
Eddy saturation in a barotropic model
Navid C. Constantinou & William R. Young 

Scripps Institution of Oceanography, UC San Diego

Animated view of the 
Southern Ocean topography 

by V. Tamsitt.

21st AOFD Conference 
Portland, June 26th, 2017

Can a barotropic QG model 
exhibit “eddy saturation”?

What is the minimum requirements 
for “eddy saturation”?



Revisit an old barotropic QG model on a β-plane. 
(Hart 1979, Davey 1980, Bretherton & Haidvogel 1976, 

Holloway 1987, Carnevale & Fredericksen 1987)

A distinctive feature of this model is a 
“large-scale barotropic zonal flow”U(t).

total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy

depth = H − h(x, y)

topographic PV: η =
f0h

H

Energy

Multiplying (??) by ψ and integrating over the domain:

d

dt

〈
1

2
|∇ψ|2

〉

+ U ⟨vη⟩ = −
〈

µ|∇ψ|2 + νζ2
〉

, (5) eq7

and from (3)
d

dt
1

2
U2 = FU − µU2 + U ⟨vη⟩ . (6) eq11

The sum of (5) and (6) is the total energy conservation law

d

dt

[
1

2
U2 +

〈
1

2
|∇ψ|2

〉]

= FU − µU2 −
〈

µ|∇ψ|2 + νζ2
〉

. (7) eq17.1

Enstrophy

Multiplying (??) by ζ and η and then averaging over the domain:

d

dt

〈
1

2
ζ2
〉

= +U ⟨ηζx⟩+ ⟨ηJ(ψ, ζ)⟩ −
〈

µζ2 + ν|∇ζ |2
〉

, (8) eq18.1

d

dt
⟨ζη⟩+ β ⟨ηv⟩ = −U ⟨ηζx⟩ − ⟨ηJ(ψ, ζ)⟩ − ⟨µζη + ν∇η·∇ζ⟩ . (9) eq18.2

The sum of (8) and (9) is

d

dt
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(

ζ + η
)2
〉
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〈

µ
(

ζ2 + ζη
)

+ ν
(

|∇ζ |2 +∇ζ ·∇η
)〉

. (10) eq19

Eliminating ⟨vη⟩ using (4) we have

d

dt

[〈
1

2
(ζ + η)2

〉

+ βU
]

= βF − βµU −
〈

µ
(

ζ2 + ζη
)

+ ν
(

|∇ζ |2 +∇ζ ·∇η
)〉

. (11) eq20
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Study how momentum is balanced by 
topographic form stress and investigate the 

requirements for eddy saturation. 

topographic PV

the plan

this is 
the “ACC”

steady mean zonal 
wind stress 

F

ẑ

x̂

ŷ
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1 The model

The model is

(ζ + η)t + U(ζ + η)x + J(ψ, ζ + η) (1)

+ βψx = −µζ + hyper visc (2)

where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)

︸ ︷︷ ︸

def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.
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H
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total streamfunction

QGPV q = r2 + ⌘ + �y



Form stress 3

Navid Constantinou & W.R. Young ⇤

June 20, 2017

1 The model

r2 t + U(r2 + ⌘)x + J( ,r2 + ⌘) (1)

+ � x = �µr2 + hyper visc. (2)

The model is

(⇣ + ⌘)t + U(⇣ + ⌘)x + J( , ⇣ + ⌘) (3)

+ � x = �µ⇣ + hyper visc. (4)

where ⌘(x, y) is the topographic contribution to potential vorticity and

⇣
def

= (@2x + @2y)| {z }
def

=r2

 , (5) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F � µU � h ⌘xi , (6) eq3

where hi is an average over the domain and �(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coe�cient
µ and lateral viscosity ⌫. Presumably the model has some sort of scale selective dissipation
analogous to ⌫.

⇣t+U⇣x+J( , ⇣ + ⌘) + � x + µ⇣ = �U⌘x

F =
⌧

⇢
0

H
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topography in the Southern Ocean

credit: V. Tamsitt, Scripps, UCSD
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Material conservation of QGPV 

Large-scale zonal momentum 

a mid-ocean region 
size 2πL x 2πL

topographic 
form stress

(Hart 1979, Davey 1980, Bretherton & Haidvogel 1976, Holloway 1987, Carnevale & Fredericksen 1987)

a barotropic QG model for mid-ocean region
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total streamfunction

QGPV
total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
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ζ

+η + βy

depth = H − h(x, y)

topographic PV: η =
f0h

H

⟨⟩ = domain average

F =
τs
ρ0H

ut +∇·(uu)− fv +∇·(px̂) = τz

U(t)
def
= V −1

∫

u dV

V −1

∫

τz dV =
τ(0)− τ(−H)

H
(5)

= F − f0δE
H

︸︷︷︸

def
= µ

U (6)

V −1

∫

∇·uu dV = V −1

∫

uu · n dS≈ 0 (7)

V −1

∫

βyv dV = V −1

∫
βy

f0
px̂ · n dS

?

≈ 0

V −1

∫

fv dV≈ 0

V −1

∫

∇·(px̂) dV = V −1

∫

p x̂ · ndS , (8)

≈ L−2

∫∫

bot

ψ
f0hx

H
dxdy

︸ ︷︷ ︸

⟨ψηx⟩

+(zonal pressure difference) (9)

ψ(x, y, t) = ψ̄(x, y) + ψ′(x, y, t)

2

    is domain average                                : wind stress forcing  
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periodic boundary conditions

vertically integrated and 
horizontally averaged 

zonal angular 
momentum equation

q = r2 + ⌘ + �y
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Does this barotropic QG model 
show “eddy saturation”?

Question:

Do we need baroclinicity? 
Do we even need channel walls?



