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Planetary turbulence 
is anisotropic and inhomogeneous

polar front jet
NASA/Goddard Space Flight Center

banded Jovian jets
NASA/Cassini Jupiter Images

4

I



slide

Planetary turbulence 
is anisotropic and inhomogeneous

satellite observations
NASA/Goddard Space Flight Center

computer simulation
San Diego Supercomputer Center, UCSD
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Jets appear “steady” and are eddy-driven
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Fig. 4. ū and v̄ are plotted as a function of latitude for our nominal analysis.
Error bars are 2 standard deviations from the mean. For the ū plot, the error
bars are smaller than the box symbols, though actual errors may be larger due
to systematics. ū is also compared with the zonal velocity profile of Porco et al.
(2003). There is good agreement between the two curves, except for discrepan-
cies at the sharpest peaks, due to our relatively larger grid spacing.

as well as the variation of zonal velocity with latitude:

(4)
(

dū

dy

)

n

= ūn+1 − ūn−1

yn+1 − yn−1
.

4. Results

4.1. Rate of energy conversion

Fig. 4 shows ū and v̄ as a function of latitude for our nom-
inal analysis, with ū overplotted on the zonal velocity profile
of Porco et al. (2003). There is fairly good agreement between
these two curves, despite the fact that Porco et al. used a line-by-
line correlation method, rather than a feature tracker, to deter-
mine ū. The largest differences between the two curves exist at
the most extreme ū values where our wind profile is smoothed
slightly due to our coarser grid resolution. v̄ is slightly offset
from zero, with a mean value of −0.2 m s−1. Although this may
be a real effect, a non-zero v̄ has not been noted by previous
researchers and could be induced by a small navigation error,
which we discuss further in Section 5.7.

Fig. 5 shows dū/dy, u′v′, and their product as a function
of latitude. We note a positive correlation between the signs of
these two parameters, implying a flow of energy from eddies to
zonal flow. The correlation coefficient of the bottom curves is
∼0.86.

Following the convention of Holton (2004), the rate of trans-
fer of eddy kinetic energy (K ′) to zonal mean kinetic energy
(K̄) is defined as

(5)[K ′ • K̄] ≡
〈
ρu′v′ dū

dy

〉
,

where ⟨ ⟩ represents a global average. Our measurements allow
us to estimate the product u′v′ dū/dy, which, when averaged

Fig. 5. On the bottom plot, u′v′ and dū/dy are plotted together as a function
of latitude. u′v′, corresponding to the right of the two axes, is plotted as dots
with error bars corresponding to 2 standard deviations from the mean. dū/dy

is shown as a solid line and corresponds to the left of the two axes. There is a
distinct positive correlation between the two curves, and their correlation coef-
ficient is 0.86. The top plot shows the product u′v′ × dū/dy.

Table 1

Type of analysis Correlation between
dū/dy and u′v′

Power/mass
(10−5 W kg−1)

2σ error

Conservative 0.86 7.1 0.66
Conservative, no ovals 0.87 7.1 0.76
Conservative, binned 0.87 7.3 0.59
More complete 0.88 12.3 0.59
More complete, no ovals 0.87 12.3 0.80
More complete, binned 0.87 12.4 0.70
Two rotations, cons. 0.74 6.0 1.4
Artificial shear 0.56 0.33 0.37
Ingersoll et al. (1981) 0.4–0.5 15–30

over the surface yields the power per unit mass transferred from
eddies to zonal mean flow. Letting n refer to a given latitude bin
and N be the total number of bins, this power per unit mass is
given by

(6)power/mass ≈ 1
∑N

n=1 cosφn

N∑

n=1

(
dū

dy

)

n

(u′v′ )n cosφn.

For our nominal analysis, this quantity is equal to 7.1 ×
10−5 W kg−1, compared to a value of 15–30 × 10−5 W kg−1

found by Ingersoll et al. (1981). We performed several, slightly
different analyses, which will be discussed in Section 5, and the
power per unit mass derived from all analyses can be viewed in
Table 1.

