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ocean currents modelled at different horizontal resolutions

(why ocean eddies give headaches to climate scientists?) 

[ACCESS-OM2 ocean—sea-ice models, 
Kiss et al., Geosci. Model Dev. 2020]
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for climate predictions

IPCC, etc… 
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ocean—sea-ice model 



3

0.25° 0.10°1°

150E 165E 180E135E 150E 165E 180E135E 150E 165E 180E135E

15S

30S

30S

ocean currents modelled at different horizontal resolutions

(why ocean eddies give headaches to climate scientists?) 

[ACCESS-OM2 ocean—sea-ice models, 
Kiss et al., Geosci. Model Dev. 2020]

typically used
for climate predictions

IPCC, etc… 

state-of-the-art
ocean—sea-ice model 

Broulee 
NSW

Broulee 
NSW

Broulee 
NSW



4

0.25° 0.10°1°

150E 165E 180E135E 150E 165E 180E135E 150E 165E 180E135E

15S

30S

30S

ocean currents modelled at different horizontal resolutions

state-of-the-art
ocean—sea-ice model 

(why ocean eddies give headaches to climate scientists?) 

[Gogh, V., MoMA,1889]

typically used
for climate predictions

IPCC, etc… 

state-of-the-art
ocean—sea-ice model 



5

can we make the coarse model feel the effect
of the flow details that it does not resolve?
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[in technical terms: “eddy parameterisation”]

we don’t need to know what each eddy is doing!
we care for the low-order, long-time statistics of the system

(climate vs weather)



a small primer on how eddies
affect the large-scales
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eddies move tracers along neutral directions

[Abernathey et al., Ocean Mixing ch. 9,  2021]

isopycnal/neutral direction = along isopycnal
diapycnal = across isopycnal (costs potential energy)
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vertical displacement horizontal displacement neutral (isopycnal) displacement 

up

latitude



how eddies affect tracers? 
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∂c
∂t

+ u ⋅ ∇c = κ∇2c

resolved unresolved

c = +c c′ 

(few equations hardly ever hurt) 

tracer (e.g. heat) dynamics

😳
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∂t

+ u ⋅ ∇c = κ∇2c

resolved unresolved

c = +c c′ 

(few equations hardly ever hurt) 

tracer (e.g. heat) dynamics

😳

∂c
∂t

+ u ⋅ ∇c = κ∇2c −∇ ⋅ (u′ c′ )⏟the dynamics the
model solves for

subgrid
eddy fluxes  

eddy tracer fluxu′ c′ 

u′ c′ 

c
c cu



parametrization
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eddy tracer
flux

u′ c′ = ℱ(u, c, . . . )
eddy tracer flux 
parametrization

express eddy tracer flux in terms of the resolved fields

u′ c′ cu . . .



isoneutral diffusion 
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u′ c′ ≈ − κeddy ∇ceddies mix tracers, therefore

downgradient flux “eddy diffusivity”

⟹ − ∇ ⋅ (u′ c′ ) = κeddy ∇2c
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isoneutral diffusion 
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u′ c′ ≈ − κeddy ∇ceddies mix tracers, therefore

downgradient flux “eddy diffusivity”

⟹ − ∇ ⋅ (u′ c′ ) = κeddy ∇2c

u′ c′ ≈ −
κh 0 0
0 κh 0
0 0 κv

⋅ ∇c
anisotropic 

downgradient fluxκhorizontal

κvertical

u′ c′ ≈ − 𝕂eddy ⋅ ∇c
downgradient flux
locally aligned with
neutral direction

κisopycnal

κ dia
py

cn
al

=
0

𝕂eddy

a 3x3 tensor
that rotates coords

to neutral-cross neutral
directions



isoneutral diffusion 

u′ c′ ≈ − (𝕂GM + 𝕂Redi) ⋅ ∇c

skew flux
modeling

stirring along
isopycnals  

tracer
diffusion

along
isopycnals  

[Reddi 1982, Gent and McWilliams 1990,
Griffies 1998, Griffies et al 1998]



it was all fun and games until…
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up

latitude

towards the surface dominant 
dynamics change 

mesoscale parametrization
should “convert” to

boundary layer turbulence parametrization 

parametrization should “turn off”
in places where model is able to 

resolve eddies
(double-counting)  

