Objectives

Study the regimes of geostrophic turbulence above topography when
forced by steady wind stress.

- How much momentum input by the wind stress is balanced by
bottom drag, and how much by topographic form stress?

- What topographic features affect the large-scale flow?

- How does the mass transport depend on wind stress?
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The simplest model of topographic form stress:

Single-layer quasi-geostrophic setting, forced by a steady zonal mean
wind stress in a doubly periodic domain of size 27 L x 2w L.

Flow consists of:

- a large-scale zonal mean flow: U(t),
- an eddy flow field: {(z,y,t) (v = =, v = P,).

Evolution:

VA + (0 — Uy , VY + By + 1) = —uVy, (1)
Up = F — pU — (¢n). (2)

- J(a,0) ¥ a,b, — a,b,: Jacobian,
- ;2 Ekman drag coefficient,

(: planetary vorticity gradient,

(1n,): topographic form stress ( ( - ) is domain average),

F =1/(poH): zonal mean wind stress forcing,
V%) + By + n: quasigeostrophic PV
n(x,y) = foh(x,y)/ H: topographic PV,

Flow field can be decomposed into standing (time-mean) and tran-
sients, e.g. Y (x,y,t) = Y(x,y) + ' (z,y,t).

topography, 1D power spectrum of topography
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Properties of topography: homogeneous, isotropic, monoscale,
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Three main non-dimensional parameters:
5€77/77rms F/(Nnrmsgn> ,U/Urms = 107"

planetary vorticity gradient wind stress forcing dissipation

Topographic beta-plane turbulence and form stress
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Two Flow Examples

By + n overlayed with
time-mean of total flow field (U + @, v)
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flow is “channelled”

in some part of the domain

Open vs. closed geostrophic contours

The ratio 8¢,/nws (=5//(|Vn|)) controls whether there exist closed
geostrophic contours, i.e. level sets of Sy + n.
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Structure of geostrophic contours (level sets of Sy + n).

What balances the wind stress?

Time-average (denoted with bar) of U equation (2):
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By + n overlayed with
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time-mean of total flow field (U + u, v)
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Weakly and strongly forced solutions
(quasilinear - QL)

Assume steady flow. Then (2):
F = pU = () = 0
- Weakly forced: neglect quadratic terms J(¢» — Uy, V) in (1):
J(p — Uy, n+ By) + Ve = 0.
- Strongly forced: neglect J(1), V%) + 1) in (1):
Btby + Uy + Uny + pV>9p = 0.

— obtain scalings for U with F. Good agreement with numerics.

Eddy saturation regime
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Large-enough 3¢, /n... = U is ~independent of F.

A theory for eddy saturation

Approximate the transient eddies as effective PV diffusion:

V(U 4,0 )VH = —kg VAV +1).
eddy PV flux

Determine k.; from the eddy energy power integral.
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The effective PV diffusion approximation is good for 3¢, /n,.s larger
than ~ 0.5.

By [ Mhms = 1.38
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Effectively parametrize transients without reducing the amplitude of
standing eddies.

Conclusions

- There exists flow regimes with flow depending:
—only on statistical properties of topography (large 54, /1),
—on the geometrical structure of topography (small 3¢, /1.s).

- Existence of eddy saturation regime in this barotropic, doubly

periodic model.
explanation: effective PV homogenization theory.

- Large zonal transport ensues as wind increases.
explanation: enstrophy power integral imposes the need for such
transition as wind stress crosses a threshold (see paper).
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