In order to estimate the total power transfer from eddies to
zonal flow, it is necessary to know the amount of mass involved
in the transfer. Multiplying power per unit mass by the mass
per unit area dP/g, one can obtain the total power per unit area
transferred—a number that can be compared to the total power
per unit area emitted by the planet. Unfortunately, the mass in-
volved in the transfer is not well constrained; dP is uncertain
to perhaps an order of magnitude. At a minimum, the trans-
fer includes the main visible cloud deck, which has been esti-
mated to depths just short of 1 bar (Atreya and Donahue, 1979;
Kunde et al., 1982; Banfield et al., 1998) or to between 1 and

(Salyk et. al. 2006)

u0v0 = 
@U

@y

 ⇡ 106 m2 s�1

6



slide 7

Classical phenomenology attributes  
large-scale structure formation to turbulent cascades  
(inverse energy transfer from smaller to large scales)

We will deploy a statistical theory 
for the description of turbulent flows 

!
Emergence of large-scale structure 

out of homogeneous turbulence will be understood 
as a statistical instability of the turbulent flow

energy flow

inverse energy cascade in 2D flows
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Lord Rayleigh taught us how to 
study the stability of a laminar flow 

to infinitesimal eddies

Can we study the stability of  
turbulent flows?Lord Rayleigh 

8

Classical hydrodynamic stability
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Classical hydrodynamic stability

Hydrodynamic instabilities provide a way 
for eddies to gain energy from mean flow

How about the opposite ?

Can the mean flow gain energy from the 
eddies through an instability ?

9

Lord Rayleigh 



slide 10

can turbulence act to reinforce large scale flows?

wall-bounded 
flow

airflow over 
vehicle airflow over airfoil

Turbulence (usually) acts as a drag
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Barotropic vorticity equation on a beta-plane

stochastic 
forcing

linear 
dissipation 

at rate r

r · u = 0

@t⇣ + u ·r⇣ + u · � = �r⇣ +
p
" ⇠

� = (0,�)

β is the gradient of 
the planetary vorticity

11

anisotropicity 
due to rotation

⇣ẑ

ξ is statistically 
homogeneous

we have two non-
dimensional parameters

"k2f/r
3 = 106

�/(kfr) = 67

r⇥ u = ⇣ ẑ

u = ẑ⇥��1⇣

(� ⌘ r ·r)
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Barotropic β-plane turbulence exhibits 
large-scale structure formation

12

"k2f/r
3 = 106

�/(kfr) = 67

http://www.youtube.com/watch?v=ZtzW25NooDk

statistically  
homogeneous forcing 

!
(no inhomogeneity is 

imposed by the forcing) 
!

initial random flow 
inhomogeneities organize 
the turbulence in a manner 
so that they are reinforced
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β-plane turbulence shows flows 
at statistically steady state: 

homogeneous — traveling waves — zonal jets
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[ shown are snapshots of the streamfunction field ψ(x,t)  
with instantaneous zonal mean flow U(y,t)]

this suggests that there is some kind of transition as ε is increased
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@t⇣ + u ·r⇣ + u · � = �r⇣ +
p
" ⇠

Barotropic vorticity equation on a beta-plane

15
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A(U) ⌘ �U ·r+
h
(�U)� � · (ẑ⇥r)

i
��1 � r

Barotropic vorticity equation on a beta-plane

Using decomposition: ⇣(x, t) = T [⇣(x, t)]| {z }
Z(x,t)

+ ⇣ 0(x, t)

T
average over the zonal direction x  
!
Reynolds over an intermediate time scale or length scale 
(larger than the time scale or length scale of the turbulent motions 
and smaller than the time scale or length scale of mean field)

@tZ +U ·rZ +U · � = �T [u0 ·r⇣ 0]� rZ

@t⇣
0 = A(U) ⇣ 0 + T [u0 ·r⇣ 0]� u0 ·r⇣ 0 +

p
" ⇠

with

15

mean flow eddies
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@tZ +U ·rZ +U · � = �T [u0 ·r⇣ 0]� rZ

@t⇣
0 = A(U) ⇣ 0 + T [u0 ·r⇣ 0]� u0 ·r⇣ 0 +

p
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NL system
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@t⇣
0 = A(U) ⇣ 0 + T [u0 ·r⇣ 0]� u0 ·r⇣ 0 +

p
" ⇠

NL system

restrict nonlinearity by not allowing 
eddy-eddy      eddy interactions (QL)

16
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QL system

@tZ +U ·rZ +U · � = �T [u0 ·r⇣ 0]� rZ

@t⇣
0 = A(U) ⇣ 0 +

p
" ⇠

restrict nonlinearity by not allowing 
eddy-eddy      eddy interactions (QL)

QL allows only the direct, two-way interaction 
of the eddies and the mean flow 
!
QL does not include turbulent cascades

