Formation of large-scale structure by
turbulence in planetary atmospheres

Navid Constantinou
Physics Department

5 May 2015



structure of talk

introduction to the physical problem

formulation of the theory (S3T)

study of the stability of homogeneous turbulent state
comparison of S3T predictions with direct numerical
simulations and verification of the theory

stability of inhomogeneous turbulent states &

relation with jet mergers

relation of modulational instability of Rossby waves

with S3T instability of homogeneous state (if time allows)
summary
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structure of talk

introduction to the physical problem
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Planetary turbulence
'S anisotropic and inhomogeneous |

banded Jovian |ets polar front jet

NASA/Cassini Jupiter Images NASA/Goddard Space Flight Center
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Planetary turbulence
'S anisotropic and iInhomogeneous |l

computer simulation A~ satellite observations

San Diego Supercomputer Center, UCSD NASA/Goddard Space Flight Center
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Jets appear “steady” and are eddy-driven

Jovian winds

Cassini 2000
Voyager 1979-1980
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Classical phenomenology attributes
large-scale structure formation to turbulent cascades
(inverse energy transtfer from smaller to large scales)

iInverse energy cascade in 2D flows
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o

energy flow

We will deploy a statistical theory
for the description of turbulent flows

Emergence of large-scale structure
out of homogeneous turbulence will be understood
as a statistical instability of the turbulent flow
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Classical hydrodynamic stability

Lord Rayleigh taught us how to
study the stability of a laminar tlow
to Iinfinitesimal eddies

S Can we study the stability of
Lord Rayleigh turbulent flows?
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Classical hydrodynamic stability

Hydrodynamic instabilities provide a way
for eddies to gain energy from mean tlow

ow about the opposite 7

| —=eni (an the mean tflow gain energy from the
L ord Rayleigh eddies through an instability ?
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Turbulence (usually) acts as a drag

wall-bounded airflow over

. airflow over airfoill
flow vehicle

can turbulence act to reinforce large scale flows”
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Barotropic vorticity equation on a beta-plane

O(+u-V(+u-pB=—-r{++c&

[l T

Vxu=(2 anisotropicity  djissipation stochastic
due to rotation at rate r forcing
u=2zx A7(
(A=V-V)

(€(xq, t)E(xp, 1)) = Q(xq — xp) 0(t — 1)

& is statistically
homogeneous

[8=0.0

we have two non-
dimensional parameters

B is the gradient of ek2 /3
the planetary vorticity d
B/ (kgr)
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Barotropic B-plane turbulence exhibits

large-scale s

eky/r’ =10°
B/ (ksr) = 67

http://www.youtube.com/watch?v=ZtzZW25NooDk

ructure formation

statistically
homogeneous forcing

(no inhomogeneity is
imposed by the forcing)

initial random flow
INhomogeneities organize
the turbulence in a manner
so that they are reinforced
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[B-plane turbulence shows flows
at statistically steady state:
homogeneous — traveling waves — zonal |ets

B/(kgr) =67

5 x 103 5 x 104

this suggests that there is some kind of transition as € is increased

[ shown are snapshots of the streamfunction field ((x,1)

with instantaneous zonal mean flow U(y,1)] Jlide 13



structure of talk

formulation of the theory (S3T)

slide 14



Barotropic vorticity equation on a beta-plane

O(+u-Vi+u-8=—-r(++c&



Barotropic vorticity equation on a beta-plane

Using decomposition:  ((x,t) = T [¢(x,t)] + {'(x,1)
N’
Z(x,t)

mean flow eddies
WZ+U-VZ+U-B=-T[ -V{]-rZ
(' =AU)(+T - V{]-u" -V + e

with
AU)=-U-V+[(AU) - 8- (2x V)| A7 —»

T <: average over the zonal direction x

Reynolds over an intermediate time scale or length scale

(larger than the time scale or length scale of the turbulent motions
and smaller than the time scale or length scale of mean field)
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NL system

