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planetary turbulence

most of the energy of the flow is in large-scale coherent jets and vortices

not at the largest allowed scale (as 2D inverse energy cascade might imply)
arrest of the cascade by jets

banded Jovian jets polar front jet

NASA/Cassini Jupiter Images NASA/Goddard Space Flight Center



boundary layer turbulence

Measurement
array

observing boundary layer in
Utah salt lake

Hutchins & Marusic 2007



large-scale motions in wall-bounded turbulence
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The problem to be addressed:

Understand how these specific structures arise
and how are they maintained



outline

* new framework for studying turbulent flows
(statistical state dynamics)

begin with

» zonal jet formation in planetary atmospheres e

(familiarise with the basic concepts/ideas)

then discuss how SSD illuminates

o streak-roll formation & SSP
IN wall-bounded turbulence




zonal jet formation in forced-dissipative barotropic 5 plane

zonal mean u vorticity
U(y,t=753)

1

statistically homogeneous
small-scale forcing

(forcing does not impose
any inhomogeneity)

random flow inhomogeneities
organize the turbulence
so that they are reinforced

we observe:

e |et emerge

e jets appear to change much
slower compared to the
eddies

* jets may merge

non-dimensional 8kfz//,t3 = 10° (="amplitude of forcing")

parameters ﬂ/(kfﬂ) — 67 (="rotation of the planet")

S gradient of Coriolis parameter, u linear drag, € energy injection rate by the forcing; kr characteristic wavenumber of forcing



various S-plane flow regimes tlows
at statistically steady state:

homogeneous — traveling waves — zonal |ets
B/(kgr) = 67

5 x 103 5 x 104

this suggests that there is some kind of transition as € is increased

[ snapshots of the streamfunction together with instantaneous zonal mean flow U(y,1) ]



claims

I. The underlying dynamics of structure formation lies in the

Interaction of turbulent eddies with mean flows
(what part of the flow is the "'mean flow"?)

II. Often, structure formation has analytic expression
only in the Statistical State Dynamics (SSD)

(the dynamics that govern the statistics of the flow
rather than the dynamics governing single flow realizations)

III. Because of (I) a second-order closure of the SSD is adequate
(given that we decompose our fields into mean+eddies adequately)



Statistical State Dynamics (SSD)

1. split the flow variables into: mean + eddy’

u(x, t) — u(x, f) + ul(x, [) [mean is not a time-mean!]

2. form the hierarchy of same-time statistical moments/cumulants

u(x,t , uwx,du'(x,n , uwx,Hu'(x,du'(x,?),

—c) —C® —c®

3. use equations of motion to find how each one of the cumulants evolve
ac = (c), cf)

5’150(2) = (C(l) C(i) C(i)) Frioon 1096
208 = F (00 ¢ o) o) e



Statistical State Dynamics (SSD)

1. split the flow variables into: mean + eddy’
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4. SSD closure at second order (called S3T or CE2) Mieenaat soos”



Navier-Stokes-type quadratic nonlinearities

triad interactions in wavenumber space

A

A )
U, +x, U 1k, Uy +k,

A/, \/\/ A A A

ukl uk2 Uk] Uk2 Uk]
Reynglds stresses edqu—meap flow eddy-eddy -» eddy
affecting the mean interaction

an SSD closure at second order
IS the same as dropping the
eddy-eddy—-eddy nonlinearity



does it matter what we identity with the mean?

mean = X, z, t-average

mean = X, 7 -average

mean = x-average

mean = small- k. spatial average

u(x,y,z,t) = U(y)

[Reynolds decomposition]
no mean flow dynamics

u(x,y,z,t) = U(y, 1)

[see Jimenez & Pinelli (1999) experiments:
filtering out the streaks is equivalent with taking
here the streaks as part of the incoherent flow]

u(x,y,z,t) = Uz, y, t)

[streamwise mean]

[e.g., NCC, Farrell & loannou 2016,
Marston, Tobias, & Chini 2016; Child et al. 2016;
Tobias & Marston 2017]
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remarks on SSD — what is novel here?

a.c) = F (C), Cf)

2 2 3
90 =y (0, @ o)
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ab abc

C’C(Lild) , etc ...



remarks on SSD — what is novel here?

