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Planetary turbulence

most of the energy of the flow is in large-scale coherent jets and vortices of specific form

not at the largest allowed scale (as inverse cascade might imply)
arrest of the cascade by jets

banded Jovian jets polar front jet

NASA/Cassini Jupiter Images NASA/Goddard Space Flight Center



Soundary layer turbulence

Measurement
array

FIGURE 12. View of the measurement array installed at the SLTEST site.

Hutchins & Marusic 2007



Wall-bounded turbulence

high and low speea
streak isocontours

in Poiseuille turbulence
at FT)eT= 950

Credit: A Lozano-Duran



The problem to be addressed:

Understand how these specific structures arise
and how are they maintained



Claims

I. The underlying dynamics of structure formation lies in the
iInteraction of turbulent eddies with mean flows

II. Often, structure formation has analytic expression
only in the Statistical State Dynamics (SSD/DSS)

(the dynamics that govern the statistics of the flow
rather than the dynamics governing single flow realizations)

III. Because of (I) a second-order closure of the SSD is adequate



Statistical State Dynamics (SSD)

1. split the flow variables into: (mean) + eddy’
u(z,t) = (u(z,t) + u'(z,t)

2. form the hierarchy of same-time statistical moments/cumulants

(u(xy,t)) , éu’(ma,t)u’(mb,t)z, éu’(ma,t)u’(mb,t)u’(mc,t)z,
o e o

3. find how each one of the moments/cumulants evolve
act = (e, )

2,C) = F (v, ¢, )
G, = Fs (CV, € cl), ) ete



Statistical State Dynamics (SSD)

1. split the flow variables into: (mean) + eddy’
u(z,t) = (u(z,t) + u'(z,t)

2. form the hierarchy of same-time statistical moments/cumulants

(u(xy, 1)), éu’(ma,t)u’(mb,t)z , éu’(ma,t)u’(mb,t)u'(mc,t)z e
o e o

3. find how each one of the moments/cumulants evolve
act = (e, )

9Cyy) = T (Cél) L Cy) ag))
ool ) 0O c9) N

4. S3T/CE2: closure at second-order



Remarks on SSD — What is novel here?

ac = (c), )
Cl) =7 (e 02 c)
ab abc ?

C5 = F (D, ¢, ¢, chly) ete



Remarks on SSD — What is novel here?

Usually (inspired by homogeneous isotropic turbulence) people took (u(z,t)) = 0

but this is fundamental for

<
structure formation (claim (I))

acl) (o o)
DiCl = Fs ( i)l Chly) s ete



Remarks on SSD — What is novel here?

Usually (inspired by homogeneous isotropic turbulence) people took (u(z,t)) = 0
Main effort/interest was to obtain the equilibrium statistics: 0 =0

but this is fundamental for
structure formation (claim (I))

<
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Remarks on SSD — What is novel here?

a.c = 71 (c, )

0cl) =7 (e o o)
C5 = F (D, ¢, ¢, chly) ete

By studying the dynamics of the statistics new phenomena arise
that are either not present or are obscured in single tlow realizations



| will show that within the framework of SSD we understand:

Jet/large-scale wave emerge in planetary turbulence
A. as an instability of the SSD

(this shows that SSD capture the mechanism)

Roll/streak structures
B. in pre-transitional free-stream Couette turbulence
emerge as an instability of the SSD



Jet/Large-scale wave emergence
INn planetary turbulence

Farrell & loannou 2003, 2007; Srinivasan & Young 2012; Tobias & Marston 2013; NCC, Farrell & loannou 2014, 2016
Bakas, NCC & loannou 2015, Bakas & loannou 2013, 2014; Parker & Krommes 2013, 2014, Marston, Tobias, Chini, 2016;
Ait-Chaalal, Schneider, Meyer, Marston 2016



barotropic vorticity equation on a B-plane
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barotropic vorticity equation on a B-plane

