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Planetary turbulence 

is anisotropic and inhomogeneous
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Fig. 4. ū and v̄ are plotted as a function of latitude for our nominal analysis.
Error bars are 2 standard deviations from the mean. For the ū plot, the error
bars are smaller than the box symbols, though actual errors may be larger due
to systematics. ū is also compared with the zonal velocity profile of Porco et al.
(2003). There is good agreement between the two curves, except for discrepan-
cies at the sharpest peaks, due to our relatively larger grid spacing.

as well as the variation of zonal velocity with latitude:

(4)
(

dū

dy

)

n

= ūn+1 − ūn−1

yn+1 − yn−1
.

4. Results

4.1. Rate of energy conversion

Fig. 4 shows ū and v̄ as a function of latitude for our nom-
inal analysis, with ū overplotted on the zonal velocity profile
of Porco et al. (2003). There is fairly good agreement between
these two curves, despite the fact that Porco et al. used a line-by-
line correlation method, rather than a feature tracker, to deter-
mine ū. The largest differences between the two curves exist at
the most extreme ū values where our wind profile is smoothed
slightly due to our coarser grid resolution. v̄ is slightly offset
from zero, with a mean value of −0.2 m s−1. Although this may
be a real effect, a non-zero v̄ has not been noted by previous
researchers and could be induced by a small navigation error,
which we discuss further in Section 5.7.

Fig. 5 shows dū/dy, u′v′, and their product as a function
of latitude. We note a positive correlation between the signs of
these two parameters, implying a flow of energy from eddies to
zonal flow. The correlation coefficient of the bottom curves is
∼0.86.

Following the convention of Holton (2004), the rate of trans-
fer of eddy kinetic energy (K ′) to zonal mean kinetic energy
(K̄) is defined as

(5)[K ′ • K̄] ≡
〈
ρu′v′ dū

dy

〉
,

where ⟨ ⟩ represents a global average. Our measurements allow
us to estimate the product u′v′ dū/dy, which, when averaged

Fig. 5. On the bottom plot, u′v′ and dū/dy are plotted together as a function
of latitude. u′v′, corresponding to the right of the two axes, is plotted as dots
with error bars corresponding to 2 standard deviations from the mean. dū/dy

is shown as a solid line and corresponds to the left of the two axes. There is a
distinct positive correlation between the two curves, and their correlation coef-
ficient is 0.86. The top plot shows the product u′v′ × dū/dy.

Table 1

Type of analysis Correlation between
dū/dy and u′v′

Power/mass
(10−5 W kg−1)

2σ error

Conservative 0.86 7.1 0.66
Conservative, no ovals 0.87 7.1 0.76
Conservative, binned 0.87 7.3 0.59
More complete 0.88 12.3 0.59
More complete, no ovals 0.87 12.3 0.80
More complete, binned 0.87 12.4 0.70
Two rotations, cons. 0.74 6.0 1.4
Artificial shear 0.56 0.33 0.37
Ingersoll et al. (1981) 0.4–0.5 15–30

over the surface yields the power per unit mass transferred from
eddies to zonal mean flow. Letting n refer to a given latitude bin
and N be the total number of bins, this power per unit mass is
given by

(6)power/mass ≈ 1
∑N

n=1 cosφn

N∑

n=1

(
dū

dy

)

n

(u′v′ )n cosφn.

For our nominal analysis, this quantity is equal to 7.1 ×
10−5 W kg−1, compared to a value of 15–30 × 10−5 W kg−1

found by Ingersoll et al. (1981). We performed several, slightly
different analyses, which will be discussed in Section 5, and the
power per unit mass derived from all analyses can be viewed in
Table 1.

In order to estimate the total power transfer from eddies to
zonal flow, it is necessary to know the amount of mass involved
in the transfer. Multiplying power per unit mass by the mass
per unit area dP/g, one can obtain the total power per unit area
transferred—a number that can be compared to the total power
per unit area emitted by the planet. Unfortunately, the mass in-
volved in the transfer is not well constrained; dP is uncertain
to perhaps an order of magnitude. At a minimum, the trans-
fer includes the main visible cloud deck, which has been esti-
mated to depths just short of 1 bar (Atreya and Donahue, 1979;
Kunde et al., 1982; Banfield et al., 1998) or to between 1 and

(Salyk et. al. 2006)
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is shown as a solid line and corresponds to the left of the two axes. There is a
distinct positive correlation between the two curves, and their correlation coef-
ficient is 0.86. The top plot shows the product u′v′ × dū/dy.