Usually (motivated by homogeneous isotropic turbulence) people took u(x,f) =0

but this is fundamental for
structure formation (claim (I))

<
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remarks on SSD — what is novel here?

Usually (motivated by homogeneous isotropic turbulence) people took u(x,f) =0

Main focus/effort was to obtain the equilibrium statistics: 0 =0

but this is fundamental for
structure formation (claim (I))

<<
2 3
0 =F2 ( Cc(zb) ; CC(LbZI)

0 =7 c?  c®

abc 7’

C’C(Lild) , etc ...



remarks on SSD — what is novel here?

By studying the dynamics of the statistics
novel explanations for phenomena become available.

a.c) = F (C), Cf)

2 2 3
90 =y (0, @ o)

) = F (W, ¢, ¢

ab abc

C’C(éld) , etc ...

While flow realizations exhibit the phenomena,
analytic expression of the phenomena requires the SSD.



examples”



understanding zonal jet formation through SSD

ST NN
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vorticity (3xv — ayu)/u at ut=5.00 200 zonal mean a/(Bk;?) at ut=5.00
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how do we show that
a flow like this ...

—-100

—-200 g

[simulation in which we kill the k, =0

. —-300
component at each time step]
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... IS unstable leading
to forming four jets”
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at statistical equilibrium:

realization
dynamics

jets

~ steady

o

turbulent
eddies

strongly
time-dependent
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at statistical equilibrium:

second-order

jets + eddy
statistical state statistics
dynamics

~ steady ~stationary
Farrell & loannou 2003, 2007; Srinivasan & Young 2012; Tobias & Marston 2013; NCC, Farrell & loannou 2014, 2016;

Bakas, NCC & loannou 2015, 2018; Bakas & loannou 2013, 2014, 2018; Parker & Krommes 2013, 2014;
Marston, Tobias, Chini, 2016; Ait-Chaalal, Schneider, Meyer, & Marston; Marston & Tobias 2017, NCC & Parker 2018



S3T second-order closure of SSD

0C" =F,(CM, c?)

0,CY) = F,(CP,.C2, 0,)

ab’
mean flow second-order spatial covariance
(jets) eddy statistics of forcing

second-order
(known)



vorticity (dxv — dyu)/u at ut=5.00 zonal mean flow 14
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homogeneous
stationary

second-order

eddy statistics

+ no mean flow

this is a fixed point of the SSD closure

az‘Cc(zl) _ 3‘71(C(1) C(z))

a ’> “ab

2 1 2
0,CY) = F,(CP,.C2, 0,



vorticity (dxv — dyu)/u at ut=5.00 400 zonal mean flow 14
g "‘ AN »
Ry Ny
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homogeneous
stationary

second-order

eddy statistics

+ no mean flow

this is a fixed point of the SSD closure

let's perturb it and study its stabillity...

(doable, but we have to solve an eigenvalue problem of dimension 6(n* x n*))

note: we've linearized about a turbulent state!



vorticity (dxv — dyu)/u at ut=5.00 400 zonal mean flow 14
g "‘ AN »
Ry Ny
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homogeneous
stationary

second-order

eddy statistics

+ no mean flow

as we cross a threshold value of ek7 /u’
the homogeneous turbulent state becomes unstable

to infinitesimal zonal jet mean flow perturbations




how does this flow-forming instability manifest?

the (infinitesimal) jet organizes the turbulent field
so that it produces Reynolds stresses
that reinforce the very jet itself !

this process is obscured in realization dynamics...
but it becomes evident in the statistical state dynamics

04



SSD reveals what is obscured in single flow realizations

oU=—plU—-0d,u’
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homogeneous turbulence
with stationary
second-order
eddy statistics

no mean flow



SSD reveals what is obscured in single flow realizations

20 independent
perturbation

5tU = —ulU — o, u'v realizations

vorticity (oxv — ayu)/u at ut=5.00
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homogeneous turbulence resulting average
with stationary infinitesimal infinitesimal
second-order zonal jet perturbation Reynolds stress

eddy statistics divergence



SSD reveals what is obscured in single flow realizations

200 independent
perturbation

5tU = —ulU — o, u'v realizations

vorticity (oxv — ayu)/u at ut=5.00

. . ‘ 400
: - : &q%
‘ ) 300
- 200 -
100

—-100
—-200 —

—-300

—-400

homogeneous turbulence resulting average
with stationary infinitesimal infinitesimal
second-order zonal jet perturbation Reynolds stress