OC+u - V(C+ By) = —rC+ Veg

V.-u=90
U = (u,v) — (—8y¢,ax¢)
(=(Vxu) z=Ay

5: gradient of
planetary vorticity

ST

dissipation stochastic
at rate r forcing
Zero mean
white in time
&

statistically homogeneous

<£(maa ta)f(wba tb)> — Q(CE@ — mb) 5(ta — tb)

two non-dimensional
parameters

Sk?/TS
B/(kgr)



barotropic B-plane turbulence exhibits
large-scale structure formation

U(y,t=753)
statistically

homogeneous forcing

(no inhomogeneity
. Isimposed by the forcing)

any random flow

, Inhomogeneities organize the
turbulence in a manner so that

B they are reinforced

we observe:

e et emerge

1o |jets appear to change much

—  slower compared to the
eddies

e jet have a particular structure

8/<;J2c/7“3 = 10°
B/(kgr) = 67

http://www.youtube.com/watch?v=ZtzZW25NooDk



various [B-plane turbulence flows
at statistically steady state:

homogeneous — traveling waves — zonal jets
B/ (kgr) = 67

5 x 103 5 x 104

this suggests that there is some kind of transition as € is increased

[ snapshots of the streamfunction ¢(x,t) with instantaneous zonal mean zonal flow U(y,1) |



S3T closure of SSD

take the {mean) as a zonal mean
under the ergodic assumption that

(mean) = ensemble average over forcing realizations

Z(x,t) = (((x,1)) O (¢ (Xay )¢ (%0, 1))

1st cumulant 2nd cumulant



S3T closure of SSD

0Z+U-V(Z+By) =R(CY)—rZ
905 = [A(U)q + A(U)] C + eQup

with

def

U = (-0,,0,)A ' Z
CDE (¢ (x4, 8)C (35, 1)

def _ R the spatial covariance of the statistically
Qab = Q(Xa — xp) ~homogeneous stochastic forcing

R(C) S~ - V) = V- |5 (Va4 Vol 1) O
a=b

(the Reynolds stresses are given as a linear function of C)



S3T closure of SSD

0hZ+U-V(Z+ Py = (0(2)) —rZ
0,C'2 = [A(U), + A(U),] C2 + £Qu

neglect of third cumulant
IS equivalent with
neglect of the eddy—eddy term in eddy equation in the EOM

(—> PaininNeck-term Tobias was talking about on Monday)

Note: The dynamics of the 1st & 2nd cumulants is necessarily quasi-linear (Herring 1963)



S3T closure of SSD

0,Z+U-V(Z+By) =R(CY)—rZ
5CD = [A(U), + A(U)) C2 + eQus

The S3T system

& nonlinear

e autonomous, deterministic (central limit theorem)

e admits fixed point solutions (Ue(x),Ce(Xa,Xb))

& associated perturbation equations used to determine
stability of these fixed points



S3T equilibria for homogeneous forcing

e e B _ ﬁ (for any €, B and
UP=0, C"(%a—xp) = 27 homogeneous Q)

zero mean flow + non-zero second-order eddy statistics

U¢(x) = (Ue(y),()) . C(zq — b, Ya, Yb)

zonal jet mean flow + non-zero zonally homogeneous 2nd-order eddy statistics



S3T equilibria for homogeneous forcing

e e B _ ﬁ (for any €, B and
UP=0, C"(%a—xp) = 27 homogeneous Q)

zero mean flow + non-zero second-order eddy statistics

U¢(x) = (Ue(y),()) . C(zq — b, Ya, Yb)

zonal jet mean flow + non-zero zonally homogeneous 2nd-order eddy statistics

Perturbations about these equilibria are governed by:

hydrodynamic
stability we linearized about

at5Z — A(Ue) 5Z _|_ R(éC) a turbulent state!
0,6Cap = [Aa(U®) + A (U®)] 6Cap + (6 A, + 6A4,)C
sAZ AUE + 5U) — AU

eigenanalysis of this system determines the stability of (Ue(x)aCe(Xaaxb))