The insensitivity of the total ACC volume transport to wind stress increase.

what is “eddy saturation”?

[There are many other examples:  Hallberg & Gnanadesikan 2001, Tansley & Marshall 2001, Hallberg & Gnanadesikan 
2006, Hogg et al. 2008, Nadeau & Straub 2009, Farneti et al. 2010, Nadeau & Straub 2012, Meredith et al. 2012, 
Morisson & Hogg 2013, Abernathey & Cessi 2014, Farneti et al. 2015, Nadeau & Ferrari 2015, Marshall et al. 2016.]

experiments interpolated to the new grid spacing. The 28
were initialized from a set of very coarse 48 experiments
and the ½8 experiments were then initialized from the
result of the 28 experiments. After 1000 years, the ½8
results were then interpolated to 1/68, and these experi-
ments begun.2 Where time-average results are discussed,
the 28 experiments have been averaged over 1000 years,
the ½8 over 100 years, and the 1/68 over 10 years.

3. Key results

The key results of our numerical experiments are
summarized in Fig. 3, where the relationship between the
time-mean ‘‘circumpolar’’ transport (the zonal transport
through the re-entrant channel) and the strength of the
wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b)
are shown.Different averaging periods are used for each
grid spacing; 1000 years for 28, 100 years for ½8, and
10 years for 1/68. The bars represent two standard de-
viations of the instantaneous monthly transport about
the mean. They indicate the instantaneous variability of
the circumpolar current, rather than the standard error
in the mean, which is extremely small due to the large
number of sample values in the averaging period.

Examination of Fig. 3a demonstrates that the noneddy-
resolving model (28, blue line) behaves like other global
climate models employing a constant GM coefficient,
that is, the circumpolar transport changes strongly with
the wind stress (Fyfe and Saenko 2006). Even with no
wind at all (t0 5 0 N m22) a significant TACC of;50 Sv
occurs. This transport occurs for the reasons elucidated
by Munday et al. (2011), that is, that the pycnocline to
the north of the ACC is deepened by diapycnal mixing,
even in the absence of wind. This then leads to a con-
siderable circumpolar transport via thermal wind shear.
The increase in TACC with wind forcing continues across
the extreme range considered here, which reaches a
peak wind stress of 1.0 N m22, compared to the basic
state value of 0.2 N m22. The increase in transport does
not remain linear with wind stress, although it is close to
this limit across many of the experiments. The reader
should note that no error bars are shown on the D 5 28
line of Fig. 3a as the variability is so low that they would
be smaller than the plotted symbol in most cases.
When the grid spacing is refined to ½8 (red line), and

again to 1/68 (green line), the model behaves like the
high-resolution numerical models discussed in section 1.
In other words, TACC ‘‘saturates’’ at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/68 exper-
iments demonstrate that such saturation may take
place with no wind at all, since the increase in vari-
ability effectively makes the green line on Fig. 3a in-
distinguishable from flat. The extreme range of wind
forcing considered in the experiments presented here

FIG. 3. Sensitivity of the circumpolar transport to (a) the wind stress and (b) the diapycnal diffusivity. The ‘‘error
bars’’ are two standard deviations around the long-term mean, calculated from instantaneous monthly values
throughout the averaging period. The 28 (blue) experiments are averaged over 1000 years, the ½8 (red) experiments
over 100 years, and the 1/68 (green) experiments over 10 years.

2 For reasons of numerical stability it was found to be easier to
initialize the 1/68 diapycnal diffusivity experiments from the 48 ex-
periments used to initialize the 28 experiments. In some cases, this
leads to a noticeable lag between the 1/68 basic state and the 12
experiments that make up the rest of the 1/68 diapycnal diffusivity
suite.
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Munday, Johnson & 
Marshall 2013 Eddy saturation is seen in eddy-resolving ocean models.

Eddy saturation was theoretically predicted by Straub (1993) 
but with an entirely baroclinic argument. 

(vertical momentum transfer interfacial eddy form stress)

Higher resolution             eddy saturation “occurs”



So, does this barotropic QG model 
show eddy saturation or not?

Question:
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ū� ū
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periodic 
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tw

(x,y,z)

+ ū
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(both topographies imply the same length-scale:                                 )

put some “quasi-realistic” numbers
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ū
tw

= �
Z z

�H

dz0 @y b̄
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how does the transport U vary with wind stress?

tr
an

sp
or

t

wind stress wind stress
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ū(x, y, z) = ū(x, y, z)� ū
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Ūh ̄⌘xi+ U 0h 0⌘xi| {z }
negligible

= 2µ h1
2

|r |2i
| {z }

def

= EKE

+ small hyperviscous

dissipation

T
ACC

=

Z
0

�H

dz

Z
dy

Z
dx

Lx

ū
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Eddy saturation occurs when 
the geostrophic contours are “open”, 

that is, when the geostrophic contours 
 span the domain in the zonal direction.

this is a general result 
we’ve seen it in various cases 

whatever the topography

this is small-Rossby number  
expansion of f/(H+h)



wind stress

further “symptoms” 
of eddy saturation

EKE grows roughly linearly 
with wind stress

transport grows 
with increasing bottom drag

bottom drag

fixed F

[Hogg & Blundell 2006, Nadeau & Straub 2012, 
Nadeau & Ferrari 2015, Marshall et al. 2016]



Eddy saturation can occur without baroclinicity!

take home messages

This, does not preclude the role of baroclinic processes in the ACC equilibration. 
But it does argues that barotropic processes do contribute.

We need new process models of baroclinic turbulence in which 
the mean flow is wind-driven and topography exerts form stress.

The barotropic QG model shows eddy saturation 
when geostrophic contours are open. 

This is surprising! All previous arguments were based on baroclinicity.

thank you
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