0,7 +U-VZ+U-B=-T -V{]-rZ
0" =AU) "+ T -V{]—u"-V({ + e



NL system

restrict nonlinearity by not allowing

eddy-eddy — eddy interactions (QL)

0Z+U-VZ+U-B=-T -V{|—-rZ

0" = A(U) ¢’ + T TStV + S
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QL system

restrict nonlinearity by not allowing

eddy-eddy — eddy interactions (QL)

wZ+U-VZ+U-B=-T[ -V{]—-rZ
0i¢" = A(U) (" + Vel

QL allows only the direct, two-way interaction
of the eddies and the mean flow

QL does notinclude turbulent cascades
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S3T system

Under the ergodic assumption that the average Tis
equal to ensemble average over forcing realizations:

we derive from QL a closed system tfor the evolution of
the first two statistical moments of the tflow

Z(Xv t) — <C(X> t)> ; C(Xavxbvt) — <C/(Xa>t)C/(vat)>
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0+ /

S3T system

U.-VZ

U.-B8=R({C)—rZ

0tCap = |Aa(U) + Ap(U)| Cop + € Qap

with

Cap = C(Xaa Xb; t) — <C/(Xa7 t)C/(Xb, t)>

Qa,b — Q(Xa — Xb) ""““"7)

R(C)=—(u"-V{')=-V-

~ A

the spatial covariance of the statistically
homogeneous stochastic forcing

Z

5 X (VaAgl + VbAb_l)Cab

(the Reynolds stresses are given as a linear function of C)
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S3T system

0,Z+U-VZ+U-B=R(C)—rZ
O Cup = [Aa(U) + Ap(U)| Cup + € Qup

Neglect of the eddy-eddy term in NL is equivalent with
neglect of third and higher-order statistical moments.
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0+ /

S3T system
(the theory)

U.-VZ

U.-B8=R({C)—rZ

0tCap = |Aa(U) + Ap(U)| Cop + € Qap

The S3T system

autonomous
deterministic
admits fixed point solutions consisting of a mean flow
and second-order eddy statistics (UB(X), Ce(xa,Xb))
allows the study of the stability of such equilibrium

solutions
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stability of S3T equilibria
(UG(X), O (xa, Xb))

perturbations (62, dC') about an equilibrium satisfy the linearized
S3T equations:

0,67 = A° 57 + R(6C)

A¢ = A(U®)
010Cqp = (Ag + A;)0Cqp + (0 A + 0A)Cyy,

eigenanalysis of this system determines the stability of (UG(X), Ce(xa,xb))
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stability of S3T equilibria
(UG(X), O (xa, Xb))

perturbations (62, dC') about an equilibrium satisfy the linearized
S3T equations:

hydrodynamic
stability

0,07 = A° 57 + R(6C)

A¢ = A(U®)
010Cqp = (Ag + A;)0Cqp + (0 A + 0A)Cyy,

eigenanalysis of this system determines the stability of (UG(X), Ce(xa,xb))
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structure of talk

study of the stability of homogeneous turbulent state
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for statistically homogeneous forcing there exists always
a statistically homogeneous S3T equilibrium

e  (forany g Band

Uc=0, C%xq,—Xp) = 2r  homogeneous Q)
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for statistically homogeneous forcing there exists always
a statistically homogeneous S3T equilibrium

e  (forany g Band

Uc=0, C%xq,—Xp) = 2r  homogeneous Q)

57 — X g(o—iwn)t  (plane wave)

eigenfunctions: 5C,p = el (Xatx0)/2 50b) (x _ xy plo—iwn)t

Instability occurs when Re(o)>0 for at least one plane wave n

Eigenvalues o satisty:

