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Planetary turbulence

polar front jet
NASA/Goddard Space Flight Center

banded Jovian jets
NASA/Cassini Jupiter Images

most of the energy of the flow is in large-scale coherent jets and vortices of specific form 

not at the largest allowed scale (as inverse cascade might imply) 
"arrest" of the cascade by jets



Jets appear to be “steady”
Cassini 2000
Voyager 1980



The problem to be addressed:  

Understand how these specific structures arise 
and how are they maintained

What's a minimal model for studying zonal jets?



zonal jet formation in forced-dissipative barotropic β plane

statistically homogeneous 
small-scale forcing 

(forcing does not impose 
any inhomogeneity) 

random flow inhomogeneities 
organize the turbulence  

so that they are reinforced

we observe: 
• jet emerge 
• jets appear to change much 

slower compared to the 
eddies 

• jets may merge
non-dimensional 

parameters
(   "amplitude of forcing") 

(   "rotation of the planet")

≈
≈

εk2
f /μ3 = 106

β/(kf μ) = 67

β gradient of Coriolis parameter, μ linear drag, ε energy injection rate by the forcing; kf characteristic wavenumber of forcing

zonal mean u vorticity



various β-plane flow regimes flows 
at statistically steady state: 

homogeneous — traveling waves — zonal jets
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[ snapshots of the streamfunction ψ(x,t) with instantaneous zonal mean flow U(y,t) ]

this suggests that there is some kind of transition as ε is increased

"k2f/r
3 = 106

�/(kfr) = 67



Are these transitions a result of the arrest of the 
inverse energy cascade by Rossby waves?

Or do these transitions are similar to phase transitions, 
i.e., occur at critical threshold parameter values?

(This is what all textbooks say at least...)

That would be the case if transitions occur due to instabilities... 
But how to we study stability of turbulent flows?



how do we show that 
a flow like this ...

... is unstable leading  
to forming four jets?

[simulation in which we kill the kx=0 
component at each time step]



jets

steady≈ strongly
time-dependent

+ turbulent 
eddies

at statistical equilibrium:



jets

steady≈ stationary

+ eddy 
statistics

≈

at statistical equilibrium:



Lorenz’s vision

Ed Lorenz 

“More than any other theoretical procedure, numerical 
integration is also subject to the criticism that it yields 

little insight into the problem. [...] An alternative 
procedure which does not suffer this disadvantage 

consists of deriving a new system of equations whose 
unknowns are the statistics themselves.”

The Nature and Theory of the General Circulation of the Atmosphere, 
by E. N. Lorenz, 1967

Statistical State Dynamics (SSD):
the dynamics that govern the statistics of the flow 

rather than those governing single flow realizations



no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

fixed point of the second-order closure of the SSD

zonal mean flow ū



no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

fixed point of the second-order closure of the SSD

let's perturb it and study its stability... 
(doable, but we have to solve an eigenvalue problem of dimension            )n 4 × n 4

zonal mean flow ū



no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

fixed point of the second-order closure of the SSD

let's perturb it and study its stability... 
(doable, but we have to solve an eigenvalue problem of dimension            )n 4 × n 4

note: we've linearized about a turbulent state!

zonal mean flow ū



as we cross a threshold value of 
the homogeneous turbulent state becomes unstable 

to infinitesimal zonal jet mean flow perturbations

no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

zonal mean flow ū

εk2
f /μ3



as we cross a threshold value of 
the homogeneous turbulent state becomes unstable 

to infinitesimal zonal jet mean flow perturbations

no mean flow
homogeneous 

stationary 
second-order 
eddy statistics

+

zonal mean flow ū

εk2
f /μ3



Kelvin−Orr wave solution

(∂t + Sy∂x)∇2ψ = 0linearized barotropic 
vorticity equation

∇2ψ(t = 0) = Z0ei[kxx+ kyy] ⇒ ∇2ψ = Z0ei[kxx+ (ky−Skxt)y]

⇒ ψ = − Z0ei[kxx+ (ky−Skxt)y]

k2x + (ky −Skxt)2

= Sy



Kelvin−Orr wave solution

(∂t + Sy∂x)∇2ψ = 0
∇2ψ(t = 0) = Z0ei[kxx+ kyy] ⇒ ∇2ψ = Z0ei[kxx+ (ky−Skxt)y]