Table 1

Type of analysis Correlation between
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zonal flow, it is necessary to know the amount of mass involved
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O(10)  theoretical explanations for 
jet formation

most of them disagree in a large 
extent with each other 

despite the fact that everybody can produce 
jets numerically in simple models

(I won’t attempt to survey)



�t� + u · �� + �v = �r� +
�

� �

u = (u, v) = (��y�, �x�) stochastic 
forcing

linear 
dissipation 

at rate r

r · u = 0

� = (0,�)

β is the gradient of 
the planetary vorticity

⇣ẑ

ξ is statistically 
homogeneous

we have two non-
dimensional parameters

"k2f/r
3 = 106

�/(kfr) = 67

� = (� � u) · ẑ = ��

barotropic vorticity equation on a β-plane



what does the forcing look like 
and what does it model?

Q̂(k)

⇠(x, t)

isotropic 
[≈Jupiter]

anisotropic 
[≈Earth]

modeling energy injected 
to the barotropic mode 
by baroclinic instability 

modeling energy injected 
to the barotropic mode 

by convection 
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barotropic β-plane turbulence exhibits 
large-scale structure formation

"k2f/r
3 = 106

�/(kfr) = 67

statistically  
homogeneous forcing 

(no inhomogeneity 
is imposed by the forcing) 

any random flow 
inhomogeneities organize the 
turbulence in a manner so that 

they are reinforced

we observe: 
• jet emerge 
• jets appear to change much 

slower compared to the 
eddies 

• jet have a particular structure 
• jets may merge

http://www.youtube.com/watch?v=ZtzW25NooDk
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Fig. 4 shows ū and v̄ as a function of latitude for our nom-
inal analysis, with ū overplotted on the zonal velocity profile
of Porco et al. (2003). There is fairly good agreement between
these two curves, despite the fact that Porco et al. used a line-by-
line correlation method, rather than a feature tracker, to deter-
mine ū. The largest differences between the two curves exist at
the most extreme ū values where our wind profile is smoothed
slightly due to our coarser grid resolution. v̄ is slightly offset
from zero, with a mean value of −0.2 m s−1. Although this may
be a real effect, a non-zero v̄ has not been noted by previous
researchers and could be induced by a small navigation error,
which we discuss further in Section 5.7.

Fig. 5 shows dū/dy, u′v′, and their product as a function
of latitude. We note a positive correlation between the signs of
these two parameters, implying a flow of energy from eddies to
zonal flow. The correlation coefficient of the bottom curves is
∼0.86.

Following the convention of Holton (2004), the rate of trans-
fer of eddy kinetic energy (K ′) to zonal mean kinetic energy
(K̄) is defined as
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Fig. 5. On the bottom plot, u′v′ and dū/dy are plotted together as a function
of latitude. u′v′, corresponding to the right of the two axes, is plotted as dots
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is shown as a solid line and corresponds to the left of the two axes. There is a
distinct positive correlation between the two curves, and their correlation coef-
ficient is 0.86. The top plot shows the product u′v′ × dū/dy.

Table 1

Type of analysis Correlation between
dū/dy and u′v′

Power/mass
(10−5 W kg−1)

2σ error

Conservative 0.86 7.1 0.66
Conservative, no ovals 0.87 7.1 0.76
Conservative, binned 0.87 7.3 0.59
More complete 0.88 12.3 0.59
More complete, no ovals 0.87 12.3 0.80
More complete, binned 0.87 12.4 0.70
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Artificial shear 0.56 0.33 0.37
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over the surface yields the power per unit mass transferred from
eddies to zonal mean flow. Letting n refer to a given latitude bin
and N be the total number of bins, this power per unit mass is
given by

(6)power/mass ≈ 1
∑N

n=1 cosφn

N∑

n=1

(
dū

dy

)

n

(u′v′ )n cosφn.

For our nominal analysis, this quantity is equal to 7.1 ×
10−5 W kg−1, compared to a value of 15–30 × 10−5 W kg−1

found by Ingersoll et al. (1981). We performed several, slightly
different analyses, which will be discussed in Section 5, and the
power per unit mass derived from all analyses can be viewed in
Table 1.

