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ocean currents
NASA/Goddard Space Flight Center

Coherent structures in turbulent flows
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Earth’s atmospheric polar jet stream

polar front jet
NASA/Goddard Space Flight Center

airplane trip from L.A. to Tokyo
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observed Jovian zonal winds
at cloud level
Vasadava & Showman, 2005

‘striped’ Jupiter

banded Jovian jets
NASA/Cassini Jupiter Images
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Jet emergence on a barotropic beta-plane 
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Turbulent flows organize into jets

Numerical
simulation
(barotropic 
beta-plane)
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Jets seem to emerge as a bifurcation
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Em : zonal energy , Ep : eddy energy
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Classical hydrodynamic stability

hydrodynamic instabilities provide a way 
for eddies to gain energy from mean flow

how about the opposite ?

can the mean flow gain energy from the 
eddies through an instability ?

Lord Rayleigh
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Turbulence (usually) acts as a drag

can turbulence act to reinforce large scale flows?

wall-bounded
flow

airflow over
vehicle

airflow over airfoil
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Barotropic vorticity equation on a beta-plane

stochastic
forcing

dissipation
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Our model:
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zonal mean eddy

Zonal - Eddy field decomposition
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QL (quasi-linear) 
System
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QL does NOT include

  turbulent cascades

  wave breaking 

  nonlinear vorticity mixing The great wave 
off Kanagawa

by Hokusai
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x

NL q(x, y, t) , ϵ/ϵc =20
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QL captures the NL dynamics

NL vorticity 
snapshot

QL vorticity 
snapshot

mean flow 
comparison
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While QL captures and elucidates the jet-eddy dynamics it does not 
provide a predictive theory.

Can we construct a theory that:
Predicts when organized flows will emerge / describes jet formation 
as a bifurcation.
Predicts the structure and the stability of the emergent zonal flows.
Describes the jet merger dynamics

Our goal

? ? ?
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While QL captures and elucidates the jet-eddy dynamics it does not 
provide a predictive theory.

Can we construct a theory that:
Predicts when organized flows will emerge / describes jet formation 
as a bifurcation.
Predicts the structure and the stability of the emergent zonal flows.
Describes the jet merger dynamics

Our goal

Such a theory can be constructed. It is based on the 
statistical dynamics associated with the QL equations. 
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Consider the first two equal-time cumulants:

ensemble average over realizations of the excitationh • i =

The theory:
Stochastic Structural Stability Theory (S3T)
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zonal average of a zonally unbounded single 
realization of the stochastic excitation

h • i =

Ergodic assumption

Then we have:
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Z(y, t) = ⇣(x, y, t)

⇣

0(x, y, t) = ⇣(x, y, t)� Z(y, t)

C(x1 � x2, y1, y2, t) =
D
⇣

0(x1, y1, t)⇣
0(x2, y2, t)

E

Wednesday, January 8, 14



N. Constantinou, U.o. A.

The theory:
Stochastic Structural Stability Theory (S3T)

(j = 1, 2)
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We have three dynamical systems

NL S3T

theorysimulation

QL
simplified
simulation
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S3T equilibria

S3T system admits equilibria (UE , CE)

CE =
"

2r
QandUE = 0

is an equilibrium for all    , dissipation values      
and energy input rates      

� r > 0
" > 0

@tU = R(C)� rU

@tC = (A1 +A2)C + "Q
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Eddies tend to reinforce
zonal flow inhomogenuities
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perturbing the S3T equilibrium

Stability of S3T equilibria
(UE + �U,CE + �C)

with

@t�U = R(�C)� r �U

@t�C = (A1 +A2)�C + (�A1 + �A2)C
E

�Aj = Aj(U
E + �U)�Aj(U

E) , j = 1, 2
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perturbing the S3T equilibrium

Stability of S3T equilibria
(UE + �U,CE + �C)

with
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formation of jets

existence of multiple 
equilibria and their 
domain of attraction

merging of jets

Stability analysis of the 
ideal states predicts:

Stability of S3T equilibria
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Stability of S3T equilibria
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S3T equilibria
(stable & unstable)

are hydrodynamically stable

For higher energy input rates 
equilibria become S3T 

unstable and move towards 
the left of the diagram
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Conclusions
QL dynamics captures the  jet formation process - The turbulent state is 
essentially determined by a wave/mean flow interaction

S3T provides a closure of this turbulent system and a theory for the 
emergence, equilibration and the structural stability of the associated 
turbulent equilibria

S3T introduces a new concept of instability arising from the interaction 
between turbulence with the large scale flow

S3T predicts:

the formation of jets as an eddy/mean flow S3T instability

the existence of multiple equilibria as climate states and their stability

jet merger dynamics
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Furthermore...
Ergodic assumption
Reynolds average over

an intermediate time scale
h • i =

It is possible to obtain non-zonal and even traveling wave 
finite amplitude S3T equilibria 

A

Bakas and Ioannou, 2013: Emergence of large scale structure in barotropic 
beta-plane turbulence. Phys. Rev. Lett. 110, 224501.
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Generalized S3T equilibria

generalized S3T admits
equilibria with zonal as

well as non-zonal
spectral components
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B S3T applied to wall-bounded shear flow
Formation of roll/streak structures in wall-bounded Couette/Poisseuille 

flow can be identified as ST3 instability

Farrell and Ioannou, 2012: Dynamics of streamwise rolls and streaks 
in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149-196.

a test function 
perturbation streak 
induces a supporting 
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Constantinou et. al., 2013: Turbulence in the restricted dynamics of the 
S3T/RNL system: comparison with DNS. J. Phys. Conf. Ser. (to appear).
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