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ocean currents modelled at different horizontal resolutions
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ocean currents modelled at different horizontal resolutions

typically used state-of-the-art
for climate predictions ocean—sea-ice model

|PCC, etc... [Gogh,V,, MoMA, 1889]




can we make the coarse model feel the effect
of the flow details that it does not resolve?

[in technical terms:“eddy parameterisation’]

we don’t need to know what each eddy is doing!
we care for the low-order, long-time statistics of the system

(climate vs weather)
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a small primer on how eddies
affect the large-scales



eddies move tracers along neutral directions

vertical displacement horizontal displacement neutral (isopycnal) displacement

light

perturbation 4

® @ — ®
v
dense
up [Abernathey et al., Ocean Mixing ch. 9, 2021]

| latitude

isopycnal/neutral direction = along isopycnal
diapycnal = across isopycnal (costs potential energy)

7/



how eddies affect tracers!?

@ (few equations hardly ever hurt)

tracer (e.g. heat) dynamics

oc ,
—4+u-Vec=«xV-°c
ot

resolved unresolved



how eddies affect tracers!?

Q (few equations hardly ever hurt)

tracer (e.g. heat) dynamics

oc ,
—+u-Vc=«kV-c
ot
oc ”_
—+ u -Vc =kV =V - (u’c’)
ot
— = S—— ——  —
c= ¢ + ¢
the dynamics the subgrid
( \) model solves for eddy fluxes

resolved unresolved

! ./

i'c’ eddy tracer flux



parametrization

express eddy tracer flux in terms of the resolved fields

u'c’ = SFu,c,...)

eddy tracer eddy tracer flux
flux parametrization



isoneutral diffusion

eddies mix tracers, therefore u'c’' & — eddyVE — -V (u’c’) = Keddy Ve

downgradient flux “eddy diffusivity”

|0



isoneutral diffusion

eddies mix tracers, therefore u'c' ~ — eddyVE

downgradient flux

Kyertical @% Kh O O

uc'~—-10 K O
0 0 «k,

Iso by Chals

|0

— V. (W) = kg VT

“eddy diffusivity”

anisotropic
downgradient flux



eddies mix tracers, therefore

Kyertical éé%glczj

50 by Chals

a 3x3 tensor
that rotates coords
to neutral-cross neutral
directions

Keddy

isoneutral diffusion

I A o~ - . . YA 2=
UC < eddyvc — V (uC) — eddyv C

downgradient flux “eddy diffusivity”
Kk, O O
77 _ anisotropic
uc'~—-|0 x O0f-Vc downgradient flux
0 0 k

I Al A~ . -
u'c’' & — Kegay - VC

downgradient flux
locally aligned with
neutral direction
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isoneutral diffusion

u'c'~ — (Kgy + Kgegi) - VC

C )

skew flux tracer

modeling diffusion
stirring along along

isopycnals isopycnals

[Reddi 1982, Gent and McWilliams 1990,
Griffies 1998, Griffies et al 1998]



it was all fun and games until...

towards the surface dominant
dynamics change

mesoscale parametrization
should “convert’” to

mo ~
loger boundary layer turbulence parametrization
[eg Ferrari et al. 2008]

\ GM-Redi should “turn off”
when isopycnal become too steep

[slope-clipping, slope tapering
Gerdes et al. 991, Dabanasoglou and
McWilliams 1995, Large et al. 1997 ]

parametrization should “turn off”
in places where model is able to
resolve eddies
(double-counting)

up /s
o b’ cl’) Q(S [scale-aware eg Zanna et al. 2017]

latitude
eddy activity varies
(laterally, vertically, seasonally?)
GM/Redi diffusivities may depend
on space/time



how do we come up with new parametrizations?

get inspired by data
(model output,
observations, night sky,...)

derive a model
from physical intuition
(usually involves some
free parameters)

calibrate free parameters
to match data

implement in climate model
13 and produce |IPCC reports, etc




how do we come up with new parametrizations?

and how machines can help?

get inspired by data
(model output,
observations, night sky,...)

# @i@h
A

calibrate free parameters
to match data

14

derive a model
from physical intuition
(usually involves some
free parameters)

implement in climate model
and produce IPCC reports, etc




how about data-driven?
doesn’t that involve a neural network!?

Newton's laws were, actually, “data-driven™

Instead of starting from a neural network
with O(leé) free parameters
we start from what we currently have
and enhance our physical models adding few more free parameters

calibration is data-driven

|5



calibration

“All agree that calibration is great!
But most don’t do it in a systematic manner

because it is so cumbersome!”
— adage

o ™ Exac’cl,gl

, 1 othing much!