In order to estimate the total power transfer from eddies to
zonal flow, it is necessary to know the amount of mass involved
in the transfer. Multiplying power per unit mass by the mass
per unit area dP/g, one can obtain the total power per unit area
transferred—a number that can be compared to the total power
per unit area emitted by the planet. Unfortunately, the mass in-
volved in the transfer is not well constrained; dP is uncertain
to perhaps an order of magnitude. At a minimum, the trans-
fer includes the main visible cloud deck, which has been esti-
mated to depths just short of 1 bar (Atreya and Donahue, 1979;
Kunde et al., 1982; Banfield et al., 1998) or to between 1 and
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At steady state a non-zero zonal mean flow requires 
non-zero mean Reynolds stress divergence

But how does a homogeneous stochastic excitation produce 
inhomogeneous Reynolds stress divergence?

Reynolds stress 
divergence



various β-plane turbulence flows 
at statistically steady state: 

homogeneous — traveling waves — zonal jets
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the homogeneous turbulent state and its stability 
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relation with jet mergers 
summary



barotropic vorticity equation on a β-plane

�t� + u · �� + �v = �r� +
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�tZ + U · �Z + �V = � �u� · �� �� � rZ

�t�
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�
� �

barotropic vorticity equation on a β-plane

with

�(x, t) = ��(x, t)�� �� �
Z(x,t)

+ � �(x, t)Using decomposition:

average over the zonal direction x  

Reynolds over an intermediate time scale or length scale 
(larger than the time scale or length scale of the turbulent motions 
and smaller than the time scale or length scale of mean field)

� · �

A(U) � �U · � +
�
(�U) � ��x

�
��1 � r

def
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NL system

triad interactions in wavenumber space
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QL system

restrict nonlinearity by not allowing 
eddy-eddy      eddy interactions (QL)

QL allows only the direct, two-way interaction         
of the eddies and the mean flow 

QL does NOT include turbulent cascades 

QL does NOT include PV mixing

�tZ + U · �Z + �V = � �u� · �� �� � rZ

�t�
� = A(U) � � +

�
� �

2 out of the 
O(10) theories}



we derive from QL a closed system for the evolution 
of the 1st and 2nd statistical moments of the flow:

S3T system

Z(x, t) = h⇣(x, t)i , C(xa,xb, t) = h⇣ 0(xa, t)⇣
0(xb, t)i

if 

T ( • ) = h • i = ensemble average over forcing realizations

1st moment 2nd moment



�tZ + U · �Z + �V = R(C) � rZ

�tCab = [Aa(U) + Ab(U)] Cab + �Qab

Z(x, t) = h⇣(x, t)i , C(xa,xb, t) = h⇣ 0(xa, t)⇣
0(xb, t)i

R(C) ⌘ �hu0 ·r⇣ 0i = �r ·

ẑ

2
⇥ (ra�

�1
a +rb�

�1
b )Cab

�

a=b

the spatial covariance of the statistically 
homogeneous stochastic forcing

(the Reynolds stresses are given as a linear function of C)

Qab ⌘ Q(xa � xb)

Cab ⌘ C(xa,xb, t)

with

S3T system

def

def

def



Neglect of the eddy-eddy term in NL is equivalent with 
neglect of third and higher-order statistical moments.

S3T system

�tZ + U · �Z + �V = R(C) � rZ

�tCab = [Aa(U) + Ab(U)] Cab + �Qab



The S3T system 

 autonomous  
 deterministic (stochasticity has been averaged out) 
 admits fixed point solutions consisting of a mean flow 

and second-order eddy statistics 
 allows the study of the stability of such equilibrium 

solutions                         

⇣
U

e(x), Ce(xa,xb)
⌘

(the theory)
S3T system

�tZ + U · �Z + �V = R(C) � rZ

�tCab = [Aa(U) + Ab(U)] Cab + �Qab



Lorenz’s vision

Ed Lorenz 

S3T is a first step towards this new system of equations

“More than any other theoretical procedure, numerical 
integration is also subject to the criticism that it yields 
little insight into the problem. The computed numbers 

are not only processed like data but they look like data, 
and a study of them may be no more enlightening than a 
study of real meteorological observations. An alternative 

procedure which does not suffer this disadvantage 
consists of deriving a new system of equations whose 

unknowns are the statistics themselves.”

