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Objectives

Study the regimes of geostrophic turbulence above topographywhen
forced by steady wind stress.
• How much momentum input by the wind stress is balanced by
bottom drag, and how much by topographic form stress?

•What topographic features affect the large-scale flow?
• How does the mass transport depend on wind stress?

Model

The simplest model of topographic form stress:
Single-layer quasi-geostrophic setting, forced by a steady zonal mean
wind stress in a doubly periodic domain of size 2πL× 2πL.
Flow consists of:
• a large-scale zonal mean flow: U(t),
• an eddy flow field: ψ(x, y, t) (u = −ψy, v = ψx).
Evolution:

∇2ψt + J(ψ − Uy ,∇2ψ + βy + η) = −µ∇2ψ, (1)
Ut = F − µU − ⟨ψηx⟩. (2)

• J(a, b) def= axby − aybx: Jacobian,
• µ: Ekman drag coefficient,
• β: planetary vorticity gradient,
• ⟨ψηx⟩: topographic form stress ( ⟨ · ⟩ is domain average),
• F = τ/(ρ0H): zonal mean wind stress forcing,
• ∇2ψ + βy + η: quasigeostrophic PV,
• η(x, y) = f0h(x, y)/H: topographic PV,
Flow field can be decomposed into standing (time-mean) and tran-
sients, e.g. ψ(x, y, t) = ψ̄(x, y) + ψ′(x, y, t).

Properties of topography: homogeneous, isotropic, monoscale,
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Two Flow Examples

βy + η overlayed with
time-mean of total flow field (Ū + ū, v̄)

flow is “channelled”
in some part of the domain

βy + η overlayed with
time-mean of total flow field (Ū + ū, v̄)

flow is evenly spread
throughout the domain

Open vs. closed geostrophic contours

The ratio βℓη/ηrms (=β/
√
⟨|∇η|⟩) controls whether there exist closed

geostrophic contours, i.e. level sets of βy + η.

Structure of geostrophic contours (level sets of βy + η).

What balances the wind stress?

Time-average (denoted with bar) of U equation (2):
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+ ⟨ψ̄ηx⟩
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percentage
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Weakly and strongly forced solutions
(quasilinear – QL)

Assume steady flow. Then (2):
F − µU − ⟨ψηx⟩ = 0

•Weakly forced: neglect quadratic terms J(ψ − Uy,∇2ψ) in (1):
J(ψ − Uy, η + βy) + µ∇2ψ = 0.

• Strongly forced: neglect J(ψ,∇2ψ + η) in (1):
βψx + U∇2ψx + Uηx + µ∇2ψ = 0.

=⇒ obtain scalings for Ū with F . Good agreement with numerics.

Eddy saturation regime

Large-enough βℓη/ηrms =⇒ Ū is ≈independent of F .

A theory for eddy saturation

Approximate the transient eddies as effective PV diffusion:
∇ · (U ′ + u′, v′) ∇2ψ′︸ ︷︷ ︸

eddy PV flux
= −κeff∇2(∇2ψ̄ + η).

Determine κeff from the eddy energy power integral.

The effective PV diffusion approximation is good for βℓη/ηrms larger
than ≈ 0.5.

βℓη/ηrms = 1.38

Effectively parametrize transients without reducing the amplitude of
standing eddies.

Conclusions

• There exists flow regimes with flow depending:
– only on statistical properties of topography (large βℓη/ηrms),
– on the geometrical structure of topography (small βℓη/ηrms).

• Existence of eddy saturation regime in this barotropic, doubly
periodic model.
explanation: effective PV homogenization theory.

• Large zonal transport ensues as wind increases.
explanation: enstrophy power integral imposes the need for such
transition as wind stress crosses a threshold (see paper).
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