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planetary turbulence

polar front jet
NASA/Goddard Space Flight Center

banded Jovian jets
NASA/Cassini Jupiter Images

most of the energy of the flow is in large-scale coherent jets and vortices 

not at the largest allowed scale (as 2D inverse energy cascade might imply) 
arrest of the cascade by jets
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Figure 12. View of the measurement array installed at the SLTEST site.
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Figure 13. (a) Streamwise and (b) spanwise two-point correlations of the streamwise velocity
fluctuation Ruu. (!) show rake data for 1840 <Reτ < 19960 at z/δ =0.05; solid line shows
Utah data for Reτ ≈ 660000 at z/δ = 0.036.

There are some signs that the ASL correlations are not fully converged. Even with
one hour of data, the total advection length for the ASL measurement is only
approximately 300δ as compared to over 37000δ for the Reτ = 19960 laboratory
data. Convergence of low-wavenumber information will always be problematic in
atmospheric measurements owing to limited periods of neutral stability and very large
structural length scales. Regardless, figure 13 shows that similar large-scale features
inhabit the log region of high Reynolds number atmospheric surface layers. The long
region of positive correlation, flanked in the spanwise direction by anti-correlated
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Figure 14. Example of signal across the spanwise array of sonic anemometers at SLTEST,
z/δ =0.037, Reτ = 660 000. The x-axis is reconstructed using Taylor’s hypothesis and a
convection velocity based on the local mean, U = 5.46m s−1. Shading shows only negative
u fluctuations (see grey scale).

behaviour is a typical statistical signature of the ‘superstructure’. Figure 14 shows
instantaneous streamwise velocity fluctuations for a 100 s trace across the spanwise
array. The streamwise ordinate is reconstructed using Taylor’s hypothesis, in exactly
the same way as for figure 4. It is immediately obvious that the same very long
meandering features inhabit the log region of the ASL. The feature shown in figure 14
is almost half a kilometre in length. Some sense of proportion can be obtained from
the schematic of the measurement array, which is drawn to scale on the figure
(compare to the photograph in figure 12). A comparison with laboratory results
would indicate that even longer features will occur (>20δ). Indeed, the meandering
tendency of these large-scale features means that they often wander into and out of
our measurement domain before we can assess their true length (the spanwise width
of the sonic anemometer array is only 0.5δ and the sample length is also somewhat
limited).

The feature shown in figure 4 is enormous in comparison to the near-wall structure
(1000 wall units in the ASL equates to 90 mm). With this kind of scale separation
between the near-wall cycle and the log region structure, it becomes increasingly less
intuitive to sanction a situation whereby the near-wall cycle can influence or give rise
to the ‘superstructure’. Certainly at lower Reynolds number the degree of scale-overlap
tends to give the impression that these two scales are intimately entwined. Perhaps this
is so at low Reynolds numbers, with the log region structure subject to a certain degree
of wall-up interaction from the near-wall cycle. However, for the ASL, we are left with
the notion that the inner and outer energy site (figure 11) could be two quite separate
regimes, and that any substantial interaction is likely to be top-down (Hunt &
Morrison 2000). Circumstantial evidence for this scenario comes from Jiménez &
Pinelli (1999), who demonstrate that the near-wall cycle is autonomous and can

Hutchins & Marusic 2007

boundary layer turbulence

observing boundary layer in 
Utah salt lake
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streamwise velocity 
(everything but the time-mean of the                      )   U(kx = kz = 0)

Reτ = 500

y/h = 0.14

Reτ ≈ 3200

Monty et. al 2007

large-scale motions in wall-bounded  turbulence

credit:
A Lozano-Durán

xy

z

Reτ ≈ 1000

y/h = 0.56



The problem to be addressed: 

Understand how these specific structures arise 
and how are they maintained



outline

• new framework for studying turbulent flows 
    (statistical state dynamics)

begin with 
• zonal jet formation in planetary atmospheres

(familiarise with the basic concepts/ideas)

then discuss how SSD illuminates 

• streak-roll formation & SSP          
in wall-bounded turbulence



zonal jet formation in forced-dissipative barotropic β plane

statistically homogeneous 
small-scale forcing 

(forcing does not impose 
any inhomogeneity) 

random flow inhomogeneities 
organize the turbulence  

so that they are reinforced

we observe: 
• jet emerge 
• jets appear to change much 

slower compared to the 
eddies 

• jets may merge
non-dimensional 

parameters
(   "amplitude of forcing") 

(   "rotation of the planet")

≈
≈

εk2
f /μ3 = 106

β/(kf μ) = 67

β gradient of Coriolis parameter, μ linear drag, ε energy injection rate by the forcing; kf characteristic wavenumber of forcing

zonal mean u vorticity



various β-plane flow regimes flows 
at statistically steady state: 

homogeneous — traveling waves — zonal jets
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[ snapshots of the streamfunction together with instantaneous zonal mean flow U(y,t) ]

this suggests that there is some kind of transition as ε is increased

"k2f/r
3 = 106

�/(kfr) = 67

εk2
f /μ3 =



claims

I.  The underlying dynamics of structure formation lies in the 
interaction of turbulent eddies with mean flows

II.  Often, structure formation has analytic expression 
only in the Statistical State Dynamics (SSD) 

(the dynamics that govern the statistics of the flow 
rather than the dynamics governing single flow realizations)

III.  Because of (I) a second-order closure of the SSD is adequate 
(given that we decompose our fields into mean+eddies adequately)

(what part of the flow is the "mean flow"?)



3.  use equations of motion to find how each one of the cumulants evolve

Statistical State Dynamics (SSD)

2.  form the hierarchy of same-time statistical moments/cumulants
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1.  split the flow variables into:  mean  + eddy  0

Hopf 1952 
Frisch 1995



3.  use equations of motion to find how each one of the cumulants evolve

Statistical State Dynamics (SSD)

4.  SSD closure at second order (called S3T or CE2)

2.  form the hierarchy of same-time statistical moments/cumulants
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1.  split the flow variables into:  mean  + eddy  0

Hopf 1952 
Frisch 1995

Farrell & Ioannou 2003 
Marston et al. 2008



triad interactions in wavenumber space
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an SSD closure at second order 
is the same as dropping the 

eddy-eddy     eddy nonlinearity

Ûk1
Ûk2

Ûk1
û′�k1

û′�k2
û′�k2 û′�k2

û′�k1

û′�k1+ k2
û′�k1+ k2

Ûk1+ k2
Ûk1+ k2

Navier-Stokes-type quadratic nonlinearities

Reynolds stresses 
affecting the mean

eddy-mean flow 
interaction

eddy-eddy     eddy



does it matter what we identify with the mean ?

u(x, y, z, t) = U(y)mean =            -averagex, z, t

u(x, y, z, t) = U(y, t)mean =        -averagex, z
[see Jimenez & Pinelli (1999) experiments: 

filtering out the streaks is equivalent with taking 
here the streaks as part of the incoherent flow]

u(x, y, z, t) = U(z, y, t)mean =    -averagex
[streamwise mean]

mean = small-       spatial averagekx
[e.g., NCC, Farrell & Ioannou 2016, 

Marston, Tobias, & Chini 2016; Child et al. 2016; 
Tobias & Marston 2017]

[Reynolds decomposition] 
no mean flow dynamics
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remarks on SSD — what is novel here?
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remarks on SSD — what is novel here?

Usually (motivated by homogeneous isotropic turbulence) people took

but this is fundamental for 
structure formation (claim (I))

u(x, t) = 0
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remarks on SSD — what is novel here?

Usually (motivated by homogeneous isotropic turbulence) people took

@t = 0Main focus/effort was to obtain the equilibrium statistics:

0

0
0

0

but this is fundamental for 
structure formation (claim (I))

u(x, t) = 0
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remarks on SSD — what is novel here?

By studying the dynamics of the statistics 
novel explanations for phenomena become available.

While flow realizations exhibit the phenomena, 
analytic expression of the phenomena requires the SSD.



examples?



understanding zonal jet formation through SSD



how do we show that 
a flow like this ...

... is unstable leading  
to forming four jets?

[simulation in which we kill the k   x=0 
component at each time step]

kx = 0



jets

steady≈ strongly
time-dependent

+ turbulent 
eddies

at statistical equilibrium:

realization 
dynamics



jets

steady≈ stationary

+
second-order 

eddy 
statistics

≈

at statistical equilibrium:

statistical state 
dynamics

Farrell & Ioannou 2003, 2007; Srinivasan & Young 2012; Tobias & Marston 2013; NCC, Farrell & Ioannou 2014, 2016; 
Bakas, NCC & Ioannou 2015, 2018; Bakas & Ioannou 2013, 2014, 2018; Parker & Krommes 2013, 2014; 

Marston, Tobias, Chini, 2016; Ait-Chaalal, Schneider, Meyer, & Marston; Marston & Tobias 2017, NCC & Parker 2018



S3T second-order closure of SSD

∂tC(1)
a = ℱ1(C(1)

a , C(2)
ab )

∂tC(2)
ab = ℱ2(C(1)

a , C(2)
ab , Qab)

spatial covariance 
of forcing 

second-order 
(known)

mean flow 
(jets)

second-order 
eddy statistics 



no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

this is a fixed point of the SSD closure

zonal mean flow ū

∂tC(1)
a = ℱ1(C(1)

a , C(2)
ab )

∂tC(2)
ab = ℱ2(C(1)

a , C(2)
ab , Qab)



no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

this is a fixed point of the SSD closure

let's perturb it and study its stability... 
(doable, but we have to solve an eigenvalue problem of dimension                )&(n 4 × n 4)

note: we've linearized about a turbulent state!

zonal mean flow ū



as we cross a threshold value of 
the homogeneous turbulent state becomes unstable 

to infinitesimal zonal jet mean flow perturbations

no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

zonal mean flow ū

εk2
f /μ3



the (infinitesimal) jet organizes the turbulent field 
so that it produces Reynolds stresses  

that reinforce the very jet itself !

this process is obscured in realization dynamics... 
but it becomes evident in the statistical state dynamics

how does this flow-forming instability manifest?



homogeneous turbulence 
with stationary 
second-order 
eddy statistics

∂tU = − μU − ∂y u ′ �v′�

SSD reveals what is obscured in single flow realizations

no mean flow



+

homogeneous turbulence 
with stationary 
second-order 
eddy statistics

infinitesimal 
zonal jet perturbation

δU

20 independent
perturbation
realizations∂tU = − μU − ∂y u ′ �v′�

−∂y u ′�v′�
resulting average 

infinitesimal 
Reynolds stress 

divergence

SSD reveals what is obscured in single flow realizations



+

homogeneous turbulence 
with stationary 
second-order 
eddy statistics

infinitesimal 
zonal jet perturbation

δU

200 independent
perturbation
realizations∂tU = − μU − ∂y u ′ �v′�

−∂y u ′�v′�
resulting average 

infinitesimal 
Reynolds stress 

divergence

SSD reveals what is obscured in single flow realizations



+

homogeneous turbulence 
with stationary 
second-order 
eddy statistics

infinitesimal 
zonal jet perturbation

δU

2000 independent
perturbation
realizations∂tU = − μU − ∂y u ′ �v′�

−∂y u ′�v′�
resulting average 

infinitesimal 
Reynolds stress 

divergence

SSD reveals what is obscured in single flow realizations



+

homogeneous turbulence 
with stationary 
second-order 
eddy statistics

infinitesimal 
zonal jet perturbation

δU

2000 independent
perturbation
realizations∂tU = − μU − ∂y u ′ �v′�

−∂y u ′�v′�

+

& SSD closure

resulting average 
infinitesimal 

Reynolds stress 
divergence

SSD reveals what is obscured in single flow realizations



the jet organizes the turbulent field 
so that it produces Reynolds stresses  

that reinforce the very jet itself !

how does this flow-forming instability manifest?

this is a very robust process; not only in jet formation
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verification of the S3T predictions for the structure 
of the finite amplitude jet equilibria

S3T instabilities grow and reach finite amplitude 
to produce new inhomogeneous S3T equilibria

NCC, Farrell & Ioannou 2014



how do we predict that 
a flow with 

three turbulent jets 
like this ...

... is unstable leading  
to forming two jets?

what more can we do?

εk2
f /μ3 = 106

β/(kf μ) = 67
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to zonal jet perturbations
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streak-roll formation & SSP 
in wall-bounded turbulence



Farrell et al. 2012; NCC et al. 2014b; Thomas et al. 2014, 2015; Bretheim et al. 2015; 
Farrell et al 2016; Farrell, Gayme, & Ioannou 2017; Bretheim, Meneveau, & Gayme 2018

Identified the structures responsible for closing the loop in the SSP 
[active Lyapunov vectors identified by RNL]

Identified the roll-streak formation in pre-transitional free-stream Couette turbulence 

Farrell, Ioannou, & Nikolaidis 2017

Farrell, Ioannou, & Nikolaidis 2018 CTR

I.

II.

III.

I'll touch briefly on these topics:

Single realizations of the 2nd-order SSD closure captures the essence of DNS turbulence 
[RNL models (see Dennice's talk), i.e., DNS with eddy-eddy    eddy nonlinearity suppressed]



Couette 
turbulence 

minimal channel 
Re=400
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Figure 1.13 The rate of change of streamwise roll acceleration
induced by a streak perturbation to a Couette flow that is
maintained turbulent by stochastic forcing. Distortion of the
turbulence by the streak perturbation induces Reynolds stresses
that force roll circulations supporting the streak via the lift-up
mechanism. Shown are contours of the imposed streak
perturbations, �U = cos(⇡y/2) sin(2⇡z/Lz), with �U > 0 in
z > 0, and vectors of the resulting rate of change of roll
acceleration, (V̇ , Ẇ ). The Reynolds number is R = 400,
Lx = 1.75⇡ and Lz = 1.2⇡.

bation equations (1.45), advection of perturbations by the
small V and W components of the streamwise mean veloc-
ity has been neglected4. Using nondivergence the mean flow
equation (1.43b) can be written as:

Ut = Uy z � Uz y � @yuv � @zuw +�1U/R ,

(1.46a)

�1 t = (@yy � @zz)( y z � vw)�

� @yz( 
2
y � 2

z + w2 � v2) +�1�1 /R .

(1.46b)

In (1.46b), �1 ⌘ @
2
yy + @

2
zz and V and W have been ex-

pressed in terms of the streamfunction,  , as V = � z and
W =  y.

We next Fourier expand the perturbation fields in x: v =

<
hP

k
v̂k(y, z, t)e

ikx

i
, ⌘ = <

hP
k
⌘̂k(y, z, t)e

ikx

i
, and write

the equations for the evolution of the Fourier components
of (1.45) in the matrix form

d�k

dt
= Ak(U)�k +

p
✏FkdBtk , (1.47)

where the state of the system �k = [v̂k, ⌘̂k]
T comprises the

values of the v̂k and ⌘̂k on the N = NyNz grid points of the
(y, z) plane and

Ak(U) =

✓
LOS LC1

LC2
LSQ

◆
, (1.48)

4 The results presented are not a↵ected by neglecting the ad-
vection of the perturbation field by V and W velocities in the
perturbation equations, cf. Thomas et al. (2014).
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Figure 1.14 The most unstable streamwise roll and streak
eigenfunction of the S3T system linearized about the spanwise
uniform equilibrium at supercriticality ✏/✏c = 1.4. The growth
rate of this mode is �r = 0.014. Shown are velocity vectors
(�V, �W ) (left) and streamwise velocity �U (right). The ratio of
the maxima of (�U, �V, �W ) is (1, 0.06, 0.03). Other parameters
are as in Fig. 1.13.

Figure 1.15 The finite amplitude S3T equilibrium streamwise
roll and streak resulting from the equilibration of the eigenmode
shown in Fig. 1.14 at supercriticality ✏/✏c = 1.4. Shown are the
streamwise averaged streamwise flow, U(y, z), (contours) and
the streamwise averaged velocities, (V,W ) (vectors). The
maxima of the fields (U, V,W ) are (0.26, 0.02, 0.009).

with

LOS = ��1
h
�ikU�+ ik(Uyy � Uzz)� 2ikUz@z �

�2ik(Uz@
3
yyz + Uyz@

2
yz)�

�1
2 +��/R

i
, (1.49a)

LC1
= 2k2��1 (Uz@y + Uyz)�

�1
2 , (1.49b)

LC2
= Uz@y � Uy@z � Uyz + Uzz@

2
yz�

�1
2 , (1.49c)

LSQ = �ikU�+ ikUzz�
�1
2 +�/R , (1.49d)

being the conventionally designated Orr-Somerfeld, cou-
pling, and Squire operators respectively. In equations (1.49),
��1 and ��1

2 are the inverses of the matrix Laplacians, �
and �2 = @

2
xx + @

2
zz , which are rendered invertible by en-

forcing the boundary conditions. The boundary conditions
satisfied by the Fourier amplitudes of the perturbation fields
are: periodicity in x and z and v̂k = @y v̂k = ⌘̂k = 0 at
y = ±1 .

z/�

y/
�

Farrell & Ioannou 2012
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III. closing the loop in the SSP

1. Run DNS 
2. Take the                from DNS and compute the Lyapunov vectors 
3. Go back to DNS and project-out the active LVs from perturbations 
(continuously)

U(y, z, t)
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Couette turbulence 
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III. closing the loop in the SSP

4 active LVs in this case 
containing ~20% of the perturbation energy

1. Run DNS 
2. Take the                from DNS and compute the Lyapunov vectors 
3. Go back to DNS and project-out the active LVs from perturbations 
(continuously)

U(y, z, t)



Conclusions

Perturbation S3T generalizes the hydrodynamic stability theory of Rayleigh to 
study stability of statistical equilibria of turbulent flows. 

Emergence of coherent structures in turbulence is predicted analytically and 
understood to result from instability of the turbulent state. 

SSD provides analytical methods for studying dynamics and understanding 
mechanism in turbulent flows.
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