Structure and mechanism of turbulence under dynamical restriction in plane Poiseuille flow

Navid Constantinou Scripps Institution of Oceanography University of California San Diego

together with: B.F. Farrell¹, P.J. Ioannou², J. Jiménez³, A. Lozano-Durán³, M.-A. Nikolaidis²

- 1: Harvard University
- 2: National & Kapodistrian University of Athens
- 3: Universidad Politécnica de Madrid

APS DFD November 2016

Question

What maintains the very-large-scale-motions (VLSMs) in wall-bounded turbulence *in the region away from the walls*?

Does a self-sustain process exist in the outer layer?

Use the analytically tractable Reduced NonLinear (RNL) system.

Flow setting

Flow setting

$$\bar{\boldsymbol{u}}_t + \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \bar{\boldsymbol{u}} + \boldsymbol{\nabla} \bar{p} - \nu \nabla^2 \bar{\boldsymbol{u}} = -\overline{\boldsymbol{u}' \cdot \boldsymbol{\nabla} \boldsymbol{u}'}$$

$$\boldsymbol{u}_t' + \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \boldsymbol{u}' + \boldsymbol{u}' \cdot \boldsymbol{\nabla} \bar{\boldsymbol{u}} + \boldsymbol{\nabla} p' - \nu \nabla^2 \boldsymbol{u}' = -\left(\boldsymbol{u}' \cdot \boldsymbol{\nabla} \boldsymbol{u}' - \overline{\boldsymbol{u}' \cdot \boldsymbol{\nabla} \boldsymbol{u}'}\right)$$

 $\nabla \cdot \bar{\boldsymbol{u}} = \nabla \cdot \boldsymbol{u}' = 0$ Navier-Stokes (NS)

Flow setting

$$\bar{\boldsymbol{u}}_t + \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \bar{\boldsymbol{u}} + \boldsymbol{\nabla} \bar{p} - \nu \nabla^2 \bar{\boldsymbol{u}} = -\overline{\boldsymbol{u}' \cdot \boldsymbol{\nabla} \boldsymbol{u}'}$$

No perturbation cascades in **x**!

$$\boldsymbol{u}_t' + \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \boldsymbol{u}' + \boldsymbol{u}' \cdot \boldsymbol{\nabla} \bar{\boldsymbol{u}} + \boldsymbol{\nabla} p' - \nu \boldsymbol{\nabla}^2 \boldsymbol{u}' = -\left(\boldsymbol{u}' \cdot \boldsymbol{\nabla} \boldsymbol{u}' - \overline{\boldsymbol{u}'} \cdot \boldsymbol{\nabla} \boldsymbol{u}'\right)$$

$$\boldsymbol{\nabla} \boldsymbol{\cdot} \bar{\boldsymbol{u}} = \boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{u}' = \boldsymbol{0}$$

Restricted NonLinear (RNL)

RNL sustains turbulence

RNL exhibits VLSMs

https://vimeo.com/175726749

Who supports the streak in the outer layer?

Who feeds the roll circulation in the outer layer?

Maintenance of the roll in the outer layer

the roll in the outer layer is maintained by *in situ* torque production by Reynolds stresses

Within **RNL** we understand the regeneration cycle in the outer layer:

Farrell & Ioannou (2012), J. Fluid Mech., 708, 149-196

perturbations grow due to the parametric instability of the time-dependent streak

We demonstrated that NS and RNL show similar behavior, (mean flow profiles, one-point perturbation statistics, Reynolds stresses, perturbation spectra, etc...) and similar streak & roll energetics.

Conclusion:

In the outer layer, the *same* regeneration mechanism exists in both **NS** as in **RNL**.

for more details see:

Farrell et. al. (2016). A statistical state dynamics-based study of the structure and mechanism of largescale motions in plane Poiseuille flow. *J. Fluid Mech.*, **809**, pp. 290-315, doi:10.1017/jfm.2016.661

thanks!