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how does the bottom topography of the ocean 
affect the large-scale zonal oceanic currents? 

(e.g. the Antarctic Circumpolar Current)



Antarctic Circumpolar Current (ACC)

NASA/Goddard Space Flight CenterSouthern Ocean State Estimate
UC San Diego state estimates

(computer simulations
constrained by observations)



momentum is imparted to the ocean by winds 

winds are (on average) easterlies or westerlies 
Bentamy et. al. 1996

how does the force applied to the oceans by the winds balance? 
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ocean with continental boundaries 
(e.g. Atlantic)

the surface of the ocean tilts and creates 
an east-west pressure gradients that 
mostly balances the momentum input 

(the ocean leans onto the eastern coast)



wind 
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U

p+ p-

F = Δp/L

ocean without continental boundaries 
(e.g. Southern Ocean)

the flow over ocean ridges creates pressure differences 
that counterbalance the momentum input 





initially work didn’t focus on the role of 
the bottom topography

in a seminal paper Munk & Palmen 1951 
with a back-of-the-envelope calculation estimated that: 

if the bottom of the Southern Ocean was flat 
then the ACC should be 10-20 times stronger than observed!



topography in the Southern Ocean

credit: V. Tamsitt, Scripps, UCSD



yet some more motivation…
R. Farneti et al. / Ocean Modelling 93 (2015) 84–120 89

Fig. 2. Changes in zonal-mean zonal wind stress in the CORE-II multi model mean (MMM). (a) Time series of magnitude of peak zonal-mean zonal wind stress (thick line; in N m−2),

and its 10-year running mean for 1958–2007 (thin line), showing the overall strengthening of the westerlies from 1948 to 2007. (b) Change, in percentage, of the peak zonal-mean

zonal wind stress relative to 1948. (c) Change, relative to 1948, in the latitude of the peak zonal-mean zonal wind stress. Negative values indicate a southward displacement of the

peak.

properties in models participating in CORE-II can be found in Downes
et al. (2015).

Variability in the upper limb of the MOC is believed to be largely
dominated by wind forcing (e.g. Treguier et al., 2010), although re-
cent studies have also highlighted the role of buoyancy flux changes
and suggested a linear increase in the upper MOC with buoyancy gain
(Morrison et al., 2011). The abyssal Antarctic Bottom Water (AABW)
cell is instead largely controlled by surface buoyancy forcing in po-
lar latitudes. Changes in heat fluxes influence the rate of AABW for-
mation and the strength of the lower limb of the MOC (Rintoul and
Naveira-Garabato, 2013), resulting in an increase of the abyssal over-
turning with a greater surface negative buoyancy flux. We note that
CORE-II simulations disagree on the sign and magnitude of surface
heat flux trend poleward of 65 °S (Fig. 4).

3. The Antarctic Circumpolar Current

The evolution over the five CORE-II cycles of the vertically-
integrated annual-mean mass transport through Drake Passage for
the seventeen models is given in Figs. 5 and 6. We consider the Drake
Passage transport, and its response to changes in forcing, as represen-
tative of the large-scale features of the ACC. Integrating models for
300 years is not enough for equilibration of the high-latitudes and
especially in the Southern Ocean, where low-frequency adjustment
to local and remote forcing and deep bottom water formation pro-
cesses likely require longer integrations. Most models, however, show
a stabilization of the ACC transport after the first two to three cycles,
and five cycles seem necessary for the characterization of the ACC
evolution during the period 1948–2007. However, some models have

Farneti et. al. 2015

winds seem to be increasing 
how will the ACC respond? 

