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(why ocean eddies give headaches to climate scientists?) 

[ACCESS-OM2 ocean—sea-ice models, 
Kiss et al., Geosci. Model Dev. 2020]
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for climate predictions
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can we make the coarse model feel the effect

of the flow details that it does not resolve?
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[in technical terms: “eddy parameterisation”]

we don’t need to know what each eddy is doing!

we care for the low-order, long-time statistics of the system


(climate vs weather)



a small primer on how eddies

affect the large-scales
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eddies move tracers along neutral directions

[Abernathey et al., Ocean Mixing ch. 9,  2021]

isopycnal/neutral direction = along isopycnal

diapycnal = across isopycnal (costs potential energy)
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vertical displacement horizontal displacement neutral (isopycnal) displacement 

up

latitude



how eddies affect tracers? 
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∂c
∂t

+ u ⋅ ∇c = κ∇2c

resolved unresolved

c = +c c′￼

(few equations hardly ever hurt) 

tracer (e.g. heat) dynamics

😳
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∂c
∂t

+ u ⋅ ∇c = κ∇2c

resolved unresolved

c = +c c′￼

(few equations hardly ever hurt) 

tracer (e.g. heat) dynamics

😳

∂c
∂t

+ u ⋅ ∇c = κ∇2c −∇ ⋅ (u′￼c′￼)⏟the dynamics the

model solves for

subgrid

eddy fluxes  

eddy tracer fluxu′￼c′￼

u′￼c′￼

c
c cu



parametrization
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eddy tracer

flux

u′￼c′￼ = ℱ(u, c, . . . )
eddy tracer flux 

parametrization


express eddy tracer flux in terms of the resolved fields

u′￼c′￼ cu . . .



isoneutral diffusion 
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u′￼c′￼ ≈ − κeddy ∇ceddies mix tracers, therefore

downgradient flux “eddy diffusivity”

⟹ − ∇ ⋅ (u′￼c′￼) = κeddy ∇2c
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u′￼c′￼ ≈ − κeddy ∇ceddies mix tracers, therefore

downgradient flux “eddy diffusivity”

⟹ − ∇ ⋅ (u′￼c′￼) = κeddy ∇2c

u′￼c′￼ ≈ −
κh 0 0
0 κh 0
0 0 κv

⋅ ∇c
anisotropic 


downgradient fluxκhorizontal

κvertical

u′￼c′￼ ≈ − 𝕂eddy ⋅ ∇c
downgradient flux

locally aligned with

neutral direction

κisopycnal

κ dia
py

cn
al

=
0

𝕂eddy

a 3x3 tensor

that rotates coords


to neutral-cross neutral

directions



isoneutral diffusion 

u′￼c′￼ ≈ − (𝕂GM + 𝕂Redi) ⋅ ∇c

skew flux

modeling


stirring along

isopycnals  

tracer

diffusion


along

isopycnals  

[Reddi 1982, Gent and McWilliams 1990,

Griffies 1998, Griffies et al 1998]



it was all fun and games until…
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up

latitude

towards the surface dominant 
dynamics change 

mesoscale parametrization

should “convert” to


boundary layer turbulence parametrization 

parametrization should “turn off”

in places where model is able to 

resolve eddies

(double-counting)  

[eg Ferrari et al. 2008]

[scale-aware eg Zanna et al. 2017]

GM-Redi should “turn off”

when isopycnal become too steep

[slope-clipping, slope tapering

Gerdes et al. 1991, Dabanasoglou and 
McWilliams 1995, Large et al. 1997 ]

eddy activity varies

(laterally, vertically, seasonally?)


GM/Redi diffusivities may depend

on  space/time



how do we come up with new parametrizations?
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get inspired by data

(model output, 

observations, night sky,…)

derive a model

from physical intuition

(usually involves some


free parameters) 

calibrate free parameters

to match data 

implement in climate model 

and produce IPCC reports, etc
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get inspired by data

(model output, 

observations, night sky,…)

derive a model

from physical intuition

(usually involves some


free parameters) 

calibrate free parameters

to match data 

implement in climate model 

and produce IPCC reports, etc

and how machines can help? 
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how about data-driven?

doesn’t that involve a neural network? 

Newton’s laws were, actually, “data-driven”

Instead of starting from a neural network

with O(1e6) free parameters


we start from what we currently have

and enhance our physical models adding few more free parameters

calibration is data-driven
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calibration 

“All agree that calibration is great!

But most don’t do it in a systematic manner


because it is so cumbersome!”

— adage

and slightly modified
adopted from

Hi Cecilia,

how’s it going?

Why so? Wait!!

Do I need to run the


ADJOINT model?
OH NO! I was


hoping I’d never

needed to do that!

Nothing much!

Was just about to

calibrate the GM


diffusivity!

That’s brave!
Exactly!


How else were you

planning


to calibrate?

derivative-free Bayesian optimization

using ensemble Kalman filters   

[Iglesias et al., Inverse Problems,  2013]
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Ensemble Kalman Inverse process

y = G(θ) + η

observations

(data) free


parameters 

noise

ocean

model

Derivative-free ensemble optimization method

that seeks to find the optimal parameters  for inverse problemθ

[Iglesias et al., Inverse Problems,  2013]

Calibration is done online by running ensembles of forward model runs
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software enables research  
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baroclinic adjustment of a front

up

latitude
longitude
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zonally-averaged baroclinic adjustment of a front

with GM + Redi diffusion

κGM = 1000 m2 s−1 κRedi = 900 m2 s−1

latitude [km]latitude [km]

de
pt

h 
[k

m
]

de
pt

h 
[k

m
]
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perfect model calibration (proof-of-concept) 

using Ensemble Kalman Inverse process

κGM

diffusivity [m2 s−1]

κRedi

prior distributions

1. produce observations with given GM and Redi diffusivities


2. “close eyes” and see if EKI can converge figure out the values

values used

to produce


observations 

y = G(θ) + η

observations

(data) free


parameters 

noise

ocean

model

(“perfect model calibration” = obs  were generated by model )y G
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perfect model calibration (proof-of-concept) 

using Ensemble Kalman Inverse process

κGM
κRedi



OK, so what?

we can easily calibrate free parameters of a turbulence closure

we can even calibrate simultaneously across various scenarios

and find optimal parameters that are robust

add depth/time/anything dependence in diffusivities is trivial

any parametrization obtain this ways

is, by construction, numerically stable


when added back to the model



but that’s only the beginning 

produce data

(high-resolution models,


LES, DNS)

or gather observations


and use as “ground truth” use physical intuition

enhance parametrizations


(add physics, not if-statements)


possibly this adds few

more free parameters

calibrate free parameters

to robustly match data 


across various scenarios

implement in 
climate model 

Ensemble Kalman 
Processes

Oceananigans.jl

when cycle

“converges”




