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formulation of the theory (S3T)
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comparison of S3T predictions with direct numerical
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stability of inhomogeneous turbulent states &
relation with jet mergers

summary



structure of talk

2 Introduction to the physical problem



Planetary turbulence
'S anisotropic and Inhomogeneous

banded Jovian jets polar front jet

NASA/Goddard Space Flight Center

NASA/Cassini Jupiter Images



Jets appear "steady” and are edady-driven

‘steady”

eddy-driven

observed Jovian winds

Cassini 2000

Voyager 1979-1980
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O(10) theoretical explanations for
jet formation

most of them disagree in a large
extent with each other
despite the fact that everybody can produce
jets numerically in simple models

(I won'’t attempt to survey)



barotropic vorticity equation on a B-plane
OiC+u-V(C+ fo=—r(+eg
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(€(xa,t)E(xp, 1)) = Q(xq —xp) 6(t — 1)

Bis the gradient of we have two non-

oo dimensional parameters
the planetary vorticity 2p 5
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spectrum of
the covariance

what does the forcing look like
and what does it model?

anisotropic
[~Earth]
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modeling energy injected
to the barotropic mode
by baroclinic instability

ISotropic
[=Jupiter]
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modeling energy injected
to the barotropic mode

by convection



barotropic B-plane turbulence exhibits
large-scale structure formation

U(y,t=753)
N

statistically
homogeneous forcing

(no inhomogeneity
is imposed by the forcing)

any random flow
inhomogeneities organize the
turbulence in a manner so that
they are reinforced

we observe:

* et emerge
1.0 ® Jets appear to change much
— slower compared to the

3~ 10t —
= * Jet have a particular structure
B/(kgr) = 67 * jets may merge

http://www.youtube.com/watch?v=ZtzZW25NooDk



remember the observations:
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in a barotropic model zonal mean flow evolves under
ou _
E — U/C/ — TU
™
Reynolds stress

S ! s/
— _ayu v divergence

At steady state a non-zero zonal mean tlow requires
non-zero mean Reynolds stress divergence

But how does a homogeneous stochastic excitation produce
iInhomogeneous Reynolds stress divergence?



various -plane turbulence tlows
at statistically steady state:

homogeneous — traveling waves — zonal |ets
B/(kgr) =67

5 x 103 5 x 104

this suggests that there is some kind of transition as € is increased

[ snapshots of the streamfunction ((x,{) with instantaneous zonal mean flow U(y,1) ]
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» formulation of the theory (S3T)



barotropic vorticity equation on a B-plane

0 +u-V(+ fv=—r(++e&



barotropic vorticity equation on a B-plane

Using decomposition:  {(x,t) = ({(x,t)) + ('(x,1)
N——
Z(x,t)

WZ+U-VZ+pV =—("-V{)-rZ
0, = AU+ (U - V) —u' -V + Veé
with
A(U)Z ~U -V + [(AU) - Bo,| A~ =

< > <: average over the zonal direction x

Reynolds over an intermediate time scale or length scale

(larger than the time scale or length scale of the turbulent motions
and smaller than the time scale or length scale of mean field)



NL system

Z+U-VZ+pBV =—-{{ -V{)—rZ
0i¢" = AU) "+ (' - V() —u' - V(' +ved

triad interactions in wavenumber space

Z(k, +k5) Z(k, +k,) Lk +k,) E(k, +Ks)

D Cky)  Z(ky) 2(k,) Z(k;) Cky) Ck)) £(k,)



NL system

restrict nonlinearity by not allowing

eddy-eddy = eddy Iinteractions (QL)

Z+U-VZ+pV =—("-V{)—-rZ

0 = A(U) ¢’ + (U St TVC + V56

triad interactions in wavenumber space

Z(k, +k,) Z(k, +Kk,) C(k, +k,)

£(k,) Cky)  Z(ky) Z(k,) Z(k)) Ek,) 4



QL system

restrict nonlinearity by not allowing (QL)
eddy-eddy = eddy Iinteractions

0Z+U-NZ+BV =—{(u-V{)—rZ
0¢" = A(U) (" + Vel

QL allows only the direct, two-way interaction
of the eddies and the mean flow

2 out of the

QL does NOT include turbulent cascades
}0(10) theories

QL does NOT include PV mixing



S3T system

if

(®) =ensemble average over forcing realizations

we derive from QL a closed system for the evolution
of the 1st and 2nd cumulants of the flow:

Z(x,t) = (C(x,1)) , C(Xa;xp,1) = (("(Xa,1)C (X5, 1))

1st cumulant 2nd cumulant



S3T system

0:Cp = [AQ(U) + Ab(U)] Cab +Qup

with
Cab d;f C(Xaa Xby t) — <<:,(Xa7 t)C,(Xba t)>

def .. the spatial covariance of the statistically
Qup = Q(X, — Xp) =3 - -
ab ( a b) homogeneous stochastic forcing

R(C)E (o - V() = -V - g X (VoA + VoA DOy

(the Reynolds stresses are given as a linear function of C)



S3T system

0:Cp = [AQ(U) + .Ab(U)] Cab +Qup

Neglect of the eddy-eddy term in NL is equivalent with
neglect of third and higher-order cumulants.



S3T system
(the theory)

0:Cp = [AQ(U) + .Ab(U)] Cab +Qup

The S3T system

& autonomous

& deterministiC (stochasticity has been averaged out)

e admits fixed point solutions consisting of a mean flow
and second-order eddy statistics (Ue(X),Ce(Xa,Xb))

& allows the study of the stability of such equilibrium
solutions



| orenz’s vision

“More than any other theoretical procedure, numerical
Integration is also subject to the criticism that it yields
little insight into the problem. The computed numbers
are not only processed like data but they look like data,
and a study of them may be no more enlightening than a
study of real meteorological observations. An alternative
procedure which does not suffer this disadvantage
consists of deriving a new system of equations whose
unknowns are the statistics themselves.”