⇒ ψ = − Z0ei[kxx+ (ky−Skxt)y]

k2x + (ky −Skxt)2

linearized barotropic 
vorticity equation

ky /kx

1 +
k2

y

k2x

= Sy



ΔEzonal flow = S2k2
x

4ν2k4

k2
x −5k2

y

k6 |Z0 |2

Kelvin−Orr wave solution
weak shear limit

the energy contribution to zonal flow 
from a pair of vorticity waves initially with (k.      ,±ky) is(kx, ± ky)

takes energy from 
zonal flow

gives energy to 
zonal flow



how does a zero jet state become unstable?
for certain parameters eddies have the tendency to reinforce 

mean flow inhomogeneities (even if mean flow is infinitesimal!)

proof of concept

δu

δu

∂tu = −∂y u ′�v′� + dissipation
Reynolds stress
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2nd-order SSD theory

simulations
(single flow realization)
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(a) NL U (y, t ) , ε/ε c ,z=20
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(e ) S3Tz U (y, t ) , ε/ε c ,z=20
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(e ) S3Tz U (y, t ) , ε/ε c ,z=20
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SSD instabilities grow and reach finite amplitude 
to produce new inhomogeneous turbulent equilibria with jets

SSD predictions for jet formation 
and equilibration at finite amplitude

statistical instabilities that are predicted by S3T show up in 



Zonal flows + Magnetic fields



MHD equations on a beta plane 
imposed toroidal magnetic field B0 

stochastic forcing in the hydrodynamic equation

∂tζ + )(ψ, ζ + βy) = )(A + B0y, ∇2 A) + ν∇2ζ + ξ

∂tA + )(ψ, A + B0y) = η∇2 A

β :  latitudinal gradient of Coriolis parameter η :  resistivity ν :  viscosity

(u , υ) = (−∂yψ, ∂xψ) (Bx, By) = (B0 + ∂yA, −∂xA)

curl of Lorentz force stoch. 
forcing

ρ (mass density) = μ0 (permeability) = 1



what's known?

Tobias et al 2007, ApJ 
DNS show that as imposed B0 increases zonal flows die

Tobias et al 2011, ApJ 
Qualitatively similar results for DNS on surface of sphere

Tobias et al, (unpublished; personal communication) 
Qualitatively similar results for DNS with imposed poloidal B0



but what's the mechanism of  
zonal flow suppression?



ΔEzonal flow = S2k2
x

4ν2k4 [
k2

x −5k2
y

k6 |Z0 |2 −
k2

x −k2
y

k2 |A0 |2 ]

Kelvin−Orr wave solution
weak shear limit

the energy contribution to zonal flow 
from a pair of vorticity waves initially with (k.      ,±ky) is(kx, ± ky)

vorticity 
wave ampl.

magnetic 
wave ampl.



ΔEzonal flow = S2k2
x

4ν2k4 [
k2

x −5k2
y

k6 |Z0 |2 −
k2

x −k2
y

k2 |A0 |2 ]

Kelvin−Orr wave solution
weak shear limit

the energy contribution to zonal flow 
from a pair of vorticity waves initially with (k.      ,±ky) is(kx, ± ky)

vorticity 
wave ampl.

magnetic 
wave ampl.

the magnetic wave always acts to take energy away from zonal flow



SSD stability of the homogeneous turbulent state 
with magnetic fields

∂tu = −∂y u ′�v′�−(−∂y B′�xB′�y) + dissipation
Reynolds 

stress
Maxwell 
stress

⏟ ⏟



∂tu = −∂y u ′�v′�−(−∂y B′�xB′�y) + dissipation
Reynolds 

stress
Maxwell 
stress

Maxwell stress competes with Reynolds stress

⏟ ⏟



Stability calculations can predict DNS behavior

Stability of homogenous 
turbulent state

Direct Numerical Simulations 
(Tobias et al 2007)



Conclusions

thanks

• Magnetic fluctuations can suppress zonal flow through the 
Maxwell stress when the resistivity is sufficiently small  

• Consistent with earlier results of Tobias et al. (2007, 2011) 
• Here, we found that the suppression can be explained quasilinearly, and 

even occurs with weak zonal flows, without requiring nonlinear effects. The 
growth rate of zonal flow instability is suppressed.  

• Results may explain the depth-extent of the zonal jets in Jupiter & 
Saturn. 

Constantinou & Parker (2018) Magnetic suppression of zonal flows on a beta plane. ApJ, 863, 46