17
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S3T system

T ( • ) = h • i

Under the ergodic assumption that the average T is 
equal to ensemble average over forcing realizations:

we derive from QL a closed system for the evolution of 
the first two statistical moments of the flow

Z(x, t) = h⇣(x, t)i , C(xa,xb, t) = h⇣ 0(xa, t)⇣
0(xb, t)i

18
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Z(x, t) = h⇣(x, t)i , C(xa,xb, t) = h⇣ 0(xa, t)⇣
0(xb, t)i

R(C) ⌘ �hu0 ·r⇣ 0i = �r ·

ẑ

2
⇥ (ra�

�1
a +rb�

�1
b )Cab

�

a=b

the spatial covariance of the statistically 
homogeneous stochastic forcing

(the Reynolds stresses are given as a linear function of C)

@tZ +U ·rZ +U · � = R(C)� rZ

@tCab = [Aa(U) +Ab(U)]Cab + "Qab

Qab ⌘ Q(xa � xb)

Cab ⌘ C(xa,xb, t)

with

S3T system

19
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@tZ +U ·rZ +U · � = R(C)� rZ

@tCab = [Aa(U) +Ab(U)]Cab + "Qab

Neglect of the eddy-eddy term in NL is equivalent with 
neglect of third and higher-order statistical moments.

S3T system

20
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@tZ +U ·rZ +U · � = R(C)� rZ

@tCab = [Aa(U) +Ab(U)]Cab + "Qab

The S3T system 
!

 autonomous  
 deterministic 
 admits fixed point solutions consisting of a mean flow 

and second-order eddy statistics 
 allows the study of the stability of such equilibrium 

solutions                         

⇣
U

e(x), Ce(xa,xb)
⌘

(the theory)
S3T system

21
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stability of S3T equilibria

perturbations (             ) about an equilibrium satisfy the linearized 
S3T equations:

�Z, �C

⇣
U

e(x), Ce(xa,xb)
⌘

eigenanalysis of this system determines the stability of 
⇣
U

e(x), Ce(xa,xb)
⌘

22
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stability of S3T equilibria

perturbations (             ) about an equilibrium satisfy the linearized 
S3T equations:

�Z, �C

⇣
U

e(x), Ce(xa,xb)
⌘

eigenanalysis of this system determines the stability of 
⇣
U

e(x), Ce(xa,xb)
⌘

22

hydrodynamic 
stability
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for statistically homogeneous forcing there exists always 
a statistically homogeneous S3T equilibrium

(for any ε, β and 
homogeneous Q)U

e = 0 , Ce(xa � xb) =
"Q

2r

24



slide

for statistically homogeneous forcing there exists always 
a statistically homogeneous S3T equilibrium

(for any ε, β and 
homogeneous Q)U

e = 0 , Ce(xa � xb) =
"Q

2r

Instability occurs when Re(σ)>0 for at least one plane wave n

eigenfunctions:
(plane wave)�Z = ein·x e(��i!n)t

�Cab = ein·(xa+xb)/2 �C(h)(xa � xb) e
(��i!n)t

� + r = "

Z
d2k

(2⇡)2
|n⇥ k|2(k2p � k2)(k2 � n2)

k2pk
4n2 [� + 2r + i (!k+n � !k � !n)]

Q̂(k)

2r

Eigenvalues σ satisfy:

Q̂(k) =

Z
d2k

(2⇡)2
Q(xa � xb)e

ik·(xa�xb)!n =
��n

x

n2

Rossby wave 
frequency

kp = k+ n , kp = |kp| , k = |k| , ,
24
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take forcing prescribed 
with spatial covariance with spectrum
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Critical ε for S3T instability of the 
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ocean atmosphere

Jupiter
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�/(kfr)

for large β  the 
critical ε 
scaling is 

independent 
of the forcing  

structure
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asymptotic dependance
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independent 
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(@t �Ae) �Z = R(�C)

� + r = "

Z
d2k

(2⇡)2
|n⇥ k|2(k2p � k2)(k2 � n2)

k2pk
4n2 [� + 2r + i (!k+n � !k � !n)]

Q̂(k)

