the flow is modally

unstable. This procedure is presented in more detail in Section 1.2.

There is a theorem by Squire [9], extended by Yih [13] to include

stratification, that states that for any three dimensional perturbations in

two-dimensional flows corresponds a two-dimensional perturbation that

has larger growth rate. Stated otherwise, growth rates kci resulting from

two-dimensional perturbations will be always greater or equal to the ones

resulting from three-dimensional ones. Thus, if we investigate the modal

stability of a flow it is enough only to limit our search to dimensional

perturbations that have ℓ = 0, two-dimensional perturbations. Note that
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Squire’s theorem does not constrain superpositions of modes and as a

result it is a time infinity asymptotic result.

1.1.1 Couette flow

The Couette is a flow with a constant shear, dU0/dz, as can be seen on

Figure 1.1(a). It has been shown that this flow is always stable, in a

bounded or an unbounded domain. A necessary condition for the in-

stability of bounded, parallel shear flows is the Rayleigh criterion which

demands that the velocity flow should have at least one inflection point,

that is a point in the domain where d2U0/dz2 changes sign (see Drazin

and Reid [2]).

1.1.2 Kelvin-Helmholtz instability

Let us first study, or better describe, the Kelvin-Helmholtz instability. This

occurs when there is a sudden jump in the velocity profile. We will

discuss the inviscid variant of this instability (the instability has also a

viscous counterpart that is qualitatively similar). In the inviscid limit

this jump may be idealized as a step function, which in the absence of

viscosity is an equilibrium of the Euler equations (actually in the inviscid

hydrodynamic limit any mean flow U(z) is an equilibrium). If we choose

our reference system appropriately then the velocity jump can be centered

so that above the velocity discontinuity the velocity is U and below -U (see

Figure 1.1(b)). The main vorticity of this flow in the y-direction (spanwise)

is everywhere zero except from the surface z = 0 where it is a positive

delta function. That’s why many times this configuration is also called

vortex sheet configuration.

There is a very special property of vorticity dynamics in inviscid fluids,
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Figure 1.1: Main velocity (thin lines) and density (thick lines) for various
piecewise profiles.
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that states that vorticity lines behave exactly as material lines. For more

detailed description see for example in Batchelor [1]. In other words, if

we paint a vorticity line with a dye of different color of the fluid, this line

will always stay a solid line.

For each streamwise wavenumber k we find that there is a pair of

modes with the dispersion relation c(k) = ±iU , independent of k. There-

fore this flow is always unstable. The mechanism responsible for the

instability can be understood in terms of vorticity dynamics. In solving

the stability problem above we end up with only two perturbation fields

from which the rest can be derived, the y-vorticity and the displacement

of the initial separating surface. Furthermore if the latter is of a sinu-

soidal form then the former is of the same form, but π/2 ahead in phase

if c = +iU (if c = −iU then displacement is π/2 ahead of phase of the vor-

ticity). In Figure 1.2 we plot the displacement as a sinusoidal surface and

also the vorticity of the perturbations as the thickness of the surface line

(thick lines means positive vorticity). Points like C have maximum posi-

tive vorticity, and so induce velocities like the clockwise arrows around C

which tend to bring point B, the highest point of the separation surface

even higher.

The growth rate kci for this discontinuous profile is kU and so it grows

linearly with k, implying an ultraviolet catastrophe, as the growth rate

becomes nominally infinite as k → +∞ for perturbations with very small

wavelength. This ultraviolet catastrophe is a manifestation of the inviscid

dynamics. Inclusion of viscosity would damp this high wavenumbers and

would cure this ultraviolet catastrophe, also viscosity would also smooth

out the discontinuity which as we will see even in the presence of inviscid

renders stable the ultraviolet spectrum. A step towards treating an inviscid
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Figure 1.2: The instability mechanism for the Kelvin-Helmholtz instabil-
ity. (after Batchelor [1], fig. 7.1.3)

but smoothed out velocity profile is achieved with the piecewise linear

profile studied by Rayleigh.

1.1.3 Rayleigh instability

Rayleigh studied first the profile of Figure 1.1(d), in which the velocity

jump is smoothed over a region h. The mean vorticity is piecewise con-

stant with equal and opposite discontinuities at z = ±h/2.

In general, for piecewise profiles each discontinuity in the vorticity

gives rise to a so called vorticity mode and each discontinuity in main

density supports two density modes. The vorticity modes are centered

at the points where the shear is discontinuous, while the density modes

where the density has a discontinuity. They are both of the form e−k|z−zc|,

(zc is the discontinuity level) and hence have skin depths of 1/k and are

trapped next to the discontinuity.

Thus, Rayleigh’s profile has two vorticity modes, one for each shear

discontinuity. The spectrum is seen in Figure 1.3. By solving explicitly

the problem we find that for large wavenumbers (short wavelengths) the
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Figure 1.3: The spectrum for the Rayleigh profile of Figure 1.1(d). Growth
rates of the two modes (solid and dashed lines) are seen in (a) and phase
velocities in (b). In (a) we plot the grow rates associated to the Kelvin-
Helmholtz profile (Figure 1.1(b)), ±kU (dash-dot lines). We see that kc ≈
1.3. For k < kc we have a conjugate pair of positive and a negative growth
rates corresponding to the unstable and stable mode that propagate with
zero phase velocity. For k > kc the two discrete modes are neutral (kci =
0) and propagate with equal and opposite phase velocity which tends to
±U as k → +∞. We see that for for small wavenumbers growth rates
approach the ones of the Kelvin-Helmhotlz profile. Wavenumbers have
been non-dimensionalized with 1/h and velocities with U .
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flow is stable, that is c is real. It is like the two modes “do not see” each

other, or in an other view, if the wavenumber is very large, that is the

wavelength is very small, the waves can only “see” the middle part of

the profile, which is like Couette flow and as a result the flow is stable.

There is a critical value kc such that for wavenumbers less than kc mode

interactions becomes strong, or the wavelength become so large that can

feel the discontinuities of the main vorticity, and so a pair of stationary

(zero phase velocity) “Kelvin-Helmholtz” modes are produced, a growing

one and a decaying one (instability). For very small wavenumbers the

waves do not see the linear transition between the two velocities, and

behave as if there was a velocity jump and they exhibit the instability

associated with the Kelvin-Helmholtz profile for which the growth rate is

proportional to kU .

1.1.4 Kelvin-Helmhotz instability with stratification

We can study the Kelvin-Helmholtz instability if we further include a

density jump in a way that the fluid is stably stratified, that is lighter

fluid on top of denser fluid (see Figure 1.1(c)). We would expect that

this factor now reduces the instability, since perturbations would need to

spend potential energy in lifting a bulb of the lower fluid into the upper

area. Indeed, if we explicitly solve the problem, the dispersion relation

now becomes:

c = −1− ε

1 + ε
U ± i

√
4εU2

(1 + ε)2
− g

k

1− ε

1 + ε
(1.1)

where g is the gravity acceleration and ε is the ratio of the density of the

top over the lower fluid, ε = ρ1/ρ2. The limit ε = 1 corresponds to the
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unstratified case c = ±iU . If there is only the density discontinuity, that

is U = 0, then we have the two stable, internal wave modes,

c = ±
√
g

k

1− ε

1 + ε
(1.2)

or for the extremely stratified case of ε = 0, that is infinitely large difference

of densities of the two fluids, we have the surface wave modes, c = ±
√
g/k.

(Sea waves correspond to ε ≈ 10−3.)

Now, for finite values of U and
√
g/k there is always for each stream-

wise wavenumber k a critical value εc,

εc = −2
U2

g/k
+

√(
2
U2

g/k

)2

+ 1 (1.3)

that for ε < εc the flow gets stabilized. From this observation we see

that what we expected is true. The stratification indeed stabilizes the flow.

Going back to the dispersion relation, we can also see that for a fixed value

of ε we have a critical value of k = kc,

kc =
1− ε2

ε

g

4U2
(1.4)

for which we have stability for k < kc and instability for k > kc.

We plot in Figure 1.4 the growth rates and the phase velocities of the

two modes for the unstratified case, ε = 1 together with stratification of

ε = 0.5 and ε = 0.1.

