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Streaks — Fluctuations — Rolls

Coherent roll-streak structure and turbulent fluctuations
actively participate in a self-sustaining cycle
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How is the loop closed!?




time-dependent

Proposed mechanism for energy transfer
to turbulent fluctuations ~

turbulent
fluctuations

Modal instabilities of the streak

[Wialefte 199/, Kawahara 2003, Hack & Moin 2018, ...]

Transient growth due to non-normality of linear operator &
[Schoppa & Hussain (2002), Farrell & loannou (2012), Giovanetti et al. (2017),...]

Neutral modes — vortex-wave interactions
[Hall & Smith (1988), Hall & Sherwin (2010),...]

Parametric instability (enhanced energy transfer due to time-varying U(y, z, 1))
[Farrell & loannou (2012), Farrell et al. (2016),...]



incompressible
Navier—Stokes

Linear and nonlinear processes

ou 1 ,
—+u-Vu=—-——Vp+vV-u
ot P

i //



Linear and nonlinear processes

incompressible
Navier—Stokes

Streaky base flow
decompose the flowas u =U+u', U = (u) U=U®,z,Hx U@,z,1) = Ju(x,y, z,0)dx /L,

(only x-component)
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Linear and nonlinear processes

Streaky base flow
decompose the flowas u =U+u', U = (u) U=U®,z,Hx U@,z,1) = Ju(x,y, z,0)dx /L,

(only x-component)

oU 1 , .
—+U-VU=—-—VP+vV°U-(u"-Vu') V-U=0
ot P -
Reynolds stresses
We don't linearise P it e for T
about a solution U! _ / / Irrerent choice Tor
=ZU)u'+ V() can make a process
We decompose the flow ot — included in Z(U)u’
and call “linear” anything linear nonlinear to become part of 4 (1)),

included in <g(lj)ll/ processes pProcesses
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Problem set-up: minimal turbulent channel

Half channel flow

constant pressure gradient

Solution by _
Rer = |84
Direct Numerical Simulation ot

h  wall-normal height Ut friction velocity



Problem set-up: minimal turbulent channel

Half channel flow

constant pressure gradient
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turbulent production

We run DNS for >600//u_ and keep all

Solution by e~ 4 snapshots of base flow U(y, z, 1)
Direct Numerical Simulation T

h  wall-normal height Ut friction velocity



Two ways to assess various mechanisms

Sensibly modify equations of motion

Interrogate DNS output .
to preclude some mechanisms

non-intrusive allows infer casual relationships



Modal instabilities of the streaky base flow

/11 + ia)l
growth rates

LUy, z,1) = U ! A > Ay >

Eigen-decomposition of &
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Modal instabilities of the streaky base flow

/11 + ia)l
: th rates
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Autocorrelation of U = base flow changes (at least) ~3 x slower than e-folding 1/4

= modal instabilities do have time to grow
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If modal instabilities are crucial for the self-sustaining cycle

the flow should laminarise without them...
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Suppressing modal instabilities of the streaky base flow

/11 + ia)l
LUy, z,0)=U ERE
/13 + ia)3

@ every instance we stabilise Z = if 4. > 0, replace with —4,

—/11+i0)1
~ —/Hr+1w
E.g., for 2 unstable modes: LUy, z,t) = U . ’ .
/13 + 1,
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Modally stable wall-turbulence

oU 1 , , ,
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ot P
/ fully coupled
stabilized operator — OCZ(U) u/ 1 /’/'(u /)

the only modification ot
to Navier-Stokes \/
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Modally stable wall-turbulence

oU 1 , , ,
—+U-VU==-—VP+yVU- (' -Vu) V.U=0
p@ , fully coupled
- U —_—
stabilized operator = OCZ(U) u/ 1 '/’/'(u/)

the only modification

to Navier-Stokes \at/v
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turbulence persists...

|5 Farrell & loannou (2012)

[Turbulence also persist if 1 is set to 0!]



Modally stable wall-turbulence

oU 1 , , ,
—+U-VU==-—VP+yVU- (' -Vu) V.U=0
p@ , fully coupled
- U —_—
stabilized operator = OCZ(U) u/ 1 '/’/(u/)

the only modification

to Navier-Stokes \at/v

[ DNS DNS with 7 |
1 . . . . 1.2

. and it’s not that different from the DNS — turbulent intensities only drop by ~10%
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So, modal instabilities are not crucial

for the self-sustaining cycle.




Non-modal transient growth

Since Ju’ - N (u')dV = 0, turbulent energy is governed by linear processes

_8u’ / u'(in+7T 24V
, , > T e [lu) Pav
U (t — t()) — u()

maximum

energy gain [Farrell & loannou (1996), Schmid (2007)]

How we can disentangle energy growth due to
transient growth and exponential instabilities?

We can use the stabilised operator §(U).
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Non-modal transient growth
frozen base flow U(y, z, t,)

—
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maximum
energy gain
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Non-modal transient growth
frozen base flow U(y, z, t,)

—
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[Note that streaky base flow U(y, z, ;) gives gains O(100). Base flows U(y) induce gain O(10).]

Del Alamo & Jimeénez 2006; Pujals et al. 2009; Cossu et al. 2009
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Non-modal transient growth
frozen & time-varying base flows
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Time-variability of the base flow U(y, z, f) does not enhance energy transfer to fluctuations for short times.
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Is transient growth sufficient to sustain turbulence!?



Turbulence with only transient growth operable %

/

u  —
500 simulations al — (UG, 20w + VW) i=12,....500
[

with a frozen snapshot U(y, z, ;) from DNS
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Turbulence with only transient growth operable

/

u  —
500 simulations al — (UG, 20w + VW) i=12,....500
[

with a frozen snapshot U(y, z, ;) from DNS

Turbulence persists in ~80% of the simulations.
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S

Turbulence with only transient growth operable

/

u  —
500 simulations ai — (UG, 20w + VW) i=12,....500
[

with a frozen snapshot U(y, z, ;) from DNS
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What differentiates the frozen base flows U(y, z, t;)

that sustain turbulence from those which laminarise?
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Spanwise streaky structure
turns out crucial for U(y, z, t;) to sustain
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these
laminarise

Precluding the ‘push-over’ mechanism due to spanwise base-flow shear leads to laminarization.

[for detailed experiments demonstrating this claim see our paper]
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summary

modal instabilities of streaks are not crucial

how does energy go from the mean flow to the perturbations?
simple answer: transient growth

what produces this transient growth?

the spanwise shear of the streak & Orr mechanism
(for thorougher discussion see the paper)

time-variability of the streak does not enhance energy transfer to fluctuations
but allows flow to “sample” independent transient-growth events resulting to the observed statistics

(not discussed here; see the paper)

realistic wall-turbulence can be exclusively supported by transient growth

}. Lozano-Duran et al. (2021) Cause-and-effect of linear mechanisms
=/ sustaining wall turbulence, J. Fluid Mech. (Accepted; arXiv:2005.05303)
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