2r

instability of the homogeneous turbulent state

mean flow perturbation equation

Instability requires fr ⌘ Re(f)
���
"c

> 0

f

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }
a

"c =
r

fr

27

f  is the sum of the contributions of the spectral components of Q (or C  ) 
to the perturbation Reynolds stress divergence

e
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(−−) δŨ , (—) R(δC̃)

f > 0 upgradient
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f < 0 downgradient
fr > 0

f determines if turbulence will act so as to 
reinforce or diminish the infinitesimal mean flow
fr

diffusionanti-diffusion

fr < 0

28

turbulence acts as:

analytic calculations for fr show that 
turbulence acts anti-diffusively 

even for infinitesimal mean flows!
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4th order 
hyper-anti-diffusion
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yyU

 ⇡ 106 m2 s�1

Jupiter’s 
finite amplitude jets
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μ = 0

2nd order 
anti-diffusion

μ > 0
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anisotropic forcing 
[Earth-like]
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ε/εc,z = 1.5 ε/εc,z = 20

S3T predictions for jet formation 
and equilibration at finite amplitude
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Zonal jet S3T equilibria

U

e(x) =
⇣
U

e(y), 0
⌘

, C

e(xa � xb, ya, yb)

We have developed numerical methods for 

i) determining such equilibria with great accuracy and  

ii) studying their S3T stability

34
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existence of multiple equilibria 
and their domain of attraction 

!
merging of jets as ε increases 

!
finite amplitude equilibration at 
small supercriticality is 
described through the universal 
Eckhaus instability of the G-L 
amplitude equation

Stability analysis of 
inhomogeneous turbulent 
states with zonal jets predicts: 

(= number of jets for a 
2π x 2π channel)

Stability of zonal jet S3T equilibria 
to zonal jet perturbations
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and their domain of attraction 

!
merging of jets as ε increases 

!
finite amplitude equilibration at 
small supercriticality is 
described through the universal 
Eckhaus instability of the G-L 
amplitude equation

Stability analysis of 
inhomogeneous turbulent 
states with zonal jets predicts: 

(= number of jets for a 
2π x 2π channel)

Stability of zonal jet S3T equilibria 
to zonal jet perturbations

For higher energy input rates equilibria 
become S3T unstable and move 
towards the left of the diagram
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Remember the case with ε/εc,z = 20
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S3T stability analysis of the jet equilibria predicts the 
jet merger as the most unstable eigenfunction
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structure of talk

40

introduction to the physical problem 
formulation of the theory (S3T) 
study of the stability of homogeneous turbulent state  
comparison of S3T predictions with direct numerical  
 simulations and verification of the theory 
stability of inhomogeneous turbulent states & 
relation with jet mergers 
relation of modulational instability of Rossby waves 
 with S3T instability of homogeneous state (if time allows) 
summary
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S3T generalizes the 
modulational instability of Rossby waves

p = A cos (p · x� !pt)
MI is the hydrodynamic stability of finite amplitude Rossby 
waves (Lorenz 1972, Gill 1974, Connaughton et al. 2010)

Ĉe(k) = (2⇡)2p4|A|2[�(k� p) + �(k+ p)]

However, the two problems are very different: 
!
MI studies the stability of infinitely coherent solutions 
S3T studies the statistical stability of forced—dissipative flows with a given 
turbulence spectrum

We demonstrated that the problem of the hydrodynamic stability of any coherent 
nonlinear solution is mathematically equivalent to the S3T stability of the homogeneous 
equilibrium with the same eddy covariance spectrum.
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Conclusions
S3T makes exact analytical predictions for the emergence of large-scale 
structure in planetary turbulence  

!
S3T predicts that the transition from a homogeneous to an inhomogeneous 
turbulent state occurs through a bifurcation of the statistical state dynamics 

!
S3T predicts the finite amplitude of the emergent large-scale structure 

!
The stability of inhomogeneous statistical turbulent equilibria (i.e. as in the Earth 
or Jupiter) can be studied within S3T framework and thus the sensitivity of the 
climate state of the planet can be determined

42

To understand turbulent flows one should adopt 
the perspective of the statistical state dynamics
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Lorenz’s vision

Ed Lorenz 
!

S3T is a first step towards this new system of equations

“More than any other theoretical procedure, numerical 
integration is also subject to the criticism that it yields 
little insight into the problem. The computed numbers 

are not only processed like data but they look like data, 
and a study of them may be no more enlightening than a 
study of real meteorological observations. An alternative 

procedure which does not suffer this disadvantage 
consists of deriving a new system of equations whose 

unknowns are the statistics themselves.”

The Nature and Theory of the General Circulation of the Atmosphere, 
by E. N. Lorenz, 1967
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