N /dzk nx K2 = KK —n?) Q)
T = £

7 (27)2 k2k* 02 [0 + 27 +1 (Wiern — Wi — Wa)] 27

b =detn =gl o B= Ik = e TSNS o= [ gt e



take forcing prescribed
with spatial covariance with spectrum

. k2 — k2
Q) ~ d(k = ky) |1+ p—5— Hl<
anisotropic isotropic
(baroclinic) (convection)
[~Earth] [~Jupiter]
=1 pw =20

-15-1-05 0 05 1 15

2 pi

2pi

-15-1-05 0 05 1 15
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Critica

e for S3T instability of the

nomogeneous state
— I 1 11T I I ||||||| I I ||||||| I I ||||||| I I ||||||| I I:
7l * N
10 & Jupiter =
6| T
0WE =0 E
10° 1 l IE
~— 4| 6 |
N 10 = =
~c - 8- 5 ocin atmosphere 3
W 103:_ * _:
E -'-ﬂ-‘—-'i
10" AEPTT S Y 6 /2 =
1015— T =
- u=1 =
0_ | | | I [ | |||||| I [ 1 |||||| I I_
10 I [ LTI 111l I I I [ -1 T 1111
10~ 107" 10° 10° 10°

B/ (kgr)

for large B the
critical €
scaling is

independent

of the forcing
structure
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51@?/7“3

Critical € for S3T instability of the

nomogeneous state

10

10

10

10

10
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T

p=1

const.

analytical calculations confirm
asymptotic dependance
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for large B the
critical €
scaling is

independent

of the forcing
structure
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instability of the homogeneous turbulent state

42k n x k2 (k2 — k*)(k? —n?)  Q(k)
N~ 6/ (2m)2 k2k*n? [0 + 27 + i (Wkyn — Wk —wn)] 27

f

mean flow perturbation equation

(8, — A°)6Z = R(5C)

f is the sum of the contributions of the spectral components of Q (or C°)
to the perturbation Reynolds stress divergence

Instability requires  fr = Re(f)
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f, determines if turbulence will act so as to
reinforce or diminish the infinitesimal mean flow

fr <0

turbulence acts as:

fr >0

(—=)oU ,

anti-diffusion

0 |

(—) R(5C)

diffusion

analytic calculations for fr show that

turbulence acts anti-diffusively
even for infinitesimal mean flows!
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small (3

anisotropic forcing (u = 0) =%  f. ~ [

isotropic forcing (1 = 0) =3 f, ~ 3
(8¢ +1)0U = =0, 6(u'v'y = —=C pd; 06U + D 5°8,,,,0U  C,.D>0

Yyyy
- Jupiters u>0 =0
finite amplitude jets
Oy u'v' = k0, U 2nd order 4th order
k=~ 108 m2 S—l anti-diffusion hyper-anti-diffusion
p=1/4 .

107

[r

107

107 E
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structure of talk

comparison of S3T predictions with direct numerical
simulations and verification of the theory
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zonal mean flow
energy fraction

S3T predictions for jet formation
and equilibration at finite amplitude

anisotropic forcing
[Earth-like]
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S3T predictions for jet formation
and equilibration at finite amplitude

anisotropic forcing

8/80,2 —_ 1 5

[Earth-like]

8/80,2 — 20

(a) NL U(y,t)

e/ec =20

(a) NL U(y,t) , €/ec,=15 (b) ¢(x,t = 2000) » E/€ey (b) ¢(x,t=2000)
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statistical instabilities that are predicted by S3T show up in

single NL/QL realizations of the flow

emergent instabilities grow and reach finite amplitude
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structure of talk

stability of inhomogeneous turbulent states &
relation with jet mergers
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Zonal jet S3T equilibria

U*(x) = (U*(),0)

) Ce(aja — Lpy Ya, yb)

We have developed numerical methods for

) determining such equili

1) studying their S3T stabili

oria with great accuracy and

Ity
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Stability of zonal jet S3

equilibria

to zonal jet perturbations

Stability analysis of
iInhomogeneous turbulent
states with zonal jets predicts:

existence of multiple equilibria
and their domain of attraction

merging of jets as g increases

finite amplitude equilibration at
small supercriticality is
described through the universal
Eckhaus instability of the G-L
amplitude equation