1.1.5 Taylor instability

Taylor studied [10] a profile with two density jumps imposed on constant

shear velocity profile, seen on Figure 1.1(e). Now four modes gravity
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Figure 1.4: The spectrum for the Kelvin-Helmholtz stratified profile of
Figure 1.1(c). Growth rates of the two modes (solid and dashed lines) are
seen in (a) and phase velocities in (b) for ε = 1 (solid), ε = 0.5 (dashed)
and ε = 0.1 (solid dotted). We see that there always exists a wavenum-
ber kc such that for k > kc we have a conjugate pair of positive and a
negative growth rates corresponding to the unstable and stable mode that
propagate with zero phase velocity and for k < kc the two discrete modes
are neutral (kci = 0) and propagate with equal and opposite phase veloc-
ity. Wavenumbers have been non-dimensionalized with 1/h and velocities
with U .
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Figure 1.5: Maximum growth rate kci versus streamwise wavenumber
k and density ratio ε for (a) Kelvin-Helmholtz stratified profile (Fig-
ure 1.1(c)) and (b) Holmboe’s profile (Figure 1.1(f)). We see that for
the Holmboe case there are wavenumbers (i.e. k = 4) that are stable for
the unstratified case (ε = 1) but become unstable when stratification in
included.
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modes exist propagating with equal and opposite velocity relative to the

velocity at the density steps. For long wavenumbers they do not interact

and there is stability. For shorter wavenumbers though, less than a critical

values, two of the modes merge and form a stationary pair of a stable and

unstable mode.

1.1.6 Holmboe instability

Holmboe instabilities occur whenever there is both velocity and density

jumps, but the former accomplished in a greater region than the latter.

The ratio of these two regions will be denoted by R. Holmboe’s prototype

profile is seen in Figure 1.1(f), where for this case R = ∞. We can see the

two shear discontinuities and a density discontinuity in between them. In

this case a counterintuitive thing happens. Stratification induces instability

for a range of streamwise wavenumbers for which the flow would have

been stable in the unstratified case. Thus, by this mechanism, we can

have instability, and hence mixing of the two fluids, for very high values

of stratification. It is the interaction of each of the vorticity modes with

one of each of the gravity modes that produces two pairs of a decaying

and a growing mode, one pair with phase velocity going to the left and

the other pair going to the right.

1.1.7 Finite amplitude

Stability characteristics of the above instabilities have been obtained af-

ter linearization. But, when a flow is unstable, it means that the fields

amplitude will grow with time, reaching a point that the linearization

approximation will not be valid. Our linearized equations will not be

able to give us an adequate description of the evolution of the flow after-
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d2U/dz2, that generates the Holmboe instability.

Finite Amplitude Appearance and Mixing

Although the focus of future chapters is on comparing the predicted wave
dispersion with observations it should be noted that these three types of
instabilities have other differences of practical importance. At finite am
plitude the Rayleigh instability has a spiralling billow that resembles the
sketch in figure 1.3a. As the instability grows, neighboring billows interact
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Figure 1.6: The finite amplitude evolutions of the three basic stratified
instabilities: Rayleigh or Kelvin-Helmholtz (a), Taylor (b) and Holmboe
(c). (after Tedford [11], fig. 3)

wards. One must proceed with integration of the full nonlinear equations

of motion by direct numerical simulations (DNS). The latter as well as

experiments have revealed the behavior, summarized in Figure 1.6, for

the finite amplitude instabilities described previously.

Rayleigh instability at finite amplitudes forms spiralling billows like

Figure 1.6(a). As the instability grows, neighboring billows interact and

combine (‘pair’) to form a new billow with twice the wavelength and

increased amplitude. This procedure continues until wavelength reaches

the boundaries of the fluid. The Taylor instability has at finite ampli-

tude a series of vortices located between the two density interfaces (the

upper and lower density interfaces) (see Figure 1.6(b)). Unlike Rayleigh

instabilities, their development does not cause complete overturning of the

density interface. The Holmboe instability features cusping waves some-

what resembling surface water waves (see Figure 1.6(c)). At the cusp of
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the wave mixed fluid of intermediate density accumulates, and eventually

being ejected into the upper density layer. Again there is not a complete

overturning of the density interface.

1.2 Formulation of the problem

We begin by studying the stability of an inviscid, one dimensional flow

under two dimensional perturbations. With asterisks ∗ dimensional quan-

tities are denoted. Perturbations about a mean zonal flow U∗
0 (z

∗) in an

incompressible, stratified, Boussinesq fluid obey the equations:

ρ∗m

(
∂

∂t∗
+ U∗

0

∂

∂x∗

)
u∗ = −w∗dU∗

0

dz∗ − ∂p∗

∂x∗
(1.5.a)

ρ∗m

(
∂

∂t∗
+ U∗

0

∂

∂x∗

)
w∗ = −∂p

∗

∂z∗
− gϱ∗ (1.5.b)(

∂

∂t∗
+ U∗

0

∂

∂x∗

)
ϱ∗ = −dϱ

∗
0

dz∗w
∗ (1.5.c)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0 (1.5.d)

In the above u∗, w∗ are the perturbation velocities in the streamwise (x)

and vertical (z) direction, ϱ∗ is the perturbation of the density, p∗ is the

pressure and g is the gravitational acceleration. The density of the fluid

has been decomposed as: ρ∗ ≡ ρ∗m + ρ∗0(z) + ϱ∗(x, z, t) and furthermore,

according to the Boussinesq approximation, |ρ∗0| ≪ ρ∗m and |ϱ∗| ≪ ρ∗m.

We will assume vanishing boundary conditions at the boundaries z∗1 and

z∗2 and also periodic boundary conditions in the streamwise direction. A

thorough discussion and derivation of the Navier-Stokes equations, their

linearization and the approximations are beyond the scope of this essay.

Refer to classical books in fluid dynamics [1] and hydrodynamic stability

[2].
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We will convert our equations to a non-dimensional form using as

length scale h0, the typical length of the variation of the velocity, velocity

scale ũ = U∗
0 (+∞) − U∗

0 (−∞) which by right choise of our coordinate

system will be assumed positive, and density scale ρ̃ = ρ∗(−∞)−ρ∗(+∞).

We will only deal with stably stratified fluid, that is ρ̃ > 0. For time unit

we will use the advective time scale, h0/ũ and pressure will be measured

in units of ρ∗mũ2 and wavenumbers we will be scaled with 1/h0.

The Brunt-Väisälä frequency, N∗ is defined (in the Boussinesq context)

as N∗2(z∗) = − (g/ρ∗m)dρ∗0/dz∗. If N∗2 is positive then we say that the

fluid is stably stratified (for example oil on top of water is stably stratified)

and then N∗ is the local frequency of the oscillations that a bulb of fluid

will do if we displace it a bit from its initial height. If N∗2 is negative

then we say that the fluid is unstably stratified (for example water on top

of oil). We will only consider stably stratified fluids in this discussion.

The Richarson number is defined as the Brunt-Väisälä frequency squared

over the local shear squared, Ri(z∗) = N∗2 (z∗) / (dU∗
0 /dz∗)

2. The Richar-

son number is the ratio of the square of two time scales: the time scale

of the shear dynamics over the time scale associated with gravity wave

oscillation. Large Ri means that the gravity oscillations are far faster than

the dynamics of shear, implying that stratification dominates and the per-

turbations behave as internal gravity waves in the absence of shear. Small

Ri implies dominance of shear dynamics over the dynamics implied by

the stratification. Moreover, the non-dimensional quantity J , connected

with Richarson number, is denoted to be:

J =
gρ̃h0
ρ∗mũ

2
(1.6)
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A necessary condition proven by Miles [7] and Howard [5], also known

as the Miles & Howard criterion, for the flow to be unstable is that the

Richarson number must be less than 1/4 somewhere in the domain of the

flow. In Appendix C we give the proof of this theorem.

The non-dimensional version of (1.5.c) is:

(
∂

∂t
+ U0

∂

∂x

)
ϱ = −dρ0dz w (1.7)

We can define the vertical displacement η of every point due to the per-

turbation velocity field by requiring that the substantial derivative of it at

every point being equal to the vertical velocity, w,

(
∂

∂t
+ U0

∂

∂x

)
η = w (1.8)

Now, from (1.7) we can see that η and ϱ are related by

ϱ = − (dρ0/dz) η (1.9)

and thus η can serve as a state variable in the place of ϱ. With these

conventions, equations (1.5), become:

(
∂

∂t
+ U0

∂

∂x

)
u = −dU0

dz w − ∂p

∂x
(1.10.a)(

∂

∂t
+ U0

∂

∂x

)
w = J

dρ0
dz η −

∂p

∂z
(1.10.b)(

∂

∂t
+ U0

∂

∂x

)
η = w (1.10.c)

∂u

∂x
+
∂w

∂z
= 0 (1.10.d)
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or in a more concise form as

Lϕ = 0 (1.11)

where the state is ϕ = [u,w, η, p]T and L is:

L =



∂t + U0∂x dU0/dz 0 ∂x

0 ∂t + U0∂x −J (dρ0/dz) ∂z

0 −1 ∂t + U0∂x 0

∂x ∂z 0 0


(1.12)

Our dynamical system (1.10) concists of three dynamical equations

(1.10.a, 1.10.b and 1.10.c) and a constraint, (1.10.d). Thus, by using a

streamfunction ψ to describe the velocity field:

u =
∂ψ

∂z
(1.13.a)

w = −∂ψ
∂x

(1.13.b)

the system can be reduced to two equations.