The Nature and Theory of the General Circulation of the Atmosphere,
by E. N. Lorenz, 1967

S3T is a first step towards this new system of equations
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> the homogeneous turbulent state and its stability



for statistically homogeneous forcing there exists always
a statistically homogeneous S3T equilibrium
with no mean flow

ﬂ (for any g, B and

U=0, C%xa—x%p) = 9 homogeneous Q)

zero mean flow + non-zero second-order eddy statistics

perturbations (62, §C') about any S3T equilibrium satisfy the
inearized S3T equations:

we linearized about
a turbulent state!

0,07 = A(U®)6Z + R(6C)
010Cap = [Aa(U®) + Ap(U)] 6Cap + (044 + 0.A4,)CS,

SAZ A(UC + 6U) — A(U®)

eigenanalysis of this system determines the stability of (Ue(X), Ce(Xa,Xb))



for statistically homogeneous forcing there exists always
a statistically homogeneous S3T equilibrium
with no mean flow

ﬂ (for any g, B and

U=0, C%xa—x%p) = 9 homogeneous Q)

zero mean flow + non-zero second-order eddy statistics

perturbations (62, §C') about any S3T equilibrium satisfy the
inearized S3T equations:

hydrodynamic
stability we linearized about

675(52 — A(Ue) 57 4 R((SC) a turbulent state!
0,6Cap = [Aa(U®) + Ap(U®)] 6Cyp + (0. A, + 6.A,)C,

SAZ A(UC + 6U) — A(U®)

eigenanalysis of this system determines the stability of (Ue(X), Ce(Xa,Xb))



proof of concept

how does a zero jet state become unstable?

for certain parameters eddies have the tendency to reinforce
mean flow inhomogeneities (even if mean flow is infinitesimal!)

0,67 = A(U®) 67 + R(5C)

v 'z, y) & u'(z,y) u'v’ —0y u'/




the

Reynolds stresses wi

to reinforce or diminish the infinr

unstable homogeneous
S3T equilibrium

| act so as

‘esimal mean flow

stable homogeneous
S3T equilibrium

turbulence
acts as

anti-diffusion

diffusion
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comparison of S3T predictions with direct numerical
simulations and verification of the theory

(bit tired? the rest will go fast — don’t worry)



S3T predictions for jet formation

and equilibration at finite amplitude
(best case)

anisotropic forcing Isotropic forcing
[~Earth] [~Jupiter]

slide 1



S3T predictions for jet formation
and equilibration at finite amplitude

anisotropic forcing
&l€z=1.5 |~Earth] gl€s. = 20
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statistical instabilities that are predicted by S3T show up in
single NL/QL realizations of the flow

emergent instabilities grow and reach finite amplitude



S3T predictions for jet formation
and equilibration at finite amplitude

isotropic forcing

[=Jupiter]
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stability of inhomogeneous turbulent states &
relation with jet mergers



Zonal jet S3T equilibria

U(x) = (U°(9).0) » C*(2a = 20, Yar o)

zonal jet mean flow + non-zero zonally homogeneous 2nd-order eddy statistics

Developed numerical methods for
1) determining such equilibria with great accuracy and
1) studying their S3T stability

[don’t forget that [V points in each X,y direction
result to a state vector of O(IN*)1]



Stability of zonal jet S3

equilibria

to zonal jet perturbations

Stability analysis of
INnhomogeneous turbulent
states with zonal jets predicts:

existence of multiple equilibria
and their domain of attraction

merging of jets as € increases

finite amplitude equilibration at
small supercriticality is
described through the universal
Eckhaus instability of the G-L
amplitude equation
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Stability of zonal jet S3

equilibria

to zonal jet perturbations

Stability analysis of
INnhomogeneous turbulent
states with zonal jets predicts:

existence of multiple equilibria

and their domain of attraction
o | <

merging of jets as g increases

finite amplitude equilibration at

small supercriticality is

described through the universal

Eckhaus instability of the G-L
amplitude equation

For higher energy input rates equilibria
become S3T unstable and move
towards the left of the diagram
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Structure of zonal jet S3T equilibria

E = 260,Z E = 15086,Z

0 2 4 ™
0 2 Y 4 6 (7 5 . d2U/dy2 ~ 0
Rayleigh-Kuo
hydrodynamic stability
criterion

The jet structure therefore is not a result of cascades
nor nonlinear PV mixing (PV staircases)
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e = 150¢e.,

m/s

Planetographic latitude (degrees) -2 I I |
(Sanchez-Lavega et.al., 2008) 0 2 y 4 6

e = 800¢. , e = 10000¢e, ,

0 2 4 ™
0 2 Y 4 6 (7 5 . d2U/dy2 ~ 0
Rayleigh-Kuo
hydrodynamic stability
criterion

The jet structure therefore is not a result of cascades
nor nonlinear PV mixing (PV staircases)
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> summary



Conclusions

S3T generalizes the hydrodynamic stability of Rayleigh and allow us to study
the stability of turbulent flows

S3T makes detailed analytical predictions for the emergence and form of
large-scale structure in planetary turbulence

S3T predicts that the transition from a homogeneous to an inhomogeneous
turbulent state occurs through a bifurcation of the statistical state dynamics
(homogeneous turbulence is unstable)

S3T predicts the equilibrated structure of the emergent large-scale flow

The stability of inhomogeneous turbulent equilibria (e.g. the climate state of
the Earth or Jupiter) can be studied within S3T framework.

Lorenz was right — this new system of equations provides more insight than
numerical simulations
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