Magnitude of peak zonal wind stress 
over the Southern Ocean

doubling the wind gives double the ACC?  
not always — “eddy saturation” regime
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a single-layer quasi-geostrophic model for the ACC 
on a beta-plane
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bottom Ekman drag 
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flow evolution

q = f0 + �y +r2 + ⌘

=advection of b by the flow with stream function a

Hart 1979 
Carnevale & Frederiksen 1989 

Holloway 1989
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:  mean wind stress
:  planetary vorticity gradient,
:  bottom Ekman drag coefficient 
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energy & potential enstrophy

total energy and potential enstrophy are conserved 
in the absence of forcing and dissipation
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a snapshot of the flow at statistically steady state 
for “realistic” parameter values
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topography 
spectral slope = -2



spin-up from rest
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http://www-pord.ucsd.edu/~navid/animation.mp4
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topographic form stress

topographic form stress 
(or pressure drag) 
(or mountain drag) 

(or form drag)

form stress controls the steady state large-scale U

for a flat bottom
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for a non-flat bottom

very large 
(Munk & Palmen 1951)



a bound for the form stress 
based on the energy equation
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a bound for the form stress 
based on the energy equation

F [ ] = h @
x

⌘i+ �1
⇣
F � µU � h @

x

⌘i
⌘
+ �2

⇣
FU � µU

2 � hµ|r |2i
⌘

+ the enstrophy equation

+�3
�
F� � µ�U � µh(r2 + ⌘)r2 i

�

we were unable to obtain a bound… 

are we over restricting the problem? 

any suggestions perhaps?

steady state 
enstrophy 
equation



how does U respond to wind increase?



how does U respond to wind increase?
U ⇠ F/µ

U ⇠ F/µ

1 + 1/b2

“eddy saturation” 
regime

“crisis” 
U abruptly  increases



how does U respond to wind increase?



form stress picks up 
and 

suddenly we have a “crisis”: 
form stress disappears and 

all momentum is balanced by U 

U=large

how does the form stress respond to wind increase?



form stress picks up 
and 

suddenly we have a “crisis”: 
form stress disappears and 

all momentum is balanced by U 

U=large

“crisis” occurs for all b>0

how does the form stress respond to wind increase?



assuming a regular perturbation expansion for ψ and U 
we get that to first order

and using the eddy energy equation
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it turns out that the problem 
is mathematically homomorphic to the steady state 

solution of the advection of a passive scalar by a flow 
in the presence of a large-scale concentration gradient

J(�, c�Gy) = r2c J(⌘, � Uy) = µr2 

the regime                      .
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streamfunction 
concentration 

diffusion 
coefficient 
large-scale 

conc. gradient

topography 
streamfunction 

dissipation 
coefficient 
large-scale 

flow

the analogy

for cellular flows and high Peclet numbers 
the concentration is confined to the places φ=0 
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“cellular” topography

⌘rms/µ = 100



“cellular” topography

⌘rms/µ = 100



“cellular” topography

⌘rms/µ = 1000



“Nusselt” scaling 
for “cellular” topography

Soward & Childress 1987



random monoscale topography



random monoscale topography



random monoscale topography



random monoscale topography



random monoscale topography



⌘(x, y) = 0
contours

random monoscale topography



random monoscale topography

the total streamflow 
homogenizes over 

areas enclosed 
by η(x,y)=0



“Nusselt” scaling 
for random monoscale topography

Isichenko 1989



“Nusselt” scaling 
for random monoscale topography

Isichenko 1989
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the regime                      .

assuming a regular perturbation expansion for ψ and U 
we get to first order:

and using the eddy energy equation
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the regime                      .
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“eddy saturation” 
regime

U abruptly  increases 
“crisis”

the “eddy saturation” regime & crisis

can we make any analytical predictions 
regarding critical F and U at the eddy-saturation regime?

SSD?



In regions with no continental boundaries topography/topographic form stress 
plays a crucial role in setting up the large-scale oceanic currents. 

We demonstrated that quasi-geostrophic theory, even with a simple 1-layer 
model, can capture the existence of an eddy-saturation regime. 

We derived a bound based on energy constraint for the form stress. 

We have seen that as the wind stress increases the momentum imparted by the 
ocean is balanced mostly by the form stress and only little by bottom drag… until 
a threshold wind value is reached (“crisis”) when form stress breaks down and 
get very large U in order to get balance. 

Things are yet to be done; especially in understanding the regime prior to the 
“crisis”. 

Conclusions