∂ x
∂t

= A x (1.14)

with x = [ψ, η]T as our state vector. The dynamical system (1.14) is

homogeneous in x and therefore the perturbations can be written as a

sum of Fourier modes of the form xk(z, t)e
ikx. Each mode is governed

by:
d

dt
xk = A

(k) xk (1.15)
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where A(k) is:

A
(k) =

 ∆−1

(
−ikU0∆+ ik

d2U0

dz2

)
−ikJ∆−1dρ0

dz
−ik −ikU0

 (1.16)

In the above ∆ denotes the two dimensional Laplacian, ∆ = ∂2xx + ∂2yy ,

and ∆−1 is the inverse Laplacian, the inversion being made possible and

unique by imposing the appropriate boundary conditions on the upper

and lower boundary.

One can proceed further and reduce the system into a second order

partial differential equation for ψ:

(
∂

∂t
+ U0

∂

∂x

)2

∆ψ − d2U0

dz2

(
∂

∂t
+ U0

∂

∂x

)
∂ψ

∂x
− J

dρ0
dz

∂2ψ

∂x2
= 0 (1.17)

The above equation is the generalization of the Rayleigh equation that

includes stratification and is called the Taylor-Goldstein equation.

1.3 Energetics

To obtain an energy equation we proceed as Miles [7] by multiplying

equations (1.10.a) and (1.10.b) by u and w respectively, substituting w

from (1.10.c) in the J (dρ0/dz)wη term and multiply (1.10.d) by p. We

add the results and intergrate over x and z domains. This results to:

d
dt

z2∫
z1

dz
1

2
(u2 + w2) +

1

2

(
−dρ0dz

)
J η2 =

−
z2∫
z1

dz uw
dU0

dz −
z2∫
z1

dz
∂

∂x
(pu) +

∂

∂z
(pw) (1.18)
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where overline denotes integration in the x domain. The last set of inte-

grals die with the assumed boundary conditions. This fact is equivalent

that no pressure force work is being done to the perturbation flow by

external pressures on the boundaries of the fluid. If we next denote by

bar integrals on x-domain, the above equation can be written:

d
dt (T + V ) = Q (1.19)

where T is the total kinetic energy of the perturbations over the flow

domain,

T =
1

2

z2∫
z1

dz u2 + w2 (1.20)

V is the potential energy,

V =
1

2
J

z2∫
z1

dz

(
−dρ0dz

)
η2 (1.21)

and Q,

Q = −
z2∫
z1

dz uw
dU0

dz (1.22)

determines the time rate of energy flow from the mean-flow to the per-

turbation field.

The total energy of the perturbations, integrated over whole space, is

given by E = T + V .

A geometrical interpretation of the conditions under which perturba-

tions gain energy from the mean flow can be readily given if we note that
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(1.22) can be written in terms of the perturbation streamfunctions as:

Q =

z2∫
z1

dz
∂ψ

∂x

∂ψ

∂z

dU0

dz (1.23)

The streamfunction ψ depends on x and z. Its differential is given by

dψ =
∂ψ

∂x
dx+

∂ψ

∂z
dz

and on a surface of constant ψ this is equal to zero. This means that the

slopes of contours of constant ψ satisfy the relation:

∂ψ

∂x
/
∂ψ

∂z
= − ∂z

∂x

∣∣∣∣
ψ=c

(1.24)

which when inserted in (1.23) gives:

Q = −
z2∫
z1

dz

(
∂ψ

∂z

)2 ∂z

∂x

∣∣∣∣
ψ=c

dU0

dz (1.25)

This means that for areas with positive shear, (dU0/dz > 0), Q behaves

as dissipation when the ψ surfaces slope forward i.e. ∂z/∂x > 0 (see

Figure 1.7(a)) and Q behaves as a source of energy when ψ surfaces slope

backward, i.e. ∂z/∂x < 0 (see Figure 1.7(b)).

In order to evaluate the kinetic and potential energy we expand the

fields as Fourier integrals:

φ(x, z, t) =

+∞∫
−∞

dk φ̂k(z)e
ikx (1.26)

Because only the real part is physically realizable care must be taken

in evaluating the kinetic and potential energy which depend quadratically
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1.7(a): ψ resulting in decrease of total
energy
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1.7(b): ψ resulting in increase of total
energy

Figure 1.7: Examples of streamfunction contours that will lead to term Q,
(1.25), giving increase or decrease of total energy.

on the perturbation fields. In quadratic quantities we must explicitely

write the real part of the field, and by doing so it can be easily shown that

the x average of the product of two fields¹ φ1 = φ̂1e
ikx and φ2 = φ̂2e

ikx

is:

ℜ(φ1)ℜ(φ2) =
1

2
ℜ
(
φ̂∗
1φ̂2

)
(1.27)

and also doing an integration by parts and using the boundary conditions,

we can reduce the expressions for kinetic and potential energy into:

T =
1

4

z2∫
z1

dz ψ̂∗∆ψ̂ (1.28.a)

V =
1

4
J

z2∫
z1

dz

(
−dρ0dz

)
η̂∗η̂ (1.28.b)

1.4 Non-normal growth

The nature of the evolution of the dynamics depends strongly on the

nature of the dynamical operator A (see equation (1.14)). Whether or

not A is a normal or non-normal operator will play significant role in the

¹with the subscript k omitted
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transient evolution and optimal excitation of the system. A systematic

theory describing this part of the dynamics was developed by Farrell and

Ioannou [3]. Nonnormality measures the degree of non-commutativity of

A with its adjoint, A†. To have a proper definition of an adjoint operator

one must first have an inner product usually defined by a positive definite

hermitian form M, that is, (x, x)M ≡ x†Mx and the norm of x defined as

∥x∥M =
(
x†Mx

)1/2. In most physical cases M is the energy metric so that

∥x∥2M measures the energy of state x. Without loss of generality we can

consider that the norm is euclidean because if we set y = M
1/2x then the

evolution of y is controlled by:

∂ y
∂t

= M
1/2
AM

−1/2y ≡ AM y (1.29)

while the norm of the state y will be given by ∥y∥2 ≡ y†y = x†Mx = ∥x∥2M.

Let us assume for now that such transformation of coordinates has been

made and so, in the system (1.14) all norms are Euclidean².

The adjoint operator A† is defined such that for any two state vectors

u and v we have

(v,Au) =
(
A
†v,u

)
(1.30)

Among the properties of the adjoint operator A† is that its spectrum is the

complex conjugate of that of A, that is:

λ ∈ Λ (A) ⇔ λ∗ ∈ Λ
(
A
†
)

where we have denoted with Λ the spectum of an operator, that is the

set of all its eigenvalues. Furthermore, eigenvectors of A corresponding

²and therefore we will omit the subscript M from the operators
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to eigenvalue λ are orthogonal to all eigenvectors of A† that correspond

to eigenvalues different from λ∗. This is the so called biorthogonality

relation.

Au(i) = λi u(i)

A
† v(i) = λ∗i v(i)

 =⇒
(
v(i),u(j)

)
= 0 for i ̸= j (1.31)

If A is normal then vectors u(i) and v(i) coincide, therefore it is said that

A has a complete orthonormal basis. Otherwise the eigenvectors of A form

just a complete basis, which is not orthonormal, but which is orthonormal

to the eigenvectors of A†. (You can refer to Appendix A for proofs of the

above statements.)

Let us define the growth σ(t) of an initial state y(0) over time t to be

the ratio:

σ2(t) =
(y(t) , y(t))
(y(0),y(0))

=

(
eAty(0) , eAty(0)

)
(y(0),y(0))

=

(
y(0) , eA†teAty(0)

)
(y(0),y(0)) (1.32)

where in the last line we used the definition of the adjoint operator. Thus

the maximum possible σ2(t) will be given by the maximum eigenvalue of

the positive operator eA†teAt or equivalently by the square of the maximum

singular value of eAt (see Appendix B). The last is also many times referred

as the norm squared of the operator eAt, where the norm of an operator

� is defined as:

∥�∥2 = max
x

(�x , �x)
(x, x) (1.33)
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Now, when A is normal we have:

exp
(
A
†t
)
exp (At) = exp

[(
A
† + A

)
t
]

(1.34)

and since A and A
† have complex conjugate spectrums, we get that σ is

bounded by:

eλ
R
min(A)t ≤ σ ≤ eλ

R
max(A)t (1.35)

where λRmin (A) and λRmax (A) corresponds to the minimum and maximum

real part of the eigenvalues of A, respectively. The equality in the above

bounds can be achieved if we use as initial state u(0) the eigenvector

that corresponds to the eigenvalue with minimum or maximum real part

respectively. The latter is due to the fact that A commutes with A† and

thus eA†teAt has common eigenvectors with A.

