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Magnetic induction in MHD causes drag for magnetic Reynolds
number Rm ≪ 1.
We show that induction by a mean shear flow for Rm ≫ 1 leads to
an effective magnetic eddy viscosity acting on zonal flow.
Magnetic eddy viscosity leads to transport of angular momentum
and may be of importance to zonal flows in the interior of gas giants.

Depth of Jupiter’s and Saturn’s zonal flows

[NASA/JPL]

Juno found that Jupiter’s jets go as deep as ∼3,000 km below the clouds.
Similarly, Cassini found that Saturn’s jets reach depth of ∼8,500 km.

[Kaspi et al. 2018, Guillot et al. 2018, Iess et al. 2019, Galanti et al. 2019]

Why the jets stop at that depth?

Inside Gas Giants fluid becomes ionized
and magnetic fields are strong

Jupiter:
• Even before Juno, it was thought
that the depth of zonal flow in
Jupiter is set by magnetic effects.

• The conductivity of the fluid goes
up 11 orders of magnitude within
the first 10% of the radius (due
to the increasing pressure and
ionization).

• Jupiter’s planetary magnetic field
can start being important.

[French et al., ApJ Supp. S. (2012)]

Objectives
• Study the effect of mean shear flows on the induced Lorentz
force in a turbulent MHD flow.

• Discuss potential application in gas giants’ interior.

Lorentz force induced by shearing of magnetic field

[Magnetic response to a mean shear flow expected in turbulent regime]
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For Rm > 1 but while still A ≪ 1 (dominated by hydrodynamic
fluctuations), the magnetic fields induce

an effective magnetic viscosity rather than a magnetic drag.

Magnetic eddy viscosity (and Negative eddy viscosity)
Zonal mean–eddy decomposition: f = f︸︷︷︸

zonal mean

+ f ′
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induction eq. for ∇ · v = 0: ∂tB = B · ∇v − v · ∇B

B(t = 0) & v = U(y) x̂
after ∆t−→ ∆BxBy︸ ︷︷ ︸
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= ∆t B2
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This should be valid up to ∆t ≈ τcor (turbulent decorrelation time):
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predicts Maxwell stress as a function of mean flow shear
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2D MHD quasi-geostrophic flow on a beta plane
2D flow (from a streamfunction): v = ẑ × ∇ψ

Coriolis f0 + βy , relative vorticity ζ = ẑ · (∇ × v)

magnetic field: B = B0︸︷︷︸
constant, imposed

+ B̃ = ∇ × ( A ẑ︸︷︷︸
vector potential

)

A = ( −B0y x +B0x y + Ã ) ẑ , current: J = ∇ × B = −∇2A ẑ

(∂t + v · ∇)( ζ + βy︸ ︷︷ ︸
total vorticity

) = −B · ∇∇2A︸ ︷︷ ︸
curl of Lorentz force

−κζ + ν∇2ζ︸ ︷︷ ︸
drag & viscosity

+ ξ︸︷︷︸
stochastic
small-scale

isotropic forcing
(∂t + v · ∇)A = η∇2A︸ ︷︷ ︸

resistivity

• imposed B0: toroidal → B0 = B0 x̂
/ poloidal → B0 = B0 ŷ

• 4π × 4π domain – doubly-periodic boundary conditions
• β = 10, κ = 10−2, ν = 10−4, kf = 12 (forcing wavenumber)
• Reference magnetic Reynolds number Rm0 = L0V0

/
η

L0, V0 length and velocity scales in hydrodynamic regime (large η)

Magnetic fields disrupt zonation

As B0 increases zonal flow is suppressed.
(Constantinou & Parker, ApJ, 2018)

How good is the Maxwell stress prediction eq. (1)?

Maxwell stress are well approximated as
“magnetic viscosity” through eq. (1) [with α ≈ 1].

Results from 2D MHD simulations

As B0 increases zonal flow is suppressed.
(Constantinou & Parker, ApJ, 2018)

As we cross Rm0 = 1 the Lorentz force transitions
from magnetic drag (∝ −U) to magnetic viscosity (∝ ∂2

yU).

Magnetic viscosity cancels Reynold stresses, not magnetic drag.

Application to Jupiter’s and Saturn’s interiors
Given the flow at the outer atmosphere, how strong magnetic fluctua-
tions we need so that magnetic viscosity cancels negative eddy viscosity
(RHS of eq. (2) vanishes)?

Using (i) outer atmosphere typical scales, (ii) B2
y ≈ 1

2B
2, (iii) estimates

for mean magnetic field B0, and (iv) B2 = B2
0 Rm scaling we find:

critical: RmJupiter = 60 , RmSaturn = 700
Resistivity η is low enough for Rm to attain the above critical value at:

0.96RJupiter = 3500 km and 0.80RSaturn = 11000 km
(see paper and refs therein)

Conclusions
• We show that for high Rm but in a regime dominated by
hydrodynamic fluctuations (A ≪ 1), the magnetic fluctuations
induce an effective magnetic viscosity on the mean flow.

• Magnetic viscosity mechanism is 3D (see paper); simulations
presented here are 2D.

• Potential application in determining the depth of zonal flows in the
interior of gas giants.
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