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build intuition through
climate-model hierarchy




A dichotomy

theory climate science

"statistical investigations”
look for patterns/correlations
in obs or climate model output

study dynamical laws
(differential equations)
and the consequences they imply
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A dichotomy

theory climate science

"statistical investigations”
look for patterns/correlations
in obs or climate model output

study dynamical laws
(differential equations)
and the consequences they imply
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Goal: narrow the gap between theory and
[Held 2005, BAMS]

inform climate model development
and interpretation

realistic models

conceptual models

easy to understand closer to
and build physical intuition \// reality
motivate conceptual model studies
from climate model output/observations



Goal: narrow the gap between theory and
[Held 2005, BAMS]

use conceptual models to inspire
e.g., design of cruises to test hypotheses

realistic models

conceptual models

easy to understand closer to
and build physical intuition \// reality
use theory to extract dynamics
from observations



I'll give an example:

Response of Southern Ocean to winds increase.



winds (mainly) drive the Antarctic Circumpolar Current

GODAS Wind Stress, 1982-2004 Annual .
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strong westerly winds blow over the Southern Ocean transferring
momentum through wind stress at the surface



winds over Southern Ocean are getting stronger
 JRES5-do 1960-2018
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how will the Antarctic Circumpolar Current respond?

mean zonal wind (m/s)

does doubling the winds imply double ACC the transport?
not always — “eddy saturation”




what's eddy saturation?

When the total time-mean mass transport of a current
is relatively insensitive to wind stress strength.
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transport =
a "'measure” of the strength of the current;
how much water the current carries per sec

Instead, the extra work done by increasing wind goes to mesoscale eddies.

Eddy saturation is seen in

o " "
eddy-resolving "ocean models".
(some hints also in obs.)

eddy saturation

higher
c —> “emerges”

resolution

[Other examples: Hallberg & Gnanadesikan 2001, Tansley & Marshall 2001,
Hallberg & Gnanadesikan 2006, Hogg et al. 2008, Nadeau & Straub 2009, 2012,
Farneti et al. 2010, Meredith et al. 2012, Morisson & Hogg 201 3, Abernathey &
Cessi 2014, Farneti et al. 2015, Nadeau & Ferrari 2015, Marshall et al. 2017.]



the textbook explanation:
how eddies lead to eddy saturation!

westerly winds
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baroclinic eddies
restratify isopycnals

wind increase
slopes the isopycnals

‘E 1000
-
= after
before o
9
2000 surfaces of
constant
density
after before
-65S -558 -45S -35S
latitude
remember

jets & fronts
Amelie's talk



the textbook explanation:
how eddies lead to eddy saturation!

westerly winds

KoJolo

baroclinic eddies
restratify isopycnals

wind increase
slopes the isopycnals

before after

2000 surfaces of

constant

density

after before

-65S -55S -45S -35S
latitude

This explanation crucially relies on density varying with depth.
(gfd-jargon: baroclinic)

Role of bathymetry!?



however, simple unstratified models reveal
a hew possible mechanism
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role of bathymetry |
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Munk & Palmen (1951)

Momentum balance in the Southern Ocean is
"applied at the bottom [...] where ridges lie."

topographic form stress

> East




role of bathymetry |
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http://vimeo.com/55486114

flat bottom

role of bathymetry I

Bathymetry enhances
baroclinic instability growth (in situ).

equilibration ~100 yr
isosurfaces of potential temperature
colors from 0 °C to 8 °C

Abernathey & Cessi (2014)
[See also Youngs et al. (2017)]

ridge



what's the plan

Assess the relative role of
barotropic versus baroclinic dynamics
in establishing "eddy saturated” ocean states.

Use a model
with varying
number of fluid layers.

wind stress

north —
free

east surface

- 5, fuid

up

interface

bathymetry



the "spherical-cow"-version

sea-surface speed
in ACCESS-OM2 model

at 0.1° resolution



model setup

wind stress | - bathymetry
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the "spherical-cow"-version

of the ACC

surface
relative vorticity
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note the standing meander

(remember Amelie's talk on Tue)




vary the wind stress amplitude To
and see how the time-mean zonal transport changes



time-mean transport [Sv}

mean ACC transportVs wind stress
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time-mean transport [Sv}

mean ACC transportVs wind stress
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time-mean transport [Sv}

mean ACC transportVs wind stress

—t
o
N

i
-
OV

p—t
-
N

p—d
-
—t

p—t
-
o

103 10— 10~ 10° 10
wind stress maximum Ty [N m_2]

>3-layer configurations are the same as 2-layers
(as fas as the mean zonal transport is concerned)



time-mean transport [Sv]

mean ACC transportVs wind stress
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how does the flow look like in the four flow regimes?



yeap, this slide | -layer config 2-layer config

is too much speed top-layer speed
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yeap, this slide | -layer config 2-layer config 2-layer config

is too much speed top-layer speed depth averaged speed
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momentum balance

depth-integrated time-mean zonal momentum balance

wind - topographic bottom drag
stress —  form stress —|— (BD)
(WS) (TFS)
ahbot
X Phot Ix
1-layer setup (BT) 2-layer setup (BC)
1.00 1.00
0.75 0.75
—e— TFS/WS
0.50 0.50 —— BD/WS

0.25 0.25

0.00 1 0.00

wind stress maximum 7 [N m~?] wind stress maximum 7 [N m~?]

Almost all momentum is balanced by topographic form stress
(except when flow transitions to "upper branch").



standing—transient kinetic energy decomposition

1-layer setup (BT)

wind stress maximum 7p [N m_z]

BT config
has transients
only in Il & Il
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Despite the great differences in flow fields,
both BT and BC configs show same mean zonal transport for regimes Il & IV.

—»— total kinetic energy
standing kinetic energy
transient kinetic energy

standing flow
dominates
in BT config;

transient flow
dominates in BC



standing—transient contribution to TFS

( ):horizontal average

— <pbot axhbot> — <pb0t axhbot>

: time average

only standing flow contributes to
time-mean topographic form stress

how transients affect
topographic form stress!?



how transients lead to time-mean topographic form stress?

= transient eddies appear
sea surface height <  downstream of topography

ol
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have an asymmetric
signature on SSH
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induce asymmetric time-mean pressure
upstream & downstream the ridge
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[Same phenomenology as that
described by ]



take home message

when transient eddies exist (both in barotropic or baroclinic configs)

the mean zonal transport becomes eddy saturated
[transport is much less sensitive to wind stress increase]

eddy saturation occurs due to
transient eddies shaping the standing flow
to produce topographic form stress that balances the wind stress
(regardless of the process from which transient eddies originate)

proposal:

our results show that the (oftentimes ignored) barotropic flow-component
plays an important role in setting up the ACC transport

[in agreement with recent obs. evidence, e.g.,, Thompson & Naveira Garabato 2014,
Pena-Molino et al. 2014, Donohue et al. 2016 (cDrake exp)]



take home message

eddy saturation occurs due to
transient eddies shaping the standing flow
to produce topographic form stress that balances the wind stress
(regardless of the process from which transient eddies originate)

proposal:



what's next?

check what holds in a global ocean model?
use SAMx perturbation experiments!?

another way of changing wind forcing!?




but really, if you only want to take one thing back home

(e.g., airline luggage restrictions)
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