When A is non-normal, equation (1.34) does not hold. What does

hold is the known Baker-Haussdorf-Campell formula:

exp
(
A
†t
)
exp (At) = exp

[(
A
† + A+

1

2

[
A,A†

]
+ · · ·

)
t

]
(1.36)

where the dots imply terms with more complicated commutators, such as[
A,

[
A,A†

]]
,
[
A†,

[
A,

[
A,A†

]]]
and so on.

It can be proven (see for example Ioannou [6]) that (1.35) generalizes

to:

σmin ≤ eℜ(λi)t ≤ σmax for every eigenvalue λi of A (1.37)

In this case the eigenvectors of eA†teAt do not coincide with those of A or

A
†.

Often we are interested in the growth of perturbations in the limit of

large time and at small times. We would like to know how we can attain
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maximum growth in these two limits, and which initial state achieves it.

We can always (see Appendix A) write an arbitrary vector as:

y =
N∑
i=1

(
v(i),y

)(
v(i),u(i)

) u(i) (1.38)

If we furthermore we assume that eigenvectors have been sorted in de-

scending order of the real part of their eigenvalues, then, in the limit

t→ ∞ we have, from equation (1.38), that:

y →
(
v(1),y

)(
v(1),u(1)

)eλRmaxtu(1)

So the maximum growth rate is:

σ2(t) =
(y(t) , y(t))
(y(0),y(0)) → e2λ

R
maxt

(
u(1),u(1)

)∣∣(v(1),u(1)
)∣∣2

∣∣(v(1),y(0))∣∣2
(y(0),y(0))

from which it is obvious that at this limit, the initial condition that will

achieve σ+∞
max is the corresponding eigenvector of the adjoint operator

y(0) = v(1).

Concerning the limit t→ 0 we can expand eA†teAt in powers of t as:

eA
†teAt = 1+

(
A+ A

†
)
t+O

(
t2
)

(1.39)

Thus we can see that the maximum initial growth rate is achieved by

the maximum eigenvalue λ of the hermitian operator
(
A+ A

†) /2 with
corresponding σ0max = 1+λt. The state that produces instantaneously this

maximum growth rate is the corresponding eigenvector of
(
A+ A

†) /2.
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1.5 Pseudospectra

The concept of pseudospectra is closely related with non-normality. We

will be dealing in this Section with matrices but all of these concepts can

be easily generalized to infinite dimensional differential operators. For a

more detailed reference on the subject see Trefethen and Embree [12].

The spectrum of a matrix A ∈ C
N×N is defined as the set of complex

numbers λ ∈ C such that for some vectors u ∈ CN we have Au = λu.

Equivalently we can say that spectrum is the set of complex numbers

λ ∈ C such that the matrix (A− λ1) does not have an inverse, or that the

resolvent matrix (λ1− A)−1 is infinite.

There are various definitions of pseudospectra. We will give two of

them here.

Definition 1.5.1 (Pseudospectra #1). For a matrix A ∈ C
N×N the ε-pseudospectra

Λε (A), ε > 0, is the set z ∈ C such that³:

∥ (z − A)−1 ∥ > ε−1 (1.40)

Where by ∥ · ∥ we mean the Euclidean 2-norm defined in (1.33). Also, we

use the convention that ∥ (z − A)−1 ∥ = ∞ = Λ0 (A) for z ∈ Λ (A). Another

definition of the pseudospectra is:

Definition 1.5.2 (Pseudospectra #2). For a matrix A ∈ C
N×N the ε-pseudospectra

Λε (A), ε > 0, is the set z ∈ C such that:

z ∈ Λ (A+ E) (1.41)

for some E ∈ C
N×N with ∥E∥ < ε.

³we will from now on omit the 1 whenever there is no possibility of confusion
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The first of the two definition defines the ε-pseudospectrum as the

open subset of the complex plane bounded by the ε−1 level curve of

the norm of the resolvent. The spectrum is of course contained in the

ε-pseudospectrum for every ε > 0. The second definition defines the ε-

pseudospectrum as the set of eigenvalues of the perturbed matrix A + E

for a perturbations with norm ∥E∥ < ε. Again according to this definition

the spectrum is contained in the ε-pseudospectrum for every ε > 0. For a

theorem that proves the equivalence of the above definitions see Theorem

2.1 of [12].

Also from the definitions it follows that pseudospectra associated with

different ε are nested sets, that is:

Λ (A) ⊂ Λε1 (A) ⊆ Λε2 (A) for 0 < ε1 ≤ ε2 (1.42)

The second definition provides a more useful physical interpretations.

For physical situations where all the dynamical variables are not known

and we are forced to proceed to approximate description of our physical

system, the concept of ε-pseudospectrum can show as the sensitivity of the

eigenvalues. For normal matrices the ε-pseudospectrum will be the union

of circles of radius ε in the complex plane, with centers the eigenvalues

of the matrix (Theorem 2.2 of [12]). This means (in view of definition

#2) that if we perturb the matrix by ε-normed matrix its eigenvalues will

lie ε distance away in the complex plane. This in not at all true for non-

normal matrices, where an ε-normed perturbation of the matrix can move

the eigenvalues very much.
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1.6 Construction of the adjoint perturbation system

The adjoint operator [4] Ladj will be defined using the inner product

(f, g) =

∫
dt

∫
dx

∫
dz

[
1

2

(
u∗fug + w∗

fwg
)
+

1

2
J

(
−dρ0dz

)
η∗fηg

]
(1.43)

where f = [uf , wf , ϱf , pf ]
T, g = [ug, wg, ϱg, pg]

T. In the chosen variables

this inner product corresponds to total perturbation energy integrated over

time. The adjoint operator is defined by:

(
(Ladjψ), ϕ

)
=

(
ψ,Lϕ

)
(1.44)

To obtain the adjoint system we multiply equations (1.10) respectively

by [uα, wα, ηα, pα] and integrate by parts over t, x and z. Assuming that

the fields vanish at the boundary of the space-time domain we obtain

immediately the adjoint operator:

Ladj =



− (∂t + U0∂x) 0 0 −∂x

dU0/dz − (∂t + U0∂x) J (dρ0/dz) −∂z

0 1 − (∂t + U0∂x) 0

−∂x −∂z 0 0


(1.45)

or equivalently the adjoint system:

(
∂

∂t
+ U0

∂

∂x

)
uα = −∂pα

∂x
(1.46.a)(

∂

∂t
+ U0

∂

∂x

)
wα =

dU0

dz uα + J
dρ0
dz ηα − ∂pα

∂z
(1.46.b)(

∂

∂t
+ U0

∂

∂x

)
ηα = wα (1.46.c)

∂uα
∂x

+
∂wα
∂z

= 0 (1.46.d)
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By introducing a streamfunction for describing the adjoint perturbation

velocity field, as equation (1.13), we can reduce our adjoint systems (1.46)

to:
∂ xα
∂t

= Aadj xα (1.47)

where xα = [ψα, ηα]
T is our state vector, or one can proceed furthermore

and reduce the system into the adjoint Taylor-Goldstein second order

differential equation for ψα:

(
∂

∂t
+ U0

∂

∂x

)2

∆ψα+2
dU0

dz

(
∂

∂t
+ U0

∂

∂x

)
D∂ψα
∂x

−J dρ0dz
∂2ψα
∂x2

= 0 (1.48)

where D denotes the partial derivative ∂/∂z.

