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Coherent structures in wall-turbulence

Mean shear profile — Rolls — Streaks — Fluctuations

Coherent roll-streak structure and turbulent fluctuations
actively participate in a self-sustaining cycle
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How is the loop closed!?
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time-dependent

Proposed mechanism for energy transfer
to turbulent fluctuations ~

turbulent
fluctuations

Modal instabilities of the streak

[Wialefte 199/, Kawahara 2003, Hack & Moin 2018, ...]

Transient growth due to non-normality of linear operator &
[Schoppa & Hussain (2002), Farrell & loannou (2012), Giovanetti et al. (2017),...]

Neutral modes — vortex-wave interactions
[Hall & Smith (1988), Hall & Sherwin (2010),...]

Parametric instability (enhanced energy transfer due to time-varying U(y, z, 1))
[Farrell & loannou (2012), Farrell et al. (2016),...]



We will assess the role of each proposed mechanisms

for energy transfer from streak to the fluctuations.




Linear and nonlinear processes
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Linear and nonlinear processes

decompose the flowasu = U +u’ (U = (u); some average)
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Linear and nonlinear processes

decompose the flowasu = U +u’ (U = (u); some average)

oU 1 , , ,
— +U-VU=-=V{p)+vVU- W' -Vu) V-U=0
ot P -
Reynolds stresses
We didn’t linearise a_u/ _ g(U) TH 1 /V(u /)
about a solution U! or B A different choice for U
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' ) can make a process
Inear noniinear - -
We decomposed the flow included in Z(U)u’

. . FoOCesses Focesses
and call “linear” anything P P

to become part of ' (u').
included in Z£(U)u’.
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Linear processes energise the fluctuations

fluctuation dynamics

/
u=U+u ou
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flow = base ~+  fluctuations at - _ - B
flow ~ ~
linear nonlinear
processes processes
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Problem set-up: minimal turbulent channel
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Half channel flow

Constant pressure gradient

Solution by
Direct Numerical Simulation
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Problem set-up: minimal turbulent channel

Streaky base flow

U=U(y,z,1)X U(y,z,0) = |u(x,y,z,0)dx /L,

(only x-component)
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@

domain-integrated
turbulent kinetic energy

Problem set-up: minimal turbulent channel
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turbulent production

We run DNS for >600//u_and keep all snapshots of base flow U(y, z, 1)

13



Two ways to assess various mechanisms

Sensibly modify equations of motion

Interrogate DNS output .
to preclude some mechanisms

non-intrusive allows infer casual relationships
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Modal instabilities of the streaky base flow

/11 + ia)l
growth rates

LUy, z,1) = U ! A > Ay >

Eigen-decomposition of &
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Modal instabilities of the streaky base flow

)l1'4':ha)l

- growth rates
Ay + 1w,

LUy, z,1) = U ! A > Ay >

1&3 ‘F‘i003

sinuous unstable
eigenmode

Ahlu, ~ 3

base flow U(y, z, ) 300

100 ~

+;> 50 <

0 /

100\
= 50

100

100 L
N 150 O ”




Modal instabilities of the streaky base flow

U is unstable Z90% of the time
~2-3 unstable modes
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Autocorrelation of U = base flow changes (at least) ~3 x slower than e-folding 1/4

= modal instabilities do have time to grow

|18




If modal instabilities are crucial for the self-sustaining cycle

flow should laminarise without them...
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Suppressing modal instabilities of the streaky base flow

/11 + ia)l
LUy, z,0)=U ERE
/13 + ia)3

@ every instance we stabilise 2 = if 4, > 0, replace with —/,

—/11+i0)1
~ —/Hr+1w
E.g., for 2 unstable modes: LUy, z,t) = U . ’ .
/13 + 1,
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Modally stable wall-turbulence
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Modally stable wall-turbulence

S
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. and it’s not that different from the DNS — turbulent intensities only drop by ~10%
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Non-modal transient growth

Since Ju’ - N (u')dV = 0, turbulent energy is governed by linear processes

ou’ 2w
- = U
ot —> u'(t) = (I)t,to uw
u'(t =1y =u| -
linear map
fromtotot
“u,(to + T) ‘2dV “(Dto,to+T U ‘2dV 2
Gmax(t()9 T) = sup — = sup — = max [svd(CI)tO,tO +T) ]
y wy | lugl”dv wy  Jlugl”dv
maximum
energy gain

y [Farrell & loannou (1996), Schmid (2007)]



How we can disentangle transient growth

from exponential instabilities?

We can use the stabilised operator §(U).
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Non-modal transient growth
frozen base flow U(y, z, t,)
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[Note that streaky base flow U(y, z, ;) gives gains O(100). Base flows U(y) induce gain O(10).]

Del Alamo & Jimeénez 2006; Pujals et al. 2009; Cossu et al. 2009
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Non-modal transient growth
frozen base flow U(y, z, t,)
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Non-modal transient growth
time-varying base flow U(y, z, t)
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Time-variability of the base flow U(y, z, f) does not enhance energy transfer to fluctuations for short times.
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Turbulence with only transient growth operable

/

u  —
500 simulations al — (UG, 20w + VW) i=12,....500
[

with a frozen snapshot U(y, z, ;) from DNS

Turbulence persist in ~#80% of the simulations.
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Turbulence with only transient growth operable
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with a frozen snapshot U(y, z, ;) from DNS
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What differentiates the frozen base flows U(y, z, t;)

that sustain turbulence from those which laminarise?




Spanwise streaky structure
turns out crucial for U(y, z, t;) to sustain
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Precluding the ‘push-over’ mechanism due to spanwise base-flow shear leads to laminarisation.
[for detailed experiments demonstrating this see our paper: Lozano et al. [FM 2020]



Turbulence with only transient growth operable
but time-varying U

/

ou —~
= = LU,z ))u"+ N (u)

with a time-varying U(y, z,t;) from the DNS

frozen U
------ time-varying U
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ensemble of frozen snapshots U(y, z, ;) = time-varying U(y, z, 1)
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summary

modal instabilities of streaks are not crucial

how does energy go from the mean flow to the perturbations?
simple answer: transient growth

what produces this transient growth?

the spanwise shear of the streak & Orr mechanism
(not discussed here; see paper)

time-variability of the streak does not enhance energy transfer to fluctuations
but allows flow to “sample” independent transient-growth events resulting to the observed statistics

realistic wall-turbulence can be exclusively supported by transient growth

} Lozano-Duran et al. (2020) Cause-and-effect of linear mechanisms
/ sustaining wall turbulence, J. Fluid Mech. (In press; arXiv:2005.05303)
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