HL Cecllia, was | s?ab . . How else were you

how’s it golng? >Just ABout o planning

calibrate the gM ,
AiFfusivity! to calibrate?
— 3' OH NO! | was

hoping U'd never
needed to do that!

r

i}

A

and slightly wmodified

q derivative-free Bayesian optimization
using ensemble Kalman filters

|6 [Iglesias et al., Inverse Problems, 201 3]



Ensemble Kalman Inverse process

Derivative-free ensemble optimization method
that seeks to find the optimal parameters 60 for inverse problem

y G(H) + n
observatlons noise
(data) free
parameters
ocean
model

Calibration is done online by running ensembles of forward model runs

|7 [Iglesias et al., Inverse Problems, 201 3]



julia

B CliMA | Oceananigans.jl ' Public

#_ An oceanic library for fast, friendly, data-driven fluid
dynamics on CPUs and GPUs

& clima.github.io/oceananigansdocumentation/stable
53 MIT License
Y 527 stars % 95 forks

W Unstar & Unwatch ~

Code Issues 218 Pull requests 40

® 2daysago OV

View code

:= README.md

Oceananigans.|l

= _ Fast and friendly ocean-flavored Julia software for
simulating incompressible fluid dynamics in Cartesian
and spherical shell domains on CPUs and GPUs.

software enables research &
CliMA

CLIMATE MODELING ALLIANCE

[ CliMA /| EnsembleKalmanProcesses.jl ' Public [ adelinehillier | OceanTurbulenceParameterEstimation.jl ' Public

Implements Optimization and approximate uncertainty Parameter estimation for column models of the ocean surface boundary layer.

quantification algorithms, Ensemble Kalman Inversion, and

Ensemble Kalman Processes. 53 MIT License

vy 1star % 0 forks
& clima.github.io/ensemblekalmanprocesses.jl/dev

53 Apache-2.0 License W Unstar & Unwatch ~
12 . .
GRS iEte <>Code () Issues 6 19 Pull requests 2 (® Actions [l Projects
W Unstar & Watch ~
Code Issues 12 Pull requests 2 Actions ¥ main ~
€ navidcy Update README.md ® now 9157
¥ main ~

View code

@’ bors and trontrytel v 19daysago

README.md
View code

OceanlurbulenceParameterEstimation.jl

:= README.md Vi

A Julia package designed to leverage Oceananigans.jl and
EnsembleKalmanProcesses.jl to allow for calibration of ocean turbulence

parametrizations.

EnsembleKalmanProcesses.ji

Implements Optimization and approximate uncertainty
quantification algorithms, Ensemble Kalman Inversion, and
Ensemble Kalman Processes.

|18



baroclinic adjustment of a front

Buoyancy and tracer concentration at t = 30 days

up

x/;];I;;;de

longitude

19



depth [km]

depth [km]

-0.54

-1.0

0.5

-1.0

0.0

Baroclinic adjustment at t = 30 days

Zonal velocity

-500

0.0

|

-500

latitude [km]

0.4

0.3

0.2

-0.1

0.0

0.5+

-1.0

0.5+

-1.0

20

0.0

zonally-averaged baroclinic adjustment of a front
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perfect model calibration (proof-of-concept)
using Ensemble Kalman Inverse process

y G(O) + V] prior distributions
values used
to produce

observatlons noise / cbservations
(data) froa
parameters
ocean 0.0015-
model [Red
0.0010+
|. produce observations with given GM and Redi diffusivities
] 0.0005+
2. “close eyes” and see if EKI can converge figure out the values
0.0000-
(“perfect model calibration” = obs y were generated by model G) 500 1000 1500

diffusivity [m2s—1]
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perfect model calibration (proof-of-concept)
using Ensemble Kalman Inverse process
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OK, so what!?

we can easily calibrate free parameters of a turbulence closure

we can even calibrate simultaneously across various scenarios
and find optimal parameters that are robust

any parametrization obtain this ways
is, by construction, numerically stable
when added back to the model




but that’s only the beginning

produce data

(high-resolution models,
LES, DNS)

or gather observations

and use as “ground truth”

Oceananigans.jl

use physical intuition
enhance parametrizations
(add physics, not if-statements)

possibly this adds few
more free parameters

calibrate free parameters
to robustly match data
% across various scenarios

Ensemble Kalman

Processes implement in

climate model