Consider the homogeneous turbulent equilibrium:

e e B _ ﬁ (for any €, B and
UP=0, C"(%a—xp) = 27 homogeneous Q)

zero mean flow + non-zero second-order eddy statistics

How does the state with no mean flow
becomes unstable?




oroof of concept

An Infinitesimal mean flow oU distorts the turbulence in a manner so
as to produce Reynolds stresses R(6C) that reinforce the 6U itself

0102 =A(0 )d0Z +R(6C)

6 | -

B/(ksr) =170 4,
5_5k;]2@/r3:5><103 |

B/(ksr) =0
ek?/r? =5 x 10

Farrell & loannou 2007
Srinivasan & Young 2012
NCC, Farrell & loannou 2014
| Bakas, NCC & loannou 2015

Nmf}
> S3T

eigenfunction




Verification of S3T predictions
for the jet formation bifurcation

bifurcation diagram
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8 / 8 C NCC, Farrell & loannou 2014



Verification of the S3T predictions for the structure
of the finite amplitude jet equilibria
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NCC, Farrell & loannou 2014
S3T instabilities grow and reach finite amplitude
to produce new inhomogeneous S3T equilibria



Ro
N pre-t

Couette turbulence

|/streak formation
ransitional free-stream

Credit: T Zaki

Farrell, loannou & Nikolaidis (2016) Instability of the roll/streak structure induced by free-stream
turbulence in pre-transitional Couette flow, Phys. Rev. Fluids. (sub judice, arXiv:1607.05018)



roll/streak formation in
free-stream Couette turbulence

flow = streamwise + perturbations

mean

u=U+4u
1

(%U—I—U . VU—|— VP — R—AU = —<u/ . Vu’}
e
1
o'+ U -Vu' +u - VU+Vp — —Au =— (v - Vu' — (u - Vu')) +/e€

Re
V-U=V .4 =V-£=0

Credit: V Thomas



proof of concept

2D problem

(==)oU , (—) R(C)

Analogously, in the 3D problem
infinitesimal mean flows organize the turbulent Reynolds stresses
SO as to reinforce the very same mean flow



proof of concept

1. Perturb a shear flow by an infinitesimal streak in the presence of turbulence
2. Calculate the response of the turbulence and the Reynolds stresses the are
produce.

s SSSN\N\ | S 7z

Farrell & loannou 2012

minimal channel
Re=400

=22/ /) O\ NS

—1I.5 —i —OI.5 0 0.5 1 1.5
2/
it turns out that the stresses force a roll (V, W)
exactly such as to amplify the streak

Interpretation: turbulent Reynolds stresses are organized by the
streak to force a roll circulation configured to amplify the streak



growth rate

0.04

0.03 |

0.02 |

0.01 |

-0.01 }

-0.02

-0.03

eigenvalues/eigenmodes of the least stable
S3T roll/streak modes

1 2 3 4

e/e.

Farrell, loannou & Nikolaidis 2016

minimal channel: Ly = 1.75m, L, = 1.2, Re = 400, stochastic excitation at kx = 2m/Lx
Ec sustains turbulence with energy 0.14% of the Couette flow energy.



max. streak velocity

0.25

=
O
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bifurcation structure
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|

Farrell, loannou & Nikolaidis 2016

2.9 3

>
(transition occurs at ~6)

minimal channel
Re=400



Conclusions

S3T generalizes the hydrodynamic stability of Rayleigh and allow us to study
the stability of turbulent flows

The emergence of coherent structures in a variety of flow settings is
(analytically) predicted as an instability of the turbulent state

S3T also predicts the final inhomogeneous turbulent state at which the system
bifurcates to after the homogeneous state becomes unstable

This is a first tool that enables us to determine the tipping points of the climate
(climate = statistical turbulent equilibrium state)
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