The Nature and Theory of the General Circulation of the Atmosphere, 
by E. N. Lorenz, 1967
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for statistically homogeneous forcing there exists always 
a statistically homogeneous S3T equilibrium 

with no mean flow
(for any ε, β and 
homogeneous Q)U

e = 0 , Ce(xa � xb) =
"Q

2r
zero mean flow + non-zero second-order eddy statistics



for statistically homogeneous forcing there exists always 
a statistically homogeneous S3T equilibrium 

with no mean flow
(for any ε, β and 
homogeneous Q)U

e = 0 , Ce(xa � xb) =
"Q

2r

perturbations (             ) about any S3T equilibrium satisfy the 
linearized S3T equations:

�Z, �C

eigenanalysis of this system determines the stability of 
⇣
U

e(x), Ce(xa,xb)
⌘

def
�A = A(Ue + �U) � A(Ue)

�t�Z = A(Ue) �Z + R(�C)

�t�Cab = [Aa(Ue) + Ab(U
e)] �Cab + (�Aa + �Ab)C

e
ab

�t�Z = A(Ue) �Z + R(�C)

�t�Cab = [Aa(Ue) + Ab(U
e)] �Cab + (�Aa + �Ab)C

e
ab

zero mean flow + non-zero second-order eddy statistics

we linearized about 
a turbulent state!



for statistically homogeneous forcing there exists always 
a statistically homogeneous S3T equilibrium 

with no mean flow
(for any ε, β and 
homogeneous Q)U

e = 0 , Ce(xa � xb) =
"Q

2r

perturbations (             ) about any S3T equilibrium satisfy the 
linearized S3T equations:

�Z, �C

eigenanalysis of this system determines the stability of 
⇣
U

e(x), Ce(xa,xb)
⌘

hydrodynamic 
stability

def
�A = A(Ue + �U) � A(Ue)

�t�Z = A(Ue) �Z + R(�C)

�t�Cab = [Aa(Ue) + Ab(U
e)] �Cab + (�Aa + �Ab)C

e
ab

�t�Z = A(Ue) �Z + R(�C)

�t�Cab = [Aa(Ue) + Ab(U
e)] �Cab + (�Aa + �Ab)C

e
ab

zero mean flow + non-zero second-order eddy statistics

we linearized about 
a turbulent state!



how does a zero jet state become unstable?

�t�Z = A(Ue) �Z + R(�C)

�t�Cab = [Aa(Ue) + Ab(U
e)] �Cab + (�Aa + �Ab)C

e
ab

for certain parameters eddies have the tendency to reinforce 
mean flow inhomogeneities (even if mean flow is infinitesimal!)

proof of concept
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acts as

the Reynolds stresses will act so as 
to reinforce or diminish the infinitesimal mean flow

�k2
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unstable homogeneous 

S3T equilibrium
stable homogeneous 

S3T equilibrium
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(completely different exegesis  — S3T does not include turbulent cascades!)
slide 28
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for which perturbation mean flow wavevectors (nx,ny) 
does S3T predicts that Reynolds stresses 

will act anti-diffusively?
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S3T predictions for jet formation 
and equilibration at finite amplitude
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(e ) S3Tz U (y, t ) , ε/ε c ,z=20
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isotropic forcing 
[≈Jupiter]
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Zonal jet S3T equilibria

U

e(x) =
⇣
U

e(y), 0
⌘

, C

e(xa � xb, ya, yb)

Developed numerical methods for 

i) determining such equilibria with great accuracy and  

ii) studying their S3T stability
[don’t forget that      points in each x,y direction 

result to a state vector of              !]
N

O(N4)



ny

ε
/
ε
c,
z

0 1 2 3 4 5 6 7 8 9 10 11 12

100

101

102

103
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and their domain of attraction 

merging of jets as ε increases 

finite amplitude equilibration at 
small supercriticality is 
described through the universal 
Eckhaus instability of the G-L 
amplitude equation

Stability analysis of 
inhomogeneous turbulent 
states with zonal jets predicts: 

(= number of jets for a 
2π x 2π channel)

Stability of zonal jet S3T equilibria 
to zonal jet perturbations
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unstable
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For higher energy input rates equilibria 
become S3T unstable and move 
towards the left of the diagram

stable
unstable
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The jet structure therefore is not a result of cascades 
nor nonlinear PV mixing (PV staircases)
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Conclusions
S3T generalizes the hydrodynamic stability of Rayleigh and allow us to study 
the stability of turbulent flows 

S3T makes detailed analytical predictions for the emergence and form of 
large-scale structure in planetary turbulence  

S3T predicts that the transition from a homogeneous to an inhomogeneous 
turbulent state occurs through a bifurcation of the statistical state dynamics 
(homogeneous turbulence is unstable) 

S3T predicts the equilibrated structure of the emergent large-scale flow 

The stability of inhomogeneous turbulent equilibria (e.g. the climate state of 
the Earth or Jupiter) can be studied within S3T framework. 

Lorenz was right — this new system of equations provides more insight than 
numerical simulations



thank you


