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main points

2 turbulence acts anti-diffusively maintaining large-scale jets

(Jupiter’s winds, Earth’s polar jet-stream)
[this is known for finite amplitude jets]

2 S3T describes the joint dynamics of the mean flow and the eddy

statistics (closed at second order)

2 turbulence acts anti-diffusively reinforcing even infinitesimal

amplitude jets (leading to instability)

2 modulational instability of Rossby waves is a special case of S3T

instability

2 within S3T we can study the statistical stability of inhomogeneous

(i.e. with finite amplitude jets) turbulent statistical equilibria



Jets are eddy-driven

Cassini 2000
Voyager 1979-1980
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Barotropic vorticity equation on a beta-plane
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(€(xa,t)E(xp, 1)) = Q(xq —xp) 0(t — )

we non-dimensionalize
using
time scale: 1/r
length scale : Ly =1/ky




The S3T dynamical system

Z(x,t) = {((x,1)) , ((xt)=((x,t) = Z(x,1)
C(Xq,%p,t) = (('(%q, 1) (x5, 1))

restrict nonlinearity by not allowing
eddy-eddy = eddy interactions
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stability of homogeneous
S3T equilibrium

u-© =0 ] Oe(Xa—Xb) —

? (for any €, B)

perturbations 62, 6C about the homogeneous equilibrium satisfy
the linearized S3T equations:

0,67 = A° 87 + R(5C)

A = A(U°)
0r0CLp = (AZ -+ Ag)50ab —+ (5.Aa + 5./41)) cib
| | (SZ = ein~x €(J_iwn)t (plane Wave) w: Rossby wave frequency
eigenfunctions: 55 _ B,
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because 7 is an eigenfunction of
A° we have that




eigenvalue relation for the stability of
homogeneous S3T equilibrium

for given €, 3 and CA}(k), eigenvalue that corresponds to
eigenfunction with wavevector n satisfies:

1o 8/ d’k n x k|?(k2 - k*)(k* —n?)  Q(k)
(2m)2 K2k*n? [0 + 2 4+ i (wkyn — Wk — wn)| 2

R d%k .

ki=k+n , ks = kg

w: Rossby wave frequency
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take forcing structure
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(baroclinic)
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Critical € for S3T instability
with isotropic forcing

jets more
unstable

nonl-zonal
structures
more unstable
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Critical € for S3T instability
with anisotropic forcing

nonl-zonal
structures
more unstable

jets more
unstable

A - [31/2

(schematic) atmosphere
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small 3 regime

nonl-zonal
structures
more unstable

jets more
unstable
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small B regime
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large B regime

nonl-zonal
structures
more unstable

jets more
unstable
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large [3 regime
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We want to study the eddy—mean flow dynamics of
the S3T instability near the stability boundary

oc+1=cf(0) = Re(o)+1=cRe[f(0)

here is instability if Re(o)>0 which can occur for an
appropriate € only if Re[f(0)]>0.

At the stability boundary € = &

we set o = 0 and therefore instability is controlled by:

fr = Re[f(0),



for ring forcing in wavenumber space

f, IS expressed as a sum over the
spectral components of the forcing

k = (cos#,sin @)

n = (nsin g, ncos )



small B

Contribution to fr (i.e. contours of F(n,d)) in (n,0) polar plot

k = (cos 0, sin0)

n = (nsin g, ncos )

f_R / d’k  |n x k]*(kZ — k?)(k? — n?)
T =0 2n)? k2kAn2 2




small B

Contribution to fr (i.e. contours of F(n,d)) in (n,0) polar plot

k = (cos 0, sin0)

n = (nsiny,ncos )

contribution to f, from wide range of k’s oy, = PN
all k's with [8|<30 contribute




Orr mechanism

finite shear flow

u'v’ >0 u'v’ <0
eddies grow eddies decay
mean flow decreases mean flow increases

-1
turning time proportional to (mean flow shear)



Orr mechanism

infinitesimal shear?

shear time>»dissipation time  awemyp edhdies don't T?f?age to
shear over all the way

what matters then is what the
eddies do instantaneously

W%“

B<30° eddies instantaneously give
momentum flux to the mean flow

6>30° eddies instantaneously give
momentum flux to the mean flow



turbulence acts anti-diffusively
even with infinitesimal mean tlow

anisotropic forcing (u = 0)
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large

Contribution to ff,w (i.e. contours of F(n,d)) in (n,0) polar plot
90

k = (cos#,sin @)

n = (nsin g, ncos )
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large

Contribution to ff,w (i.e. contours of F(n,d)) in (n,0) polar plot
90
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Contribution to f, for B>1

for 3>»>1 the contribution to f, reduces to the
contribution only near the resonances

asymptotic expansion
for the resonant contribution

(R) 3 1
f?" \/72 1/2‘>\ ‘1/2

(cf. Bakas, Constantinou & loannou 2014)



[r expresses the tendency for instability

0

positive contours
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(S3T does not include turbulent cascades)



eddies

'end to reinforce any

mean flow iInhomogeneity

anisotropic forcing
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turbulence acts anti-diffusively



S3T generalizes the
modulational instability of Rossby waves

Ml is the hydrodynamic stability of finite amplitude Rossby

waves (Lorenz 1972, Gill 1974,Connaughton et al. 2010) ¥p cos (p - X — wpt)

There is a formal equivalence between the modulational
instability of ¥p and the S3T instability of the
homogeneous state in the inviscid limit with covariance ée(k) = (27)*p*|A)*[6(k — p) + 6(k + p)]

Parker & Krommes (20157, Zonal jets book) '—-m-f) Same eigenvalue relation

“formal” because the problems are very different

MI: stability of basic state in the form of coherent Rossby wave

S3T: statistical stability of an incoherent state with equilibrium covariance
with the same power spectrum as the Rossby wave



S3T generalizes the
modulational instability of Rossby waves

27
The stability of any coherent nonlinear solution, i.e., ¥c = / a(f) coslk - x — wit| df
0

can be studied as the S3T stability of the
homogeneous equilibrium

k = k¢(cosf,sin6)

C(k) ~ [a(0)* 6(k — ky)

(which corresponds to the equilibrium
covariance in a forced—dissipative flow with
forcing structures considered in this talk)

(cf. Bakas, Constantinou & loannou 2014)



Contrary to modulational instability, which only
addresses the homogeneous turbulent equilibrium,
within S3T we can also study the stability of

any inhomogeneous turbulent equilibrium



Stability of inhnomogeneous S3T equilibria

Stability analysis of
INnhomogeneous turbulence
states with zonal jets
predicts:

existence of multiple
equilibria and their
domain of attraction

merging of jets as €
INncreases

For higher energy input rates
equilibria become S3T
unstable and move towards
the left of the diagram
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We have discussed the S3T instability of the
homogeneous turbulent equilibrium and also the
stability of inhomogeneous S3T equilibria characterized
by zonal jets.

Are these results reflected in nonlinear simulations?

Nikos showed already a lot of examples
in the previous talk.

Also, extensive comparison of the predictions of S3T
with nonlinear simulations (bifurcation diagrams, mean
flow profiles, jet mergers, etc) can be found in:

Constantinou, Farrell and loannou 2014
Bakas and loannou 2014



Conclusions

2 S3T predicts emergence of jets out of homogeneous turbulence as a

bifurcation

2 turbulence acts anti-diffusively reinforcing even infinitesimal mean

flow inhomogeneities

2 S3T stability analysis embeds the modulational instability results into

a more general physical framework

2 the stability of inhomogeneous statistical turbulent equilibria (i.e.

Jupiter) can be studied within S3T framework
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