How does the Antarctic Circumpolar Current respond to the increasing winds over the Southern Ocean?

Australian

University

National

Motivation

The Antarctic Circumpolar Current (ACC) is an important driver of the global climate.

[m/s]

[ACCESS-OM2-010 sea surface speed, COSIMA Consortium] Westerlies over the Southern Ocean that drive the ACC are getting stronger:

[Farneti et al. 2015]

How will the ACC respond to increasing winds?

"Eddy saturation"

Many models (idealized & realistic) find that:

wind strength increases \rightarrow ACC remains (almost) insensitive. Excess momentum from the winds goes into eddies: "eddy saturation"

Textbook interpretation based on baroclinic instability

Eddies tap the excess energy due wind increase \rightarrow ACC stays the same

Barotropic Eddy Saturation

Recently, it was shown that **barotropic** (depth-independent) flow above bathymetry can also show eddy saturation.

[Constantinou & Young 2017, Constantinou 2018]

This challenges the current paradigm...

Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective

Navid C. Constantinou (navid.constantinou@anu.edu.au www.navidconstantinou.com

Research School of Earth Sciences & ARC Centre for Climate Extremes, Australian National University

How transport scales with wind stress?

• Four distinct flow regimes.

• Baroclinic cases (# layers ≥ 2) show an eddy saturation regime.

• The single-layer case (barotropic) shows insensitivity to wind stress (transport grows only about 10-fold over 100-fold wind stress increase)

• Flow shows a transition to a regime (IV) with high transport and in which the momentum balance changes. (Consistent with Constantinou & Young 2017, Constantinou 2018)

Andy McC. Hogg

• Most of the momentum is balanced by topographic form stress.

sea surface
• There for 0.0
Baroti bathy This h
At hig strong
Eddy s eddies and, in

12202–12212.

How transient eddies affect mean momentum balance?

- e exists a barotropic contribution to eddy saturation (e.g., .05 < wind stress < 1.00).
- tropic eddy saturation relies on eddy production due to ymetric features or lateral shear instabilities.
- highlights the role of topographically-induced eddies.
- the wind stress values there is a structural bifurcation to a ig zonal flow that does not "see" the topography.

Proposal

saturation results from the feedbacks between transient es and the mean flow that create topographic form stress in turn, balances the momentum input from wind stress.

This occurs *regardless* of the process from which the transient eddies originate.

References

- Constantinou & Hogg (2019) Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective. GRL, 46,
- Constantinou (2018) A barotropic model of eddy saturation. JPO, 48 (2), 397-411.
- Constantinou & Young (2017) Beta-plane turbulence above monoscale topography. *JFM*, **827**, 415-447.