
Oceananigans.jl
an ocean-flavoured fluid dynamics library

near-global (75°S−75°N) ocean simulation at 1/12° horizontal resolution, 48 vertical levels
@ 68 Nvidia A100 achieving 10 simulated years per day

JuliaCon2024

Navid Constantinou (@navidcy) & the CliMA Ocean Dev Team

✦ Necessary for global calibration

✦ Possibility of high-resolution

✦ Simulate physics from meters
to global-scale

✦ Support rapid prototyping of
parameterizations

+

requirements for a climate/ocean model

Computational
efficiency

Flexibility and
ease of use

[https://www.gfdl.noaa.gov/fv3/]

“A fast model can be a good model,
but a good model must be a fast model!
Computational efficiency is crucial…”

Oceananigans: Fast and Efficient 🚀

fast compute

scalability

memory leanness

written from scratch for GPUs

overlap communication & computation

minimize temporary array creations

8 km horizontal resolution: 10 SYPD on 64 GPUs

2 km horizontal resolution: >1 SYPD on 512 GPUs

16 km horizontal resolution: 10 SYPD on 8 GPUs

10 Simulated years per day (SYPD):

threshold for climate projections

global ocean simulation forced with atmospheric JRA55 reanalysis

Oceananigans: Easy to use and Accessible

User interface:

• Designed so code
“reads like a paper”

• Should not require comments

all written in

Faster than interpreted languages
(Python, Matlab)

Easy portability to virtually any
architecture/systems

"...I have never experienced getting a useful calculation

done as easily as I was able to do with Oceananigans.

It not only has a sophisticated interface, but it is

remarkably fast...".

 Linux magazine

More flexible than compiled languages
(C, Fortran)

Ramadhan et al, JOSS, 2020

used in more than 20 scientific papers

55+ contributors to the codebase

try changing CPU() to GPU()

initial conditions

diagnostics

Oceananigans: Flexible

Finite volume engine Utilities for
numerical experiments

• Grids

• Fields

• Operators (low and high order)

• Solvers (FFT, matrix solvers…)

• Parallelization

• OutputWriters

• Diagnostics

• Callbacks

Local
operations

Global
operations

}{Discrete calculus
on a staggered

C-grid

User-facing
Utilities

 e.g., ∂x(u)^2

Oceananigans: Flexible

• NonhydrostaticModel,
• HydrostaticFreeSurfaceModel,
• ShallowWaterModel
• Coriolis, Equation of State, Parameterizations…
• Pressure / free surface solvers…
• Time stepping schemes

Domain-Specific numerics and
 physics } Physics Modules

Implemented in
Oceananigans

Finite volume engine Utilities for
numerical experiments

• Grids

• Fields

• Operators (low and high order)

• Solvers (FFT, matrix solvers…)

• Parallelization

• OutputWriters

• Diagnostics

• Callbacks

Local
operations

Global
operations

}{Discrete calculus
on a staggered

C-grid

User-facing
Utilities

 e.g., ∂x(u)^2

Injecting code in a simulation: forcing with a neural net

๏ Inject the function neural_network_inference
in the time-stepping loop

๏ A callback has access to all the variables of the
simulation

๏ Each iteration u_sgs is used as forcing and
then recalculated

u_sgs = Field(grid)

using Oceananigans,
 Oceananigans.Units
using Lux

grid = LatitudeLongitudeGrid(GPU(); kw...)

model = HydrostaticFreeSurfaceModel(; grid, forcing = (; u = u_sgs), kw...)

simulation = Simulation(model; Δt = 10minutes, stop_time = 10days)

run!(simulation)

NN = Chain(args...) |> gpu # A neural network that computes u -> u_sgs

function neural_network_inference(simulation)
 u_sgs = simulation.model.forcing.u
 u = simulation.model.velocities.u

 u_sgs .= NN(u)
end

simulation.callbacks[:apply_nn] = Callback(neural_network_inference,
 IterationInterval(1))

Simple and effective way to add a NN in
Oceananigans thanks to:

thanks
github.com/CliMA/Oceananigans.jl

http://clima.caltech.edu