If we proceed with decomposition in Fourier space for x-domain, as

with system (1.15), then the system (1.47) can be written as:

d

dt
xαk = A

(k)
adj xαk (1.49)

where A(k)adj is the (differential) adjoint of the dynamical operator A
(k),

A
(k)
adj =

 ∆−1

(
−ikU0∆− 2ik

dU0

dz D
)

−ikJ∆−1dρ0
dz

−ik −ikU0

 (1.50)

Modal dependance for x and t domains, of the form eik(x−ct), is as-

sumed. Thus, all quantities can be written as:

φ(x, z, t) =

+∞∫
−∞

dc

+∞∫
−∞

dk φ̂ck(z)e
ik(x−ct) (1.51)

and of course it is again assumed that the real part must be taken for

variables representing physical quantities.
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In this modal representation the Taylor-Goldstein equation, (1.17), de-

fines an eigenvalue problem. We know that if c is an eigenvalue of (1.17)

then c∗ must be an eigenvalue of the adjoint equation,(1.48) (see definition

of adjoint operator, (1.44)). With this we can proceed and ask what is

the relation of ψ and ψα corresponding to the complex conjugate pair of

c and c∗. We impose modal dependance of (1.51) of the form:

φα(x, z, t) =

+∞∫
−∞

dc

+∞∫
−∞

dk φ̂α ck(z)e
ik(x−c∗t) (1.52)

at (1.48) we can see then that if ψ̂ck is a solution of (1.17) then ψ̂∗
ck/ (U0 − c∗)

satisfies (1.48). From (1.46.c) we have that the adjoint mode correspond-

ing to:

xck =

 ψ̂ck

η̂ck


is given by:

xα ck =


ψ̂∗
ck

U0 − c∗

−
η̂∗ck

U0 − c∗

 (1.53)

1.7 Orthogonality relation

In the energy metric our dynamical operator A is non-normal. It is

known [3] that when an operator A in non-normal its eigenfunctions

are not orthogonal. However, there are orthogonal to the eigenfunctions

of its adjoint, that correspond to eigenvalues different from the complex

conjugate of the former.

To obtain the bi-orthogonality relations we note that if ϕ = [u,w, η, p]T

satisfies the equations (1.10) and ϕα = [uα, wα, ηα, pα]
T the adjoint equa-
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tions (1.46), then the following continuity equation derives:

∂tε+ ∂xJx + ∂zJz = 0 , (1.54)

with

ε =
1

2
(u∗αu+ w∗

αw) +
1

2
J

(
−dρ0dz

)
η∗αη (1.55)

and

Jx = U0ε+ p∗αu+ u∗αp (1.56)

Jz = p∗αw + w∗
αp (1.57)

(1.58)

For this two dimensional problem we define:

⟨ϕa, ϕ⟩ =
∫ ∞

−∞
ε dz , [ϕa, ϕ] =

∫ ∞

−∞
Jx dz . (1.59)

The continuity equation (1.54) then gives, upon using vanishing boundary

conditions at |z| → ∞:

∂t ⟨ϕa, ϕ⟩+ ∂x[ϕa, ϕ] = 0 . (1.60)

Let us now consider modal harmonic perturbations of the form ϕ =

ϕ̂ck e
ik(x−ct) and ϕa = ϕ̂a c′k′ e

ik′(x−c′t) with k and k′ real, then (1.60), using

(1.27), gives:

(k′c′∗ − kc)
⟨
ϕ̂a c′k′ , ϕ̂ck

⟩
= (k′ − k)

[
ϕ̂a c′k′ , ϕ̂ck

]
. (1.61)

Consequently considering modes with the same k that correspond to phase
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velocities c ̸= c′∗ satisfy the biorthogonality relation:

⟨
ϕ̂a c′k, ϕ̂ck

⟩
= 0 for c ̸= c′∗ (1.62)

This inner product produces a square norm that corresponds to the energy

density of a mode.
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Applications

2.1 Holmboe’s classical problem

We will continue by analyzing a simple problem first analyzed by Holmboe

and try to acquire a better understanding of the concepts of Sections 1.4,

1.6 and 1.7. We will study the piecewise velocity and density profiles:

U0(z) =


1/2 : z > 1/2

z : −1/2 ≤ z ≤ 1/2

−1/2 : z < −1/1

(2.1.a)

ρ0(z) =

 −d/2 : z > 0

d/2 : z < 0
(2.1.b)

We plot them in Figure 2.1.

We separate the z-domain into four distinct areas: area 1: z > 1/2,

area 2: 0 < z < 1/2, area 3: −1/2 < z < 0 and area 4: z < −1/2. In all

of these areas we have that U ′′
0 = ρ′0 = 0 and that is ψ, according to (1.17),

must be a harmonic function. Since periodicity in x-domain is assumed,

we can expand all fields in fourier space in x-domain as (1.26). Thus we

33
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2.1(a): main velocity profile U0(z)
(eq. (2.1.a))
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2.1(b): main density profile ρ0(z)
(eq. (2.1.b))

Figure 2.1: Main piecewise profiles of (2.1).

have¹:

ψ̂1(z, t) = A1(t)e
−k(z−1/2) (2.2.a)

ψ̂2(z, t) = A2(t)e
−kz +B2(t)e

kz (2.2.b)

ψ̂3(z, t) = A3(t)e
−kz +B3(t)e

kz (2.2.c)

ψ̂4(z, t) = B4(t)e
k(z+1/2) (2.2.d)

where zero boundary conditions at z = ±∞ have been imposed. The

value of the η field must be continuous in the whole domain. In view of

(1.10.c), and since U0 is continuous, we deduce that ψ must be continuous.

Thus we have the following boundary conditions for the streamfunction:

¹the k subscript is being neglected where not necessary to distinguish between different
streamwise wavenumbers
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ψ̂1(z, t)− ψ̂2(z, t)

∣∣∣∣
z=1/2

= 0 (2.3.a)

ψ̂2(z, t)− ψ̂3(z, t)

∣∣∣∣
z=0

= 0 (2.3.b)

ψ̂3(z, t)− ψ̂4(z, t)

∣∣∣∣
z=−1/2

= 0 (2.3.c)

If we define C2(t) = (A2(t) +B2(t)) e
k/2 we can use the above boundary

conditions to reduce the number of unknowns of equations (2.2) from six

to three. Moreover, we demand that the total pressure to be continuous

over the three separation surfaces. This consists of:

P0(z + η) + p(x, z + η, t)

which when linearized for small values of η gives:

P0(z) + η
dP0

dz + p(x, z, t)

The main pressure field P0 is continuous and furthermore is connected to

the main density field through the hydrostatic relation², dP0/dz = − (J/d).

This results that the quantity:

p(x, z, t)− (J/d) η(x, z, t) (2.4)

must be continuous. In the modal representation (1.26) the value of p̂

can be derived from the u-momentum equation. Thus we have that at

²in the Boussinesq approximation
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the three surface the quantity:

1

−ik

[
(∂t + U0∂x)Dψ̂ + U ′

0

(
−ikψ̂

)]
− (J/d) η̂ (2.5)

should be continuous. Thus we get three equations for A1(t), C2(t) and

B4(t) which together with η0(t) ≡ η̂(z = 0, t) give the following dynamical

system:
d

dt
Ku = Lu (2.6)

where u = [A1(t) C2(t) B4(t) η0(t)]
T and:

K =



−ek 1 0 0

2 −2
(
1 + e−k

)
2 0

0 1 −ek 0

0 0 0 1


(2.7.a)

L =



i

2

(
1 + ek(k − 1)

)
− i

2
k 0 0

0 0 0 −iJ
(
ek/2 − e−k/2

)
0

i

2
k − i

2

(
1 + ek(k − 1)

)
0

0 −ike−k/2 0 0


(2.7.b)

and with the rest of the coefficients given by:

A2(t) =
1

ek/2 − e−k/2
[C2(t)−A1(t)] (2.8.a)

A3(t) =
1

ek/2 − e−k/2

[
B4(t)− ekC2(t)

]
(2.8.b)

B2(t) =
1

ek/2 − e−k/2

[
A1(t)− e−kC2(t)

]
(2.8.c)

B3(t) =
1

ek/2 − e−k/2
[B4(t)− C2(t)] (2.8.d)
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The energy of the perturbations according to (1.28) will be given by:

E = T + V =

+∞∫
−∞

dz

[
1

4

(
|Dψ̂|2 + k2|ψ̂|2

)
+

1

4

J

d

(
−dρ0dz

)
|η̂|2

]
(2.9)

Since the discontinuity in the main density field the term gradient of

the main density field becomes dρ0/dz = −d δ(z) and thus the integral of

the potential energy give only contribution from z = 0:

P =
1

4
J |η0|2 (2.10)

The integral of the kinetic energy is broken into four parts. In each area

we have:
b∫
a

dz
1

4

(
|Dψ̂|2 + k2|ψ̂|2

)
=

1

4
ψ̂∗Dψ̂

∣∣∣∣b
a

(2.11)

since ∆ψi = 0, i = 1, 2, 3, 4. Thus kinetic energy integral becomes:

T =
1

4
×

(
−ψ̂1

∗Dψ̂1

∣∣∣
z=h/2

+ ψ̂2
∗Dψ̂2

∣∣∣
z=h/2

− ψ̂2
∗Dψ̂2

∣∣∣
z=0

)
+

1

4
×

(
ψ̂3

∗Dψ̂3

∣∣∣
z=0

− ψ̂3
∗Dψ̂3

∣∣∣
z=−h/2

+ ψ̂4
∗Dψ̂4

∣∣∣
z=−h/2

) (2.12)

This induces a metric of the form:

M =
1

4

 MT 0

0 J

 (2.13)

where MT is:

MT =
2k

(ek − 1)


ek −1 0

−1 1 + e−k −1

0 −1 ek

 (2.14)
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In terms of Section 1.4 we have that:

A = K
−1
L (2.15)

AM = M
1/2
AM

−1/2 (2.16)

At first the modal stability of system (2.6) is analyzed. In Figure 2.2 we

present the maximum modal growthrates of operator AM, kci, ci = ℑ(c),

versus the streamwise wavenumber, k and the bulk Richarson number

J . The unstable modes come in pairs with the same growth rate kci

and opposite phase velocities cr ≡ ℜ(c). A slice of this contour plot for

J = 0.25 is depicted in Figure 2.3. Also the spectrum of AM together with

the ε-pseudospectrum is seen in Figure 2.4. We can see that, as mentioned

in Section 1.5, due to the non-normality of AM the boundaries of the ε-

pseudospectra do not lie in circles around the eigenvalues of radius equal

to ε, but to rather larger distances.