eddy statistics divergence



SSD reveals what is obscured in single flow realizations

2000 independent
perturbation

5tU = —ulU — o, u'v realizations
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homogeneous turbulence resulting average
with stationary infinitesimal infinitesimal
second-order zonal jet perturbation Reynolds stress

eddy statistics divergence



SSD reveals what is obscured in single flow realizations

2000 independent
perturbation

5tU = —ulU — o, u'v realizations

& SSD closure
vorticity (oxv — ayu)/u at ut=5.00
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second-order zonal jet perturbation Reynolds stress

eddy statistics divergence



how does this flow-forming instability manifest?

the jet organizes the turbulent field
so that it produces Reynolds stresses
that reinforce the very jet itself !

this is a very robust process; not only in jet formation




verification of S3T predictions

for the jet formation bifurcation (Pestcase)

bifurcation diagram
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veritication of the S3T predictions for the structure
of the finite amplitude jet equilibria
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what more can we do”

% \ s FN

123)

U(y,t

how do we predict that
a flow with
three turbulent jets

like this ...

,1=891)

U(y

... Is unstable leading
to forming two jets”




stability of zonal jet S3T equilibria
to zonal |et perturbations

Stability analysis of —
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stability of zonal jet S3T equilibria
to zonal |et perturbations

Stability analysis of
INnhomogeneous turbulent
states with zonal jets predicts:

existence of multiple equilibria
and their domain of attraction

merging of jets as € increases

For higher energy input rates
equilibria become S3T
unstable and move towards
the left of the diagram
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streak-roll formation & SSP
IN wall-bounded turbulence



I'll touch briefly on these topics:

| Single realizations of the 2nd-order SSD closure captures the essence of DNS turbulence
[RNL models (see Dennice's talk), i.e., DNS with eddy-eddy— eddy nonlinearity suppressed]

Farrell et al. 2012; NCC et al. 2014b; Thomas et al. 2014, 2015; Bretheim et al. 2015;
Farrell et al 2016; Farrell, Gayme, & loannou 2017; Bretheim, Meneveau, & Gayme 2018

Il. Identified the roll-streak formation in pre-transitional free-stream Couette turbulence

Farrell, loannou, & Nikolaidis 2017

I |dentified the structures responsible for closing the loop in the SSP
. [active Lyapunov vectors identified by RNL]

Farrell, loannou, & Nikolaidis 2018 CTR



I streaks organize the turbulent stresses In
| such manner to reinforce themselves...
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Il. eigenvalues/eigenmodes of the least stable
S3T roll/streak modes
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Farrell, loannou & Nikolaidis 2017

minimal channel: Ly = 1.75m, L, = 1.2, Re = 400, stochastic excitation at kx = 2m/Lx
Ec sustains turbulence with energy 0.14% of the Couette flow energy.



max. streak velocity
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11} closing the loop in the SSP

U(y, z, 1)

time-dependent
streak

SSP

torque production



closing the loop in the SSP

U(y,z, 1) In RNL the only way
time-dtepegdent energy can transfer from the
strea

mean flow to the perturbations
IS through the

5 parametric instability of the
S time-dependent streak
SS P Farrell, & loannou (2017) PRF, 2 (8), 084608
C;.
%
S

Is this the case in DNS?

torque production



11} closing the loop in the SSP

1. Run DNS
2. Take the U(y, z,t) from DNS and compute the Lyapunov vectors

3. Go back to DNS and project-out the active LVs from perturbations
(continuously)



1. Run DNS

closing the loop in the SSP

2. Take the U(y, z,t) from DNS and compute the Lyapunov vectors

3. Go back to DNS and project-out the active LVs from perturbations
(continuously)
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4 active LVs in this case
containing ~20% of the perturbation energy
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Conclusions

Perturbation S3T generalizes the hydrodynamic stability theory of Rayleigh to
study stability of statistical equilibria of turbulent flows.

Emergence of coherent structures in turbulence is predicted analytically and
understood to result from instability of the turbulent state.

SSD provides analytical methods for studying dynamics and understanding
mechanism in turbulent flows.
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