[eg Ferrari et al. 2008]

[scale-aware eg Zanna et al. 2017]

GM-Redi should “turn off”
when isopycnal become too steep

[slope-clipping, slope tapering
Gerdes et al. 1991, Dabanasoglou and 
McWilliams 1995, Large et al. 1997 ]

eddy activity varies
(laterally, vertically, seasonally?)

GM/Redi diffusivities may depend
on  space/time



how do we come up with new parametrizations?
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get inspired by data
(model output, 

observations, night sky,…)

derive a model
from physical intuition
(usually involves some

free parameters) 

calibrate free parameters
to match data 

implement in climate model 
and produce IPCC reports, etc
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get inspired by data
(model output, 

observations, night sky,…)

derive a model
from physical intuition
(usually involves some

free parameters) 

calibrate free parameters
to match data 

implement in climate model 
and produce IPCC reports, etc

and how machines can help? 
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how about data-driven?
doesn’t that involve a neural network? 

Newton’s laws were, actually, “data-driven”

Instead of starting from a neural network
with O(1e6) free parameters

we start from what we currently have
and enhance our physical models adding few more free parameters

calibration is data-driven
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calibration 

“All agree that calibration is great!
But most don’t do it in a systematic manner

because it is so cumbersome!”
— adage

and slightly modified
adopted from

Hi Cecilia, 
how’s it going?

Why so? Wait!! 
Do I need to run the 

ADJOINT model?
OH NO! I was 

hoping I’d never 
needed to do that!

Nothing much! 
Was just about to 
calibrate the GM 

diffusivity!

That’s brave!
Exactly! 

How else were you 
planning 

to calibrate?

derivative-free Bayesian optimization
using ensemble Kalman filters   

[Iglesias et al., Inverse Problems,  2013]
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Ensemble Kalman Inverse process

y = G(θ) + η

observations
(data) free

parameters 

noise

ocean
model

Derivative-free ensemble optimization method
that seeks to find the optimal parameters  for inverse problemθ

[Iglesias et al., Inverse Problems,  2013]

Calibration is done online by running ensembles of forward model runs
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software enables research  



19

baroclinic adjustment of a front

up

latitude
longitude
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zonally-averaged baroclinic adjustment of a front

with GM + Redi diffusion

κGM = 1000 m2 s−1 κRedi = 900 m2 s−1

latitude [km]latitude [km]
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pt

h 
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perfect model calibration (proof-of-concept) 
using Ensemble Kalman Inverse process

κGM

diffusivity [m2 s−1]

κRedi

prior distributions

1. produce observations with given GM and Redi diffusivities

2. “close eyes” and see if EKI can converge figure out the values

values used
to produce

observations 

y = G(θ) + η

observations
(data) free

parameters 

noise

ocean
model

(“perfect model calibration” = obs  were generated by model )y G
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OK, so what?

we can easily calibrate free parameters of a turbulence closure

we can even calibrate simultaneously across various scenarios
and find optimal parameters that are robust

add depth/time/anything dependence in diffusivities is trivial

any parametrization obtain this ways
is, by construction, numerically stable

when added back to the model



but that’s only the beginning 

produce data
(high-resolution models,

LES, DNS)
or gather observations

and use as “ground truth” use physical intuition
enhance parametrizations

(add physics, not if-statements)

possibly this adds few
more free parameters

calibrate free parameters
to robustly match data 

across various scenarios

implement in 
climate model 

Ensemble Kalman 
Processes

Oceananigans.jl

when cycle
“converges”




