

Τι κρύβεται κάτω από τις ζώνες του Δία και του Κρόνου;

ARC Centre of Excellence for Climate Extremes

Ναβίτ Κωνσταντίνου

Σεμινάριο Τμήματος Φυσικής Ι6 Οκτωβρίου 2019 Κρόνος Hubble telescope, NASA (Σεπ 2019)

Δίας Hubble telescope, NASA (Αυγ 2019)

jets coexist with vigorous turbulence

Jupiter by Juno (2015)

by Voyager (1980)

jets appear to be "steady"

Jupiter

Jovian winds

Saturn

Velocity (m/s)

towards a theory for understanding outer-atmosphere jets

$$\boldsymbol{u} = \left(u(\boldsymbol{x}, t), v(\boldsymbol{x}, t) \right)$$

$$u = \overline{u} + u'$$

jets eddies

(=turbulence)

$$\overline{u} \equiv \frac{1}{L_x} \int_0^{L_x} u \, \mathrm{d}x$$

small-scale motions self-organise to large-scale coherent jets

How are the zonal jets fueled?

The eddies (=turbulence) feed the jets with momentum!

turbulence usually acts as drag

Can turbulence act to **reinforce** flows?

towards a theory for understanding
outer-atmosphere jets
Navier-Stokes eq. for incompressible fluid
(Newton's 2nd law)
$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi - 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$
$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \phi + 2\rho \Omega \times u + \nu \rho \nabla^2 u + \xi$$

after some fiddling:

$$\frac{\partial \overline{u}}{\partial t} = -\frac{\partial}{\partial y} \overline{u'v'} + \nu \nabla^2 \overline{u}$$
Reynolds viscosity
stresses
(divergence of
energy-momentum
tensor)

jets are eddy-driven

$$\frac{\partial \overline{u}}{\partial t} = -\frac{\partial}{\partial y} \overline{u'v'} = \frac{\partial}{\partial y} \left(-\kappa \frac{\partial \overline{u}}{\partial y} \right) \quad \text{anti-diffusion} \\ \text{(or negative viscosity)}$$

how can we perform stability of turbulent flows?

the need for a new framework

To understand the underlying dynamics of jet formation we need to change framework...

dynamics of flow realizations (e.g. Navier-Stokes, ...)

 $\boldsymbol{u}(\boldsymbol{x},t)$,...

 $\overline{\boldsymbol{u}(\boldsymbol{x},t)}$, $\overline{\boldsymbol{u}'(\boldsymbol{x}_1,t)\boldsymbol{u}'(\boldsymbol{x}_2,t)}$, ...

Statistical State Dynamics

Farrell & Ioannou (2003) JAS

Statistical State Dynamics allows us linearize about a turbulent flow!

outer-atmosphere jets [a theory for their formation]

jets emerge through a "phase change" that occurs as turbulence intensity increases

Flow realizations (dns) exhibit jet formation, **but** its analytic expression appears only the SSD.

Predicting \mathcal{E}_c or the structure of the emergent jet is **not** possible through N-S dynamics.

Constantinou et al. (2014) JAS Constantinou (2015), PhD thesis

We understand how outer-atmosphere jet form and maintain.

But what's happening below the clouds?

For example: how deep these jets continue below the clouds?

how deep the jets go below the clouds?

outstanding question rooted deep in debate among various theories

shallow-jet theories

jets exist only within the top-atmospheric layer ~100km

deep-jet theories

jets reach the centre of the planet "Taylor columns"

Shallow or deep?

Shallow geostrophic turbulence (Rhines, 1975, Cho & Polvani 1996)

Deep internal convection (Busse, 1976, Heimpel et al, 2005 Fig. from Ingersoll, 1990) spacecraft Juno was launched in 2011 and entered orbit around Jupiter in 2015

Juno's mission

2016-07-01 00:00) Juno	make detailed measurements of Jupiter's gravitational and magnetic fields
Jupiter		Jupiter's background radiation is EXTREME! (around 5x10 ⁷ times stronger of that here on Earth)
		Strategy: Go in close; get the data; get out quick!
0.00km/s	4,469,608km	At its closest point it reaches only ~4500km over the cloud tops (that's about the distance from Athens to Iceland)

What did Juno discover?

[Excerpt from NASA Jet Propulsion Laboratory public announcement, May 2018]

Dr. Steve Levin Juno Project Scientist NASA JPL

> "....magnetic field has something to do with why the belts and zones only go that deep (....) But we don't know this yet; **it's speculation**."

deep inside the gas giants fluid becomes conducting

as we go deeper inside Jupiter pressure rises **dramatically**

electrons escape the molecules and the fluid **becomes conducting**

conducting moving fluid → → currents → magnetic fields

Btw, same story in Saturn...

Gravitometric measurements by Cassini reveal that jets on Saturn go as deep as **8500 km**

and again that's about the depth that pressure is high enough for the fluid to be conducting → → magnetic fields

here's where me and Jeff Parker come into the story...

Jeffrey Parker Lawrence Livermore National Laboratory CA, USA

Magnetic fields bring about new terms in equations of motion

$$N-S \rightarrow MHD \quad \rho \frac{\partial u}{\partial t} + \ldots = J \times B + \ldots \qquad \qquad \frac{\partial B}{\partial t} = \ldots \qquad B = (B_x, B_y)$$

$$Lorentz \qquad induction equation \\ force \qquad Faraday's law$$

 $\mu_0 \boldsymbol{J} = \nabla \times \boldsymbol{B}$ Ampére's law (ignoring displacement current)

[... some fiddling] now zonal flow obeys: $\frac{\partial \overline{\rho u}}{\partial t} = \frac{1}{\mu_0} \frac{\partial \overline{B'_x B'_y}}{\partial y} - \frac{\partial \overline{\rho u' v'}}{\partial y} + \text{dissipation}$ $\underset{\text{stresses}}{\text{Maxwell}} \underset{\text{stresses}}{\text{Reynolds}}$

We point out a new regime of magnetic eddy viscosity

We point out a new regime of magnetic eddy viscosity

We derive magnetic viscosity from simple physical arguments

$$\boldsymbol{u}(t=0) \& U(y) \longrightarrow \Delta \overline{\boldsymbol{u}} \overline{\boldