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what drives the Antarctic Circumpolar Current?

strong westerly winds blow over the Southern Ocean 
transferring momentum through wind stress at the surface
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how is this momentum balanced? bottom drag?



S H O R T E R  C O N T R I B U T I O N  

Note on the Dynamics of the Antarctic Circumpolar Current' 

By W. H. MUNK' and E. PALMiN3 

Abstract 
Unlike all other major ocean currents, the Antarctic Circumpolar Current probably 

does not have sufficient frictional stress applied at its lateral boundaries to balance the 
wind stress. The balancing stress is probably applied at the bottom, largely where the 
major submarine ridges lie in  the path of the current. The meridional circulation pro- 
vides a mechanism for extending the current to a large enough depth to make this 
possible. 

Under the assumption that the wind stress on 
the sea surface is balanced by the frictional stress 
against the sides of the ocean basins one can arrive 
at a fairly satisfactory picture of the large scale 
circulation in various oceans (MUNK, 1950; MUNK 
and CARRIER, 1950). The computed transports differ 
at most by a factor of two from the observed 
transports. In the case of the Antarctic Circumpolar 
(AC) current a similar reasoning leads however to 
a computed transport one hundred times the ob- 
served transport. 

In its simplest form we may regard the AC 
current as an eastward flow on a plane tangent to 
the earth at the South Pole. The flow is induced 
by constant eastward winds, and depends only on 
the distance r from the pole on this plane. In  this 
system a balance between the wind strcss t and the 
lateral friction is expressed by 

where A is the lateral kinematic eddy viscosity and 
M the eastward mass transport across a normal 
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vertical plane of unit width extending from surface 
to bottom.4 The solution which vanishes at the 
Antarctic continent (r = ro) and at some other 
latitude ( r  = r,) is 

The total AC transport equals 

r .  

T =  M d r =  
r a  

Setting T = z dynes cn-2, A = 1 0 8  cmz sec-1, and 
placing the boundaries at 70' S and 45' S latitudes 
gives T = j x 1016 g sec-1. At the narrowest sec- 
tion, Drake Passage, the boundaries are at 65' S 
and 55' S latitudes, and T = 101s g sec-1. The 
observed transport is 1014 g sec-1. The discrep- 
ancy is not materially altered by more elaborate 
calculations involving spherical coordinates and 
allowing for a variation of wind with latitude. 

4 Strictly speaking we should replace the relative 
transport .If by the absolute transport M + o r h .  where 
w is the earth's angular velocity and h the ocean 
depth. However, the second term which represents 
solid rotation drops out upon differentiation. 
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start with the zonal 
angular momentum 

equation

vertically integrate, 
top z = 0 to bottom z = −h(x,y)
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Abstract 
Unlike all other major ocean currents, the Antarctic Circumpolar Current probably 

does not have sufficient frictional stress applied at its lateral boundaries to balance the 
wind stress. The balancing stress is probably applied at the bottom, largely where the 
major submarine ridges lie in  the path of the current. The meridional circulation pro- 
vides a mechanism for extending the current to a large enough depth to make this 
possible. 

Under the assumption that the wind stress on 
the sea surface is balanced by the frictional stress 
against the sides of the ocean basins one can arrive 
at a fairly satisfactory picture of the large scale 
circulation in various oceans (MUNK, 1950; MUNK 
and CARRIER, 1950). The computed transports differ 
at most by a factor of two from the observed 
transports. In the case of the Antarctic Circumpolar 
(AC) current a similar reasoning leads however to 
a computed transport one hundred times the ob- 
served transport. 

In its simplest form we may regard the AC 
current as an eastward flow on a plane tangent to 
the earth at the South Pole. The flow is induced 
by constant eastward winds, and depends only on 
the distance r from the pole on this plane. In  this 
system a balance between the wind strcss t and the 
lateral friction is expressed by 

where A is the lateral kinematic eddy viscosity and 
M the eastward mass transport across a normal 
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vertical plane of unit width extending from surface 
to bottom.4 The solution which vanishes at the 
Antarctic continent (r = ro) and at some other 
latitude ( r  = r,) is 

The total AC transport equals 

r .  

T =  M d r =  
r a  

Setting T = z dynes cn-2, A = 1 0 8  cmz sec-1, and 
placing the boundaries at 70' S and 45' S latitudes 
gives T = j x 1016 g sec-1. At the narrowest sec- 
tion, Drake Passage, the boundaries are at 65' S 
and 55' S latitudes, and T = 101s g sec-1. The 
observed transport is 1014 g sec-1. The discrep- 
ancy is not materially altered by more elaborate 
calculations involving spherical coordinates and 
allowing for a variation of wind with latitude. 

4 Strictly speaking we should replace the relative 
transport .If by the absolute transport M + o r h .  where 
w is the earth's angular velocity and h the ocean 
depth. However, the second term which represents 
solid rotation drops out upon differentiation. 

1951

f(y) is the Coriolis parameter 
f = 2Ω sinθ

W.H. Munk W.H. Munk 
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On the size of the Antarctic Circumpolar Current 43 

For a flat-bottomed circumpolar region ~ dx ~=-H dz lip0 aplOx = 0 and the wind 
stress at the sea surface (of order 2 dyn cm -2, see NOWLIN and KLn~CK, 1986) must be 
balanced either by the meridional divergence of eastward momentum flux OlOy f dz(uv), 
or bottom stress. GILL (1968) argued convincingly that bottom stress is unlikely to be as 
large as wind stress. He calculated that a meridional flux of zonal momentum u'v' of 
order 100 cm 2 s -g on the northern and southern edges of the ACC would balance the 
eastward stress. These meridional fluxes of zonal momentum are equivalent to the large 
lateral viscosity coefficients that many models require. 

Recent analyses indicate that observed meridional momentum fluxes are not nearly 
large enough to balance the wind stress and give a reasonable transport value. BR',rDEN 
and I-IEA'rrl (1985) observed a statistically significant northward eddy flux of eastward 
momentum on the northern edge of the ACC downstream of the Macquarie Ridge where 
this momentum flux was anticipated to be large. Even if it were typical of the entire 
circumpolar zone, which was considered unlikely, the measured eddy momentum flux 
was smaller by a factor of four than that required by GILL (1968). Bryden and Heath also 
estimated the standing eddy momentum flux due to large-scale variations in the 
circumpolar circulation from historical data compiled by GOROON et al. (1982) and found 
it to be two orders of magnitude smaller than that required to balance the wind stress. 
Finally, PIOLA et al. (1987) determined the eddy momentum flux at the surface from the 
large-scale FGGE drifter deployment during 1979 and found it to be a factor of three 
smaller than that required to balance the wind stress, even in the unlikely instance that 
the surface values were typical of depth-averaged ones. Thus the meridional divergence 
of the meridional flux of eastward momentum does not appear to be large enough to 
balance the eastward wind stress in the circumpolar region. 

The alternative balancing mechanism for the eastward wind stress is bottom form drag, 
or mountain drag, in which high pressure is found on the upstream side of submarine 
ridges or seamounts (Fig. 3). MtrNg and PALMEN (1951) first suggested mountain drag as 

~X 

StressWind T z 

1 x Ap:~ f r  d~ 

I Ap 
V= 

~ Oo f Ax 

b 
X 

 °oe . . . . . .  P z  
. . . .  ~:- ~^  V ~t 

Fig. 3. Schematic presentation of bottom form drag or mountain drag. Wind stress imparted 
eastward momentum in the water column is removed by the pressure difference across the ridge. 
Note that geostrophic balance ~ = ap/ax demands an equatorward flow (symbolized by ®) 

along the ridge, evidence of which may be seen in Fig. 1. 

topographic form stress
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Johnson & Bryden 1989

Topographic form stress is a purely barotropic process.



Interfacial form stress requires baroclinicity.

interfacial form stress

44 G.C. JOHNSON and H. L. BRYDEN 

the most likely counterbalance to the eastward wind stress in the circumpolar region. 
They estimated a 4 dyn cm pressure difference across each of the four major  ridges (the 
Scotian Arc, the Kerguelan Plateau, the Macquarie Ridge and the South Pacific Ridge) 
to be sufficient to balance the zonal wind stress. A steady-state balance requires that the 
pressure difference Ap across the ridge must be directly related to the wind stress by 
Ap = 1/Az f z~dx, where Az is the height of the ridge above the flat bot tom (Fig. 3). 

If the zonal wind stress decreases to zero over a surface Ekman layer and the deep mid- 
ocean zonal pressure gradient is in geostrophic balance, then the equatorial Ekman 
transport in the surface waters is balanced by an equivalent poleward transport of deep 
water. The conversion of denser deep water into lighter surface water around the 
Antarctic, as is necessary to close such a vertical-meridional circulation, goes against 
conventional air-sea-ice exchange considerations that argue for large buoyancy loss over 
the Southern Ocean (GORDON and OWENS, 1987). 

Alternatively, as MUNK and PALMEN (1951) suggested, the eastward wind stress may be 
transmitted downward undiminished to the deep ocean where it is balanced directly by 
bottom form drag. RmNEs and HOLLAND (1979) discussed such a transmission of zonal 
momentum downward by eddies produced as a result of instability in a zonal current. 
Such downward momentum transfer would imply the absence of a surface Ekman layer 
in the circumpolar region. 

Consider a two-layer circumpolar ocean (Fig. 4) with variations 11', in the free surface, 
and ~', in the interface height about their mean values. The interfacial form drag between 
the layers can be estimated to be ~ p' O~'/Ox dx, analogous to mountain drag if the lower 

-.,fix 
Wind Stress t z 

Anlorclic 
Circumpolor 
Current ¢@ t~' 

®v' ®v' 

Fig. 4. Schematic presentation of interracial form drag. Correlations of perturbations in the 
interface height, ~', and the meridional velocity, V' (@ indicating poleward flow and ® indicating 
equatorward flow), which are related to pressure perturbations by geostrophy, allow the upper 
layer to exert an eastward force on the lower layer and the lower layer to exert a westward force 

on the upper layer; thus effecting a downward flux of zonal momentum. 

Johnson & Bryden 1989

vertically integrate 
from the sea-surface 
down to a moving 
buoyancy surface

(i.e., integrate within 
a layer of constant density)



• momentum in imparted at the surface by wind, 
• isopycnals slope           baroclinic instability, 
• momentum is transferred downwards by interfacial eddy form stress 
• momentum reaches the bottom where is transferred to the solid Earth 

by topographic form stress. Johnson & Bryden 1989

This baroclinic scenario sets up the ACC transport 
(e.g. the transport through Drake Passage).

the most popular scenario for the momentum balance
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For a flat-bottomed circumpolar region ~ dx ~=-H dz lip0 aplOx = 0 and the wind 
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or bottom stress. GILL (1968) argued convincingly that bottom stress is unlikely to be as 
large as wind stress. He calculated that a meridional flux of zonal momentum u'v' of 
order 100 cm 2 s -g on the northern and southern edges of the ACC would balance the 
eastward stress. These meridional fluxes of zonal momentum are equivalent to the large 
lateral viscosity coefficients that many models require. 

Recent analyses indicate that observed meridional momentum fluxes are not nearly 
large enough to balance the wind stress and give a reasonable transport value. BR',rDEN 
and I-IEA'rrl (1985) observed a statistically significant northward eddy flux of eastward 
momentum on the northern edge of the ACC downstream of the Macquarie Ridge where 
this momentum flux was anticipated to be large. Even if it were typical of the entire 
circumpolar zone, which was considered unlikely, the measured eddy momentum flux 
was smaller by a factor of four than that required by GILL (1968). Bryden and Heath also 
estimated the standing eddy momentum flux due to large-scale variations in the 
circumpolar circulation from historical data compiled by GOROON et al. (1982) and found 
it to be two orders of magnitude smaller than that required to balance the wind stress. 
Finally, PIOLA et al. (1987) determined the eddy momentum flux at the surface from the 
large-scale FGGE drifter deployment during 1979 and found it to be a factor of three 
smaller than that required to balance the wind stress, even in the unlikely instance that 
the surface values were typical of depth-averaged ones. Thus the meridional divergence 
of the meridional flux of eastward momentum does not appear to be large enough to 
balance the eastward wind stress in the circumpolar region. 

The alternative balancing mechanism for the eastward wind stress is bottom form drag, 
or mountain drag, in which high pressure is found on the upstream side of submarine 
ridges or seamounts (Fig. 3). MtrNg and PALMEN (1951) first suggested mountain drag as 
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Fig. 3. Schematic presentation of bottom form drag or mountain drag. Wind stress imparted 
eastward momentum in the water column is removed by the pressure difference across the ridge. 
Note that geostrophic balance ~ = ap/ax demands an equatorward flow (symbolized by ®) 

along the ridge, evidence of which may be seen in Fig. 1. 

but what about barotropic dynamics?

The sea surface pressure gradient can be 
directly communicated to the bottom. 

And it will be, unless compensated by 
internal isopycnal gradients.

Isn’t barotropic “communication” much "easier"?



wind stress is rapidly communicated to the bottom 
through barotropic processes

Similar statements also made by: 
Straub 1993, Ward & Hogg 2011, Rintoul et al. 2014, Peña Molino et al. 2014, Donohue et al. 2016.

from the Southern Ocean State Estimate

Barotropic processes are fast (~days). 
Baroclinic processes are much slower (~years).

~90% of variance in the topographic form stress signal is explained by the 0-day time lag. 
This indicates a rapid topographic form stress response to changes in the wind stress signal.

Masich, Chereskin, 
and Mazloff 2015



Revisit an old barotropic 
quasigeostrophic (QG) model 

on a beta-plane. 
(Hart 1979, Davey 1980, Bretherton & Haidvogel 1976, 

Holloway 1987, Carnevale & Fredericksen 1987)
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1 The model

The model is

(ζ + η)t + U(ζ + η)x + J(ψ, ζ + η) (1)

+ βψx = −µζ + hyper visc (2)

where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)

︸ ︷︷ ︸

def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy

depth = H − h(x, y) η =
f0h

H
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A distinctive feature of this model is a 
“large-scale barotropic flow” U(t).

total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy

depth = H − h(x, y)

topographic PV: η =
f0h

H

Energy

Multiplying (??) by ψ and integrating over the domain:

d

dt

〈
1

2
|∇ψ|2

〉

+ U ⟨vη⟩ = −
〈

µ|∇ψ|2 + νζ2
〉

, (5) eq7

and from (3)
d

dt
1

2
U2 = FU − µU2 + U ⟨vη⟩ . (6) eq11

The sum of (5) and (6) is the total energy conservation law

d

dt

[
1

2
U2 +

〈
1

2
|∇ψ|2

〉]

= FU − µU2 −
〈

µ|∇ψ|2 + νζ2
〉

. (7) eq17.1

Enstrophy

Multiplying (??) by ζ and η and then averaging over the domain:
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)〉
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)〉

. (11) eq20
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Eliminating ⟨vη⟩ using (4) we have
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Study how momentum is balanced by 
topographic form stress and investigate the 

requirements for eddy saturation. total streamfunction

QGPV

topographic 
potential vorticity (PV)

the plan

this is 
the ACC

steady mean zonal 
wind stress 

F

q = r2 + ⌘ + �y
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1 The model

The model is

(ζ + η)t + U(ζ + η)x + J(ψ, ζ + η) (1)

+ βψx = −µζ + hyper visc (2)

where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)

︸ ︷︷ ︸

def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t) (5)

q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy (6)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–0230,
USA.

1

Material conservation of QGPV 

Large-scale zonal momentum 

topographic 
form stress

(Hart 1979, Davey 1980, Bretherton & Haidvogel 1976, Holloway 1987, Carnevale & Fredericksen 1987)

a barotropic QG model for a mid-ocean region
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is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
︸ ︷︷ ︸

ζ
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total streamfunction

QGPV
total streamfunction = −U(t)y + ψ(x, y, t)

QGPV: q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy

depth = H − h(x, y)

topographic PV: η =
f0h

H

⟨⟩ = domain average

F =
τs
ρ0H

ut +∇·(uu)− fv +∇·(px̂) = τz

U(t)
def
= V −1

∫

u dV

V −1

∫

τz dV =
τ(0)− τ(−H)

H
(5)

= F − f0δE
H

︸︷︷︸

def
= µ

U (6)

V −1

∫

∇·uu dV = V −1

∫

uu · n dS≈ 0 (7)

V −1

∫

βyv dV = V −1

∫
βy

f0
px̂ · n dS

?

≈ 0

V −1

∫

fv dV≈ 0

V −1

∫

∇·(px̂) dV = V −1

∫

p x̂ · ndS , (8)

≈ L−2

∫∫

bot

ψ
f0hx

H
dxdy

︸ ︷︷ ︸

⟨ψηx⟩

+(zonal pressure difference) (9)

ψ(x, y, t) = ψ̄(x, y) + ψ′(x, y, t)

2

    is domain average ;                       wind stress forcing  
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where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)
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def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t) (5)
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ζ

+η + βy (6)
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def
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is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.
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q = ψxx + ψyy
︸ ︷︷ ︸

ζ
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periodic boundary conditions

topography in the Southern Ocean

credit: V. Tamsitt, Scripps, UCSD

a mid-ocean region 
size 2πL x 2πL

ste
ady m

ean zo
nal 
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ess F
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1 The model

r2
 t + U(r2

 + ⌘)x + J( ,r2
 + ⌘) (1)

+ � x = �µr2
 + hyper visc. (2)

The model is

(⇣ + ⌘)t + U(⇣ + ⌘)x + J( , ⇣ + ⌘) (3)

+ � x = �µ⇣ + hyper visc. (4)

where ⌘(x, y) is the topographic contribution to potential vorticity and

⇣
def
= (@2

x
+ @

2
y
)

| {z }
def
=r2

 , (5) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F � µU � h ⌘xi , (6) eq3

where hi is an average over the domain and �(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coe�cient
µ and lateral viscosity ⌫. Presumably the model has some sort of scale selective dissipation
analogous to ⌫.

⇣t+U⇣x+J( , ⇣ + ⌘) + � x + µ⇣ = �U⌘x

F =
⌧

⇢0H

⇤
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The model is

(ζ + η)t + U(ζ + η)x + J(ψ, ζ + η) (1)

+ βψx = −µζ + hyper visc (2)

where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)
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def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t) (5)
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ζ

+η + βy (6)
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the large-scale flow equation: 

vertically integrated 
zonal angular 

momentum equation

Eliminating hv⌘i using (4) we have

d

dt

⇥⌦
1
2(⇣ + ⌘)

2
↵
+ �U

⇤
= �F � �µU �

⌦
µ
�
⇣
2
+ ⇣⌘

�
+ ⌫

�
|r⇣|2 +r⇣ ·r⌘

�↵
. (16) eq20

⌘rms =

p
h⌘2i , and `⌘ =

s
h⌘2i

h|r⌘|2i

Geostrophic contours �y + ⌘(x, y)

fv = (@t + u@x + v@y + w@z)

Z
y

f(y
0
) dy

0

(@t + u@x + v@y + w@z)
�
u�

Z
y

f(y
0
) dy

0�

| {z }
def
= a

+px = ⌧z

@t

Z 0

�h

a dz+@x

Z 0

�h

ua+ p dz

�
+ @y

Z 0

�h

va dz = ⌧(0)|{z}
wind stress

� ⌧(�h)| {z }
bottom drag

+hxp(�h)| {z }
form stress

@t

Z 0

�h

a dz + @x

Z 0

�h

ua+ p dz

�
+ @y

Z 0

�h

va dz = (17)

= ⌧(0)|{z}
wind stress

� ⌧(�h)| {z }
bottom drag

+hxp(�h)| {z }
form stress

(18)

Z 0

�h

px dz = @x

Z 0

�h

p dz � hxp(�h)

U(t)
def
= V

�1

ZZZ
a(x, y, z, t) dV

2 The baroclinic model

 n = �U(t)y +  n(x, y, t)

Q1 = r2
 1 +

f
2
0

g0H1
( 2 �  1)

| {z }
q1

+�y

Q2 = r2
 2 +

f
2
0

g0H2
( 1 �  2)

| {z }
q2

+�y + ⌘ ,

5

zonal angular momentum density:

which implies that ⌘rms = 6.3 ⇥ 10�6 s�1. For Ekman drag we use µ = 6.3 ⇥ 10�8 s�1 ⇡
(180 day)�1 [? ].

isopycnal
slope

slope =


� ⌧s

f 
�  res(b)



�1/2

angular momentum

topographic form stress = hhx p(�h)i

a(x, y, z, t) = u(x, y, z, t)�
Z

y

f(y0) dy0

7
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Ut = F − µU − ⟨ψηx⟩ , (4) eq3
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horizontally integrate, 
drop the boundary fluxes, 
and divide by the volume

∂t

∫ 0

−h

a dz+∂x

[∫ 0

−h

ua+ p dz

]

+ ∂y

∫ 0

−h

va dz = τ(0)
︸︷︷︸

wind stress

− τ(−h)
︸ ︷︷ ︸

bottom drag

+ hxp(−h)
︸ ︷︷ ︸

form stress

∂t

∫ 0

−h

a dz+∂x

∫ 0

−h

ua+ p dz + ∂y

∫ 0

−h

va dz (17)

= τ(0)
︸︷︷︸

wind stress

− τ(−h)
︸ ︷︷ ︸

bottom drag

+ hxp(−h)
︸ ︷︷ ︸

form stress

(18)

∫ 0

−h

px dz = ∂x

∫ 0

−h

p dz − hxp(−h)

U(t)
def
= V −1

∫∫∫

a(x, y, z, t) dV

2 Scaling

βℓη
ηrms

The dimensional control parameters are

L , F , β , µ , ν . (19)

The big three non-dimensional parameters are

a
def
=

F

µηrmsℓη
, b

def
=

βℓη
ηrms

, ϵ
def
=

µ

ηrms

. (20)

The strength of the forcing is measured by a. There are two additional non-dimensional
parameters

L

ℓη
, and

ν

ηrmsℓ2η
. (21)

We hope that these are less important than the big three.
Scale length with ℓη and time with µℓη/F , so that

∇ = ℓ−1
η ∇̃ , and ∂t =

F

µℓη
∂t̃ . (22)

Define non-dimensional variables by

U =
F

µ
Ũ , ψ =

ℓηF

µ
ψ̃ , ζ =

1

ℓ2η

ℓηF

µ
ζ̃ , η = ηrmsη̃ . (23)

4

vertical & horizontal integral 
over a mid-ocean region 

(not a zonal average)

Form stress 3

Navid Constantinou & W.R. Young ∗

February 16, 2017

1 The model

The model is

(ζ + η)t + U(ζ + η)x + J(ψ, ζ + η) (1)

+ βψx = −µζ + hyper visc (2)

where η(x, y) is the topographic contribution to potential vorticity and

ζ
def
= (∂2x + ∂2y)

︸ ︷︷ ︸

def
=△

ψ , (3) eq2

is the relative vorticity. Following CF87, there is a large-scale flow U(t) determined by

Ut = F − µU − ⟨ψηx⟩ , (4) eq3

where ⟨⟩ is an average over the domain and σ(t) is the form stress. The large-scale flow is
forced by the external stress F . The dissipation in (??) is due to bottom drag with coefficient
µ and lateral viscosity ν. Presumably the model has some sort of scale selective dissipation
analogous to ν.

total streamfunction = −U(t)y + ψ(x, y, t) (5)

q = ψxx + ψyy
︸ ︷︷ ︸

ζ

+η + βy (6)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–0230,
USA.
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zonal angular momentum density:

which implies that ⌘rms = 6.3 ⇥ 10�6 s�1. For Ekman drag we use µ = 6.3 ⇥ 10�8 s�1 ⇡
(180 day)�1 [? ].

isopycnal
slope

slope =


� ⌧s

f 
�  res(b)



�1/2

angular momentum

topographic form stress = hhx p(�h)i

a(x, y, z, t) = u(x, y, z, t)�
Z

y

f(y0) dy0
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random topography 
with k −2 spectrum h ∝ cos(mx)

this barotropic QG model exhibits turbulence and eddies



Does this barotropic QG model 
show eddy saturation?

Question:

Do we need baroclinicity? 
Do we even need channel walls?



but first, what is “eddy saturation”?

experiments interpolated to the new grid spacing. The 28
were initialized from a set of very coarse 48 experiments
and the ½8 experiments were then initialized from the
result of the 28 experiments. After 1000 years, the ½8
results were then interpolated to 1/68, and these experi-
ments begun.2 Where time-average results are discussed,
the 28 experiments have been averaged over 1000 years,
the ½8 over 100 years, and the 1/68 over 10 years.

3. Key results

The key results of our numerical experiments are
summarized in Fig. 3, where the relationship between the
time-mean ‘‘circumpolar’’ transport (the zonal transport
through the re-entrant channel) and the strength of the
wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b)
are shown.Different averaging periods are used for each
grid spacing; 1000 years for 28, 100 years for ½8, and
10 years for 1/68. The bars represent two standard de-
viations of the instantaneous monthly transport about
the mean. They indicate the instantaneous variability of
the circumpolar current, rather than the standard error
in the mean, which is extremely small due to the large
number of sample values in the averaging period.

Examination of Fig. 3a demonstrates that the noneddy-
resolving model (28, blue line) behaves like other global
climate models employing a constant GM coefficient,
that is, the circumpolar transport changes strongly with
the wind stress (Fyfe and Saenko 2006). Even with no
wind at all (t0 5 0 N m22) a significant TACC of ; 50 Sv
occurs. This transport occurs for the reasons elucidated
by Munday et al. (2011), that is, that the pycnocline to
the north of the ACC is deepened by diapycnal mixing,
even in the absence of wind. This then leads to a con-
siderable circumpolar transport via thermal wind shear.
The increase in TACC with wind forcing continues across
the extreme range considered here, which reaches a
peak wind stress of 1.0 N m22, compared to the basic
state value of 0.2 N m22. The increase in transport does
not remain linear with wind stress, although it is close to
this limit across many of the experiments. The reader
should note that no error bars are shown on the D 5 28
line of Fig. 3a as the variability is so low that they would
be smaller than the plotted symbol in most cases.
When the grid spacing is refined to ½8 (red line), and

again to 1/68 (green line), the model behaves like the
high-resolution numerical models discussed in section 1.
In other words, TACC ‘‘saturates’’ at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/68 exper-
iments demonstrate that such saturation may take
place with no wind at all, since the increase in vari-
ability effectively makes the green line on Fig. 3a in-
distinguishable from flat. The extreme range of wind
forcing considered in the experiments presented here

FIG. 3. Sensitivity of the circumpolar transport to (a) the wind stress and (b) the diapycnal diffusivity. The ‘‘error
bars’’ are two standard deviations around the long-term mean, calculated from instantaneous monthly values
throughout the averaging period. The 28 (blue) experiments are averaged over 1000 years, the ½8 (red) experiments
over 100 years, and the 1/68 (green) experiments over 10 years.

2 For reasons of numerical stability it was found to be easier to
initialize the 1/68 diapycnal diffusivity experiments from the 48 ex-
periments used to initialize the 28 experiments. In some cases, this
leads to a noticeable lag between the 1/68 basic state and the 12
experiments that make up the rest of the 1/68 diapycnal diffusivity
suite.
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[There are many other examples:  Hallberg & Gnanadesikan 2001, Tansley & Marshall 2001, Hallberg & Gnanadesikan 2006, 
Hogg et al. 2008, Nadeau & Straub 2009, Farneti et al. 2010, Nadeau & Straub 2012, Meredith et al. 2012, Morisson & 
Hogg 2013, Abernathey & Cessi 2014, Farneti et al. 2015, Nadeau & Ferrari 2015, Marshall et al. 2016.]

Munday, Johnson 
& Marshall 2013

The insensitivity of the total ACC volume transport 
to wind stress increase.

Eddy saturation is seen in eddy-resolving ocean models.

Eddy saturation was theoretically predicted by Straub (1993) 
but with an entirely baroclinic argument. 

(based on vertical momentum transfer interfacial eddy form stress)

Higher resolution             eddy saturation “occurs”



yet more eddy saturation

Marshall, Ambaum, 
Maddison, Munday  

& Novak 2016

increasing the bottom drag 
increases the transport

EKE varies linearly 
with wind stress

Nadeau and Ferrari [2015] and was implicit in Cessi [2008], although its climatic significance appears to have
been overlooked. The broad consistency of these numerical results with the simple theoretical predictions
(equations (1) and (2)) is remarkable given the large spatial variations in eddy energy obtained in the numer-
ical solutions (see supporting information).

4. Implications for Ocean Stratification and Heat Content

The strength of the ACC is coupled to the slope of the density surfaces across the Southern Ocean which, in
turn, assuming that the sea surface temperature and density are strongly constrained by air-sea surface

Figure 2. Numerical calculations exploring sensitivity of circumpolar volume transport and eddy energy to surface wind
stress and bottom drag. (a) Snapshot of the relative vorticity revealing an energetic field of mesoscale eddies. (b) Eddy
kinetic energy as a function of wind stress for different values of bottom drag (10!3m s!1). (c) Eddy kinetic energy as a
function of bottom drag for different values of wind stress (Nm!2). (d) Volume transport as a function of wind stress for
different values of bottom drag. (e) Volume transport as a function of bottom drag for different values of wind stress. (The
bottom drag coefficients are equal to the damping rate of momentum within the lowest layer multiplied by 250m, the
latter representing the default lowest layer thickness.)

Geophysical Research Letters 10.1002/2016GL071702

MARSHALL ET AL. EDDY SATURATION OF THE ACC 4

Nadeau and Ferrari [2015] and was implicit in Cessi [2008], although its climatic significance appears to have
been overlooked. The broad consistency of these numerical results with the simple theoretical predictions
(equations (1) and (2)) is remarkable given the large spatial variations in eddy energy obtained in the numer-
ical solutions (see supporting information).

4. Implications for Ocean Stratification and Heat Content
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turn, assuming that the sea surface temperature and density are strongly constrained by air-sea surface

Figure 2. Numerical calculations exploring sensitivity of circumpolar volume transport and eddy energy to surface wind
stress and bottom drag. (a) Snapshot of the relative vorticity revealing an energetic field of mesoscale eddies. (b) Eddy
kinetic energy as a function of wind stress for different values of bottom drag (10!3m s!1). (c) Eddy kinetic energy as a
function of bottom drag for different values of wind stress (Nm!2). (d) Volume transport as a function of wind stress for
different values of bottom drag. (e) Volume transport as a function of bottom drag for different values of wind stress. (The
bottom drag coefficients are equal to the damping rate of momentum within the lowest layer multiplied by 250m, the
latter representing the default lowest layer thickness.)

Geophysical Research Letters 10.1002/2016GL071702

MARSHALL ET AL. EDDY SATURATION OF THE ACC 4

[See also:  Hogg & Blundell 2006, Nadeau & Straub 2012, and Nadeau & Ferrari 2015.]
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further “symptoms” 
of eddy saturation

[See also:  Hogg & Blundell 2006, Nadeau & Straub 2012, and Nadeau & Ferrari 2015.]



how does the transport vary with wind stress 
in this barotropic QG model?
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all parameters same, different value of β
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wind stress

some further “symptoms” 
of eddy saturation

bottom drag

EKE grows roughly linearly 
with wind stress

transport grows 
with increasing bottom drag

fixed F



what produces eddy saturated states 
in this barotropic QG model?



stability analysis for η =η0 cos(mx)

unstable 
stable only within low-dim manifold 
stable 
numerical solutions



growth rate

Max instability growth rate increases 
~104 times with a 10-fold increase in U!

unstable 
stable only within low-dim manifold 
stable 
numerical solutions

stability analysis for η =η0 cos(mx)



growth rate

Max instability growth rate increases 
~104 times with a 10-fold increase in U!

unstable 
stable only within low-dim manifold 
stable 
numerical solutions

Minor changes in U          large transient energy production. 
Transient eddies balance most of the momentum imparted by F           eddy saturation.  

(Similarly as in the baroclinic scenario.)

stability analysis for η =η0 cos(mx)



let's change page now
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simple topography - ridges wind stress stratification

1-layer 2-layer

a setup with both BT and BC eddy saturations

• Idealized re-entrant channel with "bumpy" bottom 
• Lx = 3200 km, Ly = 1600 km, and H = 4 km 
• beta-plane with Southern Ocean parameters 
• Modest stratification (few fluid layers of constant ρ) 
• 1st Rossby radius of deformation: 15.7 km (for >1 layers) 
• Modular Ocean Model v6 (MOM6) in isopycnal mode



flow structure for 1-layer configuration



flow structure for 1-layer configuration



flow structure for 1-layer configuration

zonal 
flow

relative 
vorticity

upper branch 
(flow barely sees the topography)



flow structure for 2-layer configuration

baroclinic eddies 
(~200yr spinup)

baroclinic eddies 
(~50yr spinup)

flow starts "seeing" 
the topography



flow structure for 2-layer configuration

baroclinic eddies 
(~200yr spinup)

baroclinic eddies 
(~50yr spinup)

flow starts "seeing" 
the topography

For higher wind stress values
code blows up

(blow-up related with outcropping)

Help! Anybody knows MOM6 here? : )



how does the transport vary with wind stress 
in this primitive-equations model?
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  Baroclinic cases show strong eddy saturation. 

  The single-layer case also shows insensitivity to wind stress 
(transport grows only about 10-fold over 100-fold wind stress increase) 

Navid Constantinou
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how is the momentum balanced?



Barotropic eddy saturation "survives" in a primitive-equations 
multilayer channel model. 

conclusions
This barotropic QG model shows eddy saturation. 

This is surprising! All previous arguments were based on baroclinicity.

The barotropic—topographic instability is able to produce transient eddies in this 
model in a similar manner as baroclinic instability.

Is there a similar flow-transition bifurcation in baroclinic 
dynamics as in barotropic dynamics? 

(can you help me with MOM6 blowups?)



Barotropic eddy saturation "survives" in a primitive-equations 
multilayer channel model. 

conclusions
This barotropic QG model shows eddy saturation. 

This is surprising! All previous arguments were based on baroclinicity.

The barotropic—topographic instability is able to produce transient eddies in this 
model in a similar manner as baroclinic instability.

Is there a similar flow-transition bifurcation in baroclinic 
dynamics as in barotropic dynamics? 

(can you help me with MOM6 blowups?)

This changes the way we view eddy saturation 
and highlights the role of topographically-induced eddies.



thank you

Constantinou and Young (2017). Beta-plane turbulence above monoscale topography. J. Fluid Mech., 827, 415-447.
Constantinou (2018). A barotropic model of eddy saturation. J. Phys. Oceanogr. 48 (2), 397-411.
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open geostrophic contoursclosed/blocked geostrophic contours

Nadeau & Ferrari 2015

Constantinou 2017 
Constantinou & Young 2017

characterizing geostrophic contours
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d

dt

⇥⌦
1
2(⇣ + ⌘)

2
↵
+ �U

⇤
= �F � �µU �

⌦
µ
�
⇣
2
+ ⇣⌘

�
+ ⌫

�
|r⇣|2 +r⇣ ·r⌘

�↵
. (16) eq20

⌘rms =

p
h⌘2i , and `⌘ =

s
h⌘2i

h|r⌘|2i

Geostrophic contours �y + ⌘(x, y)

fv = (@t + u@x + v@y + w@z)

Z
y

f(y
0
) dy

0

(@t + u@x + v@y + w@z)
�
u�

Z
y

f(y
0
) dy

0�

| {z }
def
= a

+px = ⌧z

@t

Z 0

�h

a dz+@x

Z 0

�h

ua+ p dz

�
+ @y

Z 0

�h

va dz = ⌧(0)|{z}
wind stress

� ⌧(�h)| {z }
bottom drag

+hxp(�h)| {z }
form stress

@t

Z 0

�h

a dz + @x

Z 0

�h

ua+ p dz

�
+ @y

Z 0

�h

va dz = (17)

= ⌧(0)|{z}
wind stress

� ⌧(�h)| {z }
bottom drag

+hxp(�h)| {z }
form stress

(18)

Z 0

�h

px dz = @x

Z 0

�h

p dz � hxp(�h)

U(t)
def
= V

�1

ZZZ
a(x, y, z, t) dV

5

without channel walls 
both geostrophic contours look alike



decomposing the ACC transport
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the time-mean zonal flow:

“thermal wind” flow
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6

total 
transport

ū(x, y, z) = ū(x, y, z)� ūbot(x, y)| {z }
def
= ūtw(x,y,z)

+ ūbot(x, y)

ūtw = �
Z

z

�H

dz
0
@y b̄

@zū = �@y b̄

TACC =

Z 0

�H

dz

Z
dy

Z
dx

Lx

ū

Tbot = H

Z
dy

Z
dx

Lx

ūbot

Ttw =

Z 0

�H

dz

Z
dy

Z
dx

Lx

⇣
ū� ūbot

⌘

Z 0

�H

dz

Z
dy

Z
dx

Lx

ū

| {z }
def
= TACC

=

Z
dy

Z
dx

Lx

ūbot

| {z }
def
= Tbot

+

Z 0

�H

dz

Z
dy

Z
dx

Lx

ūtw

| {z }
def
= Ttw

6

bottom flow

bottom “thermal wind”
not included in the 

barotropic QG model