We next plot in Figure 2.5 the maximum energy that can be attained

in every value of t together with the energy of the evolution of the most

unstable mode³. The former is given by ∥eAMt∥2 (where the Euclidean

norm is understood here). We make plots for J = 0.25 two values of

streamwise wavenumber, k = 0.25 and k = 1.75. The latter refers to the

area where maximum Holmboe instability occurs (see Figure 2.2) and the

former to an area where there the flow is modally stable. Some interesting

things arrise here. Notice at first, that the energy of the evolution of

each of the most unstable modes. The k = 0.25 does not increase at

all, being a stable mode with kci = 0, while the k = 1.75 case increases

exponentially with time. However take a look at the optimal energy that

³There are in general two mostly unstable modes with opposite phase velocities. Here
we draw the energy evolution of one of them.
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Figure 2.2: Nondimensional modal growth rate kci of AM of (2.16) vs
streamwise wavenumber and bulk Richarson number for linear, normal
mode instabilities of the main profile of (2.1).
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Figure 2.3: Maximum modal instability for various values of streamwise
wavenumber k of AM of (2.16) for J = 0.25. We can see that instability
lies between two values of kmin and kmax of k.
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Figure 2.4: The spectrum of AM for k = 1.75 and J = 0.25 to-
gether ε-pseudospectra. Eigenvalues are shown with dots while bound-
aries of the 2-norm of ε-pseudospectra are shown with solid lines for
ε = 10−0.5, 10−1.0, 10−1.5, 10−2.0 (from outer to inner). We can see clearly
that as ε grows, the ε-pseudospectrum boundaries do not form circles of
radius ε but cover much bigger areas.
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can be achieved at each instant. Fot the k = 1.75 case the optimal in very

close to the energy achieved by the unstable mode. In the case of k = 0.25

though, optimal energy evolution is not constant. We see an increase of

the same order as of that of the unstable case. Up to 10 advective time

units we cannot almost distinguish between the optimal of the unstable or

the stable mode. We see that we can get up to 10 times energy increment

with no modal instability at all. This is achieved thought the non-normal

interaction between the non-orthogonal modes of the dynamical operator.

In Figure 2.6 we plot for J = 0.25 the structures of the unstable

modes and their corresponding adjoints for the two values of streamwise

wavenumber mentioned above. We also plot the optimal structures for

Topt = 8.



42 Chapter 2

0 2 4 6 8 10 12 14 16 18 20
100

101

102

103

t

en
er

gy

 

 
optimal for k = 0 .25
mode for k = 0 .25
optimal for k = 1 .75
mode for k = 1 .75

Figure 2.5: Maximum energy that can be attained in every value of t, given
by ∥eAMt∥2, together with the energy of the evolution of the most unstable
mode (either one of the two) for J = 0.25 and streamwise wavenumber
k = 0.25 (modally stable) and k = 1.75 (modally unstable). Notice that the
optimal energy that can be achieved at each instant for k = 1.75 is very
close to the energy achieved by the unstable mode. However, for k = 0.25
increases of the same order as of that of the unstable case. We see that
we can get up to 10 times energy increment with no modal instability at
all.
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2.6(a): ψ̂ of unstable eigenmode,
k = 1.75
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2.6(b): ψ̂ of unstable eigenmode,
k = 0.25
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2.6(c): ψ̂α of adjoint of unstable
eigenmode, k = 1.75
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2.6(d): ψ̂α of adjoint of unstable
eigenmode, k = 0.25
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2.6(e): ψ̂ of optimal excitation for
Topt = 8, k = 1.75
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2.6(f): ψ̂ of optimal excitation for
Topt = 8, k = 0.25

Figure 2.6: Contour plots for J = 0.25 of one member of the pair of the
mostly unstable eigenmodes of the system and for (a) k = 1.75 and (b)
k = 0.25, and its corresponding adjoint mode (c) k = 1.75 and (d) k = 0.25.
Also the optimal structures for Topt = 8 for (e) k = 1.75 and (f) k = 0.25.
Notice that while the mostly unstable and its adjoint for k = 0.25 have
their contours neither slope forward nor backward (kci = 0), the optimal
for Topt = 8 for k = 0.25 has its contours slope backwards and thus results
to increase of energy (see Figure 1.7(b)).
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2.2 Holmboe smoothed profiles

In the previous section we have seen that non-normal interaction between

the modes of the system can lead to a substantial transient energy growth

even in the absence of modal instability (Figure 2.5). However, in the

previous sections we have ignored the continuous spectrum of the oper-

ator. The last of course plays no significant role if one is concerned with

the modal stability of the system, since the continuous spectum is always

real and within the region of the main velocity profile (for a proof refer to

[2]). However, there is no reason why interaction of the non-orthogonal

modes of the system should constrict only among the discrete ones. We

will now numerically approach the same problem incuding now both the

discrete and the continuous part of the spectrum and see how big gain of

energy we can gain from the this interaction.

We will study the problem of main velocity and density profiles with

hyperbolic tangent dependance on z. More specifically (also ploted in

Figure 2.7):

U0(z) =
1

2
tanh (2z − β) (2.17.a)

ρ0(z) = −1

2
tanh (2Rz) (2.17.b)

The parameter R now measures the ratio of the shear layers in velocity

and dentisy, while β is a measure of the assymetry of the two profiles and

will be considered zero, (symmetric profiles, β = 0) until explicitly said.

We can see that the piecewise profiles (2.1) studied earlier are not but a

mere idealization of these ones for limit of very high values of R.
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2.7(a): main velocity profile U0(z)
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2.7(b): main density profile ρ0(z)

Figure 2.7: Main velocity profile (a) and main density profile (b) with
shear ratio R = 3.

The (dimensional) Brunt-Väisälä frequency, N∗ is:

N∗2(z∗) = −gdρ
∗
0/dz∗

ρ∗m

=
gρ̃

ρ∗mh0

(
−dρ0dz

)
≡ N∗2

0 R sech 2

(
R
2z∗

h0

) (2.18)

while the Richarson number is defined as the Brunt-Väisälä frequency

squared over the local shear squared,

Ri(z) = −g dρ∗0/dz∗

ρ∗m (dU∗
0 /dz∗)

2

=
gRρ̃h0
ρ∗mũ

2

sech 2 (2Rz)

sech 4 (2z − β)

≡ Ri0
sech 2 (2Rz)

sech 4 (2z − β)

(2.19)

where ρ∗m is the mean background density and if we use the previous

definition of J , (1.6), we have that J = Ri0/R. Also the non-dimensional

Brunt-Väisälä frequency N2(z) is defined to be:

N2(z) ≡ N∗2(z∗)

N∗2
0

= R sech 2(2Rz) (2.20)
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With these conventions and also with the use of η as a variable (see (1.9)),

our dynamical system (1.5) takes the form (1.10):

(
∂

∂t
+ U0

∂

∂x

)
u = −dU0

dz w − ∂p

∂x
(2.21.a)(

∂

∂t
+ U0

∂

∂x

)
w = −∂p

∂z
− JN2(z)η (2.21.b)(

∂

∂t
+ U0

∂

∂x

)
η = w (2.21.c)

∂u

∂x
+
∂w

∂z
= 0 (2.21.d)

where:

dU0

dz = sech 2(2z − β) (2.22.a)

dρ0
dz = −N2(z) = −R sech 2(2z − β) (2.22.b)

At first the modal stability of the corresponding system (1.15) pro-

duced by the above equations with the specific main profiles is analyzed.