Q
(})
~—
(})

N 2

Y

1

10" |
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10° |

00 O

0 0 00 @ OO

TY o RoTs

/7 8 9 10 11

(= number of jets for a
21 x 21 channel)
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Stability of zonal jet S3

equilibria

to zonal jet perturbations

Stability analysis of
iInhomogeneous turbulent
states with zonal jets predicts:

existence of multiple equilibria
and their domain of attraction =%

Y

Q
o | <
merging of jets as g increases
finite amplitude equilibration at
small supercriticality is
described through the universal

Eckhaus instability of the G-L
amplitude equation

For higher energy input rates equilibria
become S3T unstable and move
towards the left of the diagram
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(= number of jets for a
21 x 21 channel)
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Structure of zonal jet S3T equilibria

€ = 2¢e., e = 150¢e.,

B—d?U/dy* =0
Rayleigh-Kuo hydrodynamic
stability criterion
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Structure-ot zonal iat S3T gquilibria
Jupiter’s 24N jet
£ = 122 50¢. ,

U€
m/s

e — 15 20 25 30 )Ooogcjz
I

Planetographic latitude (degrees)

\ (Sanchez-Lavega et. al., 2008) )

A N1

numerical simulation

< ’ ) B—d?U/dy* =0
Rayleigh-Kuo hydrodynamic
stability criterion
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Jet mergers do not occur

due to hydrodynamic instabilities

at this supercriticality
the ny=4 jet equilibrium
Is S3T unstable

e = 100e.,
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Remember the case with g/e.. = 20

(a) NL Ul(y,t) , €/e.,=20
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S3T stability analysis of the jet equilibria predicts the
jet merger as the most unstable eigenfunction
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S3T stability analysis of the jet equilibria predicts the
jet merger as the most unstable eigenfunction

= 6 jet equilibrium at
gle.: = 20
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structure of talk

relation of modulational instability of Rossby waves
with S3T instability of homogeneous state (if time allows)
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S3T generalizes the
modulational instability of Rossby waves

Ml is the hydrodynamic stability of finite amplitude Rossby — Acos(p - X — wpt)
waves (Lorenz 1972, Gill 1974, Connaughton et al. 2010) b i

We demonstrated that the problem of the hydrodynamic stability of any coherent
nonlinear solution is mathematically equivalent to the S3T stability of the homogeneous

equilibrium with the same eddy covariance spectrum.

C¢(k) = (2m)%p*|A2[6(k — p) + 6(k + p)]

However, the two problems are very different:

MI studies the stability of infinitely coherent solutions

S3T studies the statistical stability of forced—dissipative flows with a given
turbulence spectrum
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Conclusions

S3T makes exact analytical predictions for the emergence of large-scale
structure in planetary turbulence

S3T predicts that the transition from a homogeneous to an inhomogeneous
turbulent state occurs through a bifurcation of the statistical state dynamics

S3T predicts the finite amplitude of the emergent large-scale structure
The stability of inhomogeneous statistical turbulent equilibria (i.e. as in the Earth

or Jupiter) can be studied within S3T framework and thus the sensitivity of the
climate state of the planet can be determined

To understand turbulent flows one should adopt
the perspective of the statistical state dynamics
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Lorenz’s vision

“More than any other theoretical procedure, numerical
iIntegration is also subject to the criticism that it yields
little insight into the problem. The computed numbers
are not only processed like data but they look like data,
Ed Lorenz and a study of them may be no more enlightening than a
study of real meteorological observations. An alternative
procedure which does not suffer this disadvantage
consists of deriving a new system of equations whose
unknowns are the statistics themselves.”

The Nature and Theory of the General Circulation of the Atmosphere,
by E. N. Lorenz, 1967

S3T is a first step towards this new system of equations
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