In Figure 2.8 and Figure 2.9 we present the maximum modal growthrates

of operator AM, kci, ci = ℑ(c), versus the streamwise wavenumber, k and

the center Richarson number. In the first of the two figures the ratio of

the shear zones is kept fixed at R = 3 and J is varied. We can see that

there is not much difference from the piecewise case, Figure 2.2 (where R

was infinite). Again we can easily distinguish the two branches of Kelvin-

Helmholtz instability and Holmboe. However, this becomes much more

clear in Figure 2.9 where J is kept fixed at J = 0.15 and the ratio of the

shear zones, R is varied (agreement with results of Smyth and Winters [8]

is established). We can see clearly that there are two branches sepearated

by Ri0 = 0.25. The lower branch corresponds to Kelvin-Helmholtz insta-

bility where the unstable mode is only one and its phase velocity is zero,
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Figure 2.8: Nondimensional modal growth rate kci of AM for main profiles
of (2.17) versus streamwise wavenumber and Richarson number for linear,
normal mode instabilities of an inviscid stratified shear layer for fixed
R = Ri0/J = 5. The domain depth Lz = 4.
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Figure 2.9: Nondimensional modal growth rate kci of AM for main pro-
files of (2.17) versus streamwise wavenumber and shear ratio Richarson
number for linear, normal mode instabilities of an inviscid stratified shear
layer for fixed J = Ri0/R = 0.15. The domain depth Lz = 4.
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cr = ℜ(c) = 0. The upper branch corresponds to the so called Holmboe

waves. The unstable modes come in pairs with non-zero, opposite phase

velocities. Thus, if R < 2 the Holmboe waves do not appear.

We will consider the Holmboe case and therefore from now on work at

R = 3 and J = Ri0/R = 0.15 and also with streamwise wavenumber k =

0.8 which corresponds very near to the maximum modal growth attained

in this Richarson number (as can be seen more clearly in Figure 2.12).

The spectrum for these specific set of parameters is plotted in Figure 2.10.

In Figure 2.11(a) we plot the spectrum together with the ε-pseudospectra

of the operator AM for an area around one of the unstable modes (top right

one seen on Figure 2.10), while in Figure 2.11(b) we plot the same but for

a normal operator, here denoted by A(N)M that has exactly the same spec-

trum with AM. The latter is easily constructed by considering a diagonal

operator formed from the eigenvalues of AM. We see that the boundaries

of the ε-pseudospectra for A(N)M are circles around the eigenvalues of radius

ε, while this does not hold of AM. We also notice that for AM the same

contours of ε extend in much more greater areas around the eigenvalues

than for A(N)M (the outer contour lines in both figures correspond to the

same value of ε).

In Figure 2.13 we plot for k = 0.8, R = 3 and J = Ri0/R = 0.15

the contour plots of the structures of the ψ̂ and η̂ for the most unstable

eigenmode of the system (2.13(a) and 2.13(b)), its corresponding adjoint

mode (2.13(c) and 2.13(d)) and the structure that achieves maximum

initial growth, σ0max (2.13(e) and 2.13(f)). Next, in Figure 2.14 we plot

for the same values of parameters k, R and J , the evolution of energy

of the unstable eigenmode of the system, its corresponding adjoint, the

state of maximum instantaneous growth and the state that gives the op-
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Figure 2.10: Spectrum of AM for k = 0.8, R = 3 and J = 0.15. We
can see clearly the four discrete modes (two pairs of stable and unstable
modes with opposite phase velocities) and also the continuous part of the
spectrum with phase velocities min (U0) ≤ cr ≤ max (U0).

timal growth at T = 30 together with the maximum energy that can be

attained at any time t, that is ∥ exp (AMt)∥2. We notice that after 50 time

units the evolution is almost parallel. The unstable mode has dominated.

However, starting with the adjoint mode has gained energy almost two

orders of magnitude more. Also one can see that indeed the eigenmode

of
(
AM + A

†
M

)
/2 with larger eigenvalue corresponds to the maximum in-

stantaneous growth.

We next plot in Figure 2.15 the maximum energy that can be attained

in every value of t for various values of streamwise wavenumber k for

R = 3 and J = 0.15. Some interesting things arrise here. Up to 30

time units one can achieve the same order of magnitude energy growth

with wavenumbers ranging from k = 0.2 to k = 2. This fact seems

counterintuitive if we try to interpret it only with means of Figure 2.12
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2.11(a): ε-pseudospectra of AM
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Figure 2.11: Pseudospectra of AM and of the normal operator A(N)M for
k = 0.8, R = 3 and J = 0.15 for the area near one of the discrete modes.
Plot shows the eigenvalues (solid dots) and the boundaries of the 2-norm
ε-pseudospectra for ε = 10−2.0, 10−2.5, 10−3.0, 10−3.5, 10−4.0 (from outer to
inner). We see that the ε-pseudospectrum for A(N)M are circles around the
eigenvalues of radius ε, while this does not hold of AM. Notice that for
AM the same contours of ε extend in much more greater areas around the
eigenvalues than for A(N)M , where the contours for ε = 10−3.5, 10−4.0 are so
close to the eigenvalues that cannot be distinguished.
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Figure 2.12: Maximum modal growth rate kci of AM for main profiles
of (2.17) versus streamwise wavenumber k, for J = 0.15 and R = 3.
The domain depth Lz = 4. We can see that k = 0.8 is very near to the
maximum achieved modal growth rate.

and modal stability terms. One would expect for example almost three

times more exponential growth for k = 0.8 than for k = 2. However,

though the non-normal interaction between the non-orthogonal modes of

the dynamical operator of discrete and continuous part of the spectrum

we have the same growth for this two values of streamwise wavenumber.
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2.13(a): ψ̂ of unstable eigenmode
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2.13(b): η̂ of unstable eigenmode
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2.13(c): ψ̂α of adjoint of unstable
eigenmode
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2.13(d): η̂α of adjoint of unstable
eigenmode
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Figure 2.13: Contour plots of one of the most unstable eigenmode of
the system (a) and (b) and its corresponding adjoint mode (c) and (d).
Streamwise wavenumber is k = 0.8, R = 3 and J = Ri0/R = 0.15. The
domain depth Lz = 4. We. Notice the z scale difference in the ηα adjoint
field.
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Figure 2.14: The evolution of energy of the unstable eigenmode of the
system (state No. 1 - dotted line), its corresponding adjoint (state No.
2 - dash-dot line), the state of maximum instantaneous growth (state
No. 3 - dashed line) and the state that gives the optimal growth at
T = 30 (state No. 4 - solid doted line). Also in the figure is the plot
of the maximum energy that can be attained at any time t (solid line).
Streamwise wavenumber is k = 0.8 and J = Ri0/R = 0.15. Notice that
after 50 time units the evolution is almost parallel. The unstable mode has
dominated. However, starting with the adjoint mode has gained energy
almost two orders of magnitude more.
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Figure 2.15: The optimal growth as a function of time for different val-
ues of streamwise wavenumber, k. Notice that in the transient period
(less than 35 advective time units) the wavenumber that corresponds to
the maximum modal growth does not give the overall maximum optimal
energy growth.
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Conclusions

We have reviewed (Section 1.1) the main hydrodynamic instability mecha-

nism for uniderictional flows that vary only in the cross-stream direction,

i.e. the basic hydrodynamic shear instabilities. These are the Kelvin-

Helmholtz instability (stratified and unstratified), the Rayleigh instabil-

ity, the Taylor instability and finally the Holmboe instability. The most

counterintuitive of these is the Holmboe, because it demonstrates against

intuition that the stratification may act as a destabilizing factor for stream-

wise wavenumbers that are otherwise stable, in contrast with the stratified

Kelvin-Helmholtz case.

The hydrodynamic perturbation equations are non-normal because

energy can flow from the background mean to the perturbations. As a

result the stability analysis must go beyond the analysis of the spectrum

of the operator. We have reviewed the methods required to address the

stability of non-normal dynamical systems. We have shown by exam-

ple that non-normality is able to produce energy growths for streamwise

wavenumbers that are neutral and excite the unstable modes at orders of

magnitude higher amplitude by initializing the dynamical system by the
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adjoint mode rather than unstable mode itself (see Figures 2.5 and 2.15).

We found that a study of the instability of non-normal dynamical systems

should be extended to include a study of the norm of the propagator

which may reveal stability characteristics that are very different from the

ones expected from modal stability analysis, which always underestimates

the sensitivity of fluid flows.

We have also shown that the eigenspectrum of non-normal operators

when it exists is ill-conditioned and very sensitive. We introduced the

methods of pseudo-spectral analysis to investigate the sensitivity of the

spectra. We proposed that the best basis for analysis of non-normal op-

erators is the polar decomposition of the propagator, that leads to the

singular value decomposition of the operator that identifies two unitary

bases which can provide not only a good basis for expansion the pertur-

bation field, but also a physically compelling basis because these unitary

structures are the structures of the flow that are ordered according to their

growth potential. We have applied these ideas to the Holmboe problem.



Appendices

A Adjoint operator properties

We will assume for this section that inner product is the usual Eucledian

(u,v) ≡ u†v.

Let a linear operator A acting on an N-dimensional vector space, V ,

with eigenvalues λi and eigenvectors u(i), that is:

Au(i) = λi u(i) (A.1)

Its adjoint operator, A†, is defined as equation (1.30).

Theorem A.1. The eigenspectrum of A and A† are complex conjugates, that is:

λi ∈ Λ(A) ⇐⇒ λ∗i ∈ Λ(A†) (A.2)

Proof. If we denote by µi and v(i) the eigenvalues and eigenvectrors of A†

then we have that:

(
v(j),Au(i)

)∗
=

(
u(i),A† v(j)

)
= µj

(
u(i),v(j)

)
(
v(j),Au(i)

)∗
= λ∗i

(
v(j),u(i)

)∗
= λ∗i

(
u(i),v(j)

) (A.3)

In another basis,
{
e(i)

}N
i=1
, these two operators have matrix elements:
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Aij =
(
e(i),A e(j)

)
(
A†

)
ij
=

(
e(i),A† e(j)

)
thus (

A†
)
ij
= (A)∗ji

Moreover:

det
(
A
†
)
=

∑
i1,i2,...,iN

ϵi1i2···iN (A
†)i11(A

†)i22 · · · (A†)iNN

=
∑

i1,i2,...,iN

ϵi1i2···iNA
∗
1 i1A

∗
2 i2 · · ·A

∗
N iN

= (detA)∗

This, accompanied from the fact that [det (λ1)]∗ = det (λ∗1), leads to:

0 = det
(
A
† − µ1

)
= [det (A− µ∗1)]∗ = 0

which proofs (A.2).

Going back to equation (A.3) we have:

(λi − λj)
(
v(j),u(i)

)
= 0

or for λi ̸= λj (
v(j),u(i)

)
= 0 (A.6)

If now we want to expand an arbitrary vector y into eigenvectos of A we
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write:

y =
N∑
i=1

αi u(i)

and to find the coefficients αi we take the inner product with v(j). This

gives us:

y =

N∑
i=1

(
v(i),y

)(
v(i),u(i)

) u(i) (A.8)

which leads to the completeness relations:

1 =
N∑
i=1

u(i) v(i)†

v(i)† u(i)
=

N∑
i=1

v(i) u(i)†

u(i)† v(i)
(A.9)

Theorem A.2. A normal operator has a complete set of orthonormal eigenvec-

tors.

This does not hold if the operator is non-normal.

Proof. When the operator A is normal then:

A
†
Au(i) = λiA

† u(i) = A

(
A
† u(i)

)

That is if u(i) is an eigenvector of A with eigenvalue λi, then so is A† u(i).

In the case of no degeneracy, and due to (A.2) we conclude that in this

case u(i) is also an eigenvector of A† with eigenvalue λ∗i . Otherwise, if A

is degenerate and an n-dimensional eigenspace corresponds to eigenvalue

λk then A† will also be degenerate and also an n-dimensional eigenspace

will correspond to eigenvalue λk. Consenquently the previous relations
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for biorthogonality and completeness become:

(
u(i),u(j)

)
= δij

(
u(i),u(i)

)
N∑
i=1

u(i) u(i)†

u(i)† u(i)
= 1
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B Singular value decomposition

Theorem B.1. Every operator A admits singular value decomposition into:

A = U�V
†

where U and V are unitary operators and � is diagonal with positive entries.

The values σi in the diagonal of � are called singular values and normally

are ordered in descending order, σ1 ≥ σ2 ≥ · · · ≥ σN .

Proof. The hermitian operators AA† and A†A are positive since:

(
x ,AA†x

)
=

(
A
†x ,A†x

)
≥ 0(

x ,A†A x
)
= (A x ,A x) ≥ 0

Then the hermitian operator H =
(
A
†
A
)1/2 can be defined as:

H = V
√
SV

†

where S is the diagonal matrix with the eigenvalues of A†A in its diagonal

and V is the unitary matrix whose columns are the eigenvectors of A†A.

Then � ≡ AH−1 is unitary since:

�
†
� =

(
AH

−1
)†
AH

−1 = H
−1
A
†
AH

−1 = H
−1
H
2
H
−1 = 1

��
† = AH

−1
(
AH

−1
)†

= AH
−1
H
−1
A
† = A

(
A
†
A

)−1
A
† = 1

Consequently, every operator A can be written as:

A = �H (B.1)
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where � is unitary and H is hermitian. This is called polar decomposition

of an operator, it is in the manner of defining a complex number by

a magnification by an amplitude (a hermitian matrix here) and then a

rotation by eiϕ, where ϕ is the phase (a unitary matrix here).

We let � be the diagonal operator with elements the square roots of

the elements of S. Then, rewriting (B.1),

A = �V�V
†

Note that the unitarity of � implies that if v1 and v2 are two orthogonal

vectors then also are �v1 and �v2, thus �V is also unitary (unitary matrices

form a group) .

But also from (B.1) we induce that:

AA
† = �H (�H)† = �HH

†
�
†

= �

(
V
√
SV

†
)(

V
†√
SV

)
�
†

= (�V)S (�V)†

Thus the unitary matrix U ≡ �V is the matrix whose columns are the

eigenvectors of AA†.

We now not only have the proof that any operator A can be decom-

posed into A = U�V
†, but we also have the way of doing it. Moreover,

equation (B.1) has also shown us that any operator can be decomposed

into a unitary and a hermitian one. The latter is called polar decomposi-

tion of an operator.
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C Miles & Howard criterion

Theorem C.1 (Miles & Howard). A parallel, stratified, inviscid flow with

the local Richarson number everywhere greater than 1/4 is stable under in-

finitesimal perturbations.

We will give here follow the proof given by Howard [5] together with

the assumption of the Boussinesq approximation, so we will be consistent

with the rest of our text. However, this approximation plays no significant

role in the proof and the theorem holds for any initial configuration of

the density ρ0 with slight modifications.

Proof. From Taylor-Goldstein equation, (1.17), if we expand the stream-

function as (1.51) and also define F (z) as:

ψ̂(z) = (U0 − c)F (z) (C.1)

we end up with:

[
(U0 − c)2 F ′

]′
+

[
−J dρ0dz − k2 (U0 − c)2

]
F = 0[

(U0 − c)2 F ′
]′
+

[(
U ′
0

)2 Ri− k2 (U0 − c)2
]
F = 0 (C.2)

since in this notation, the local Richarson number is given by:

Ri(z) = −Jdρ0/dz
(dU0/dz)2

(C.3)

Let us now assume that the flow is unstable to infinitesimal perturba-

tions, that is ci > 0 and also that Ri(z) > 1/4 for the whole z-domain. Let

us further denote W (z) = U0(z)− c and since ci > 0 it means that W does

not have a zero in the flow domain and thus we can select one branch of
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W 1/2 for the whole domain. If we furthermore denote G(z) = W 1/2F (z)

then equation (C.2) becomes:

(
WG′)′ − [

1

2
U ′′
0 + k2W +

(U ′
0)

2

W

(
1

4
− Ri

)]
G = 0 (C.4)

We multiply with G∗ and integrate in the whole z-domain. We have that

ψ̂ should vanish at the boundaries, which implies that G should vanish

also. After the integration we end up with:

∫ z2

z1

dz W
(∣∣G′∣∣2 + k2 |G|2

)
+

∫ z2

z1

dz
1

2
U ′′
0 |G|2

+

∫ z2

z1

dz
(
U ′
0

)2(1

4
− Ri

)
W ∗

∣∣∣∣ GW
∣∣∣∣2 = 0

(C.5)

If we take the imaginary part of the above equation, and keep in mind

that ci > 0 then we end up with:

∫ z2

z1

dz
(∣∣G′∣∣2 + k2 |G|2

)
+

∫ z2

z1

dz
(
U ′
0

)2(Ri− 1

4

) ∣∣∣∣ GW
∣∣∣∣2 = 0 (C.6)

which cannot be true according to our assumptions. Thus we have that

a sufficient condition for instability is that Ri(z) < 1/4 for some z in the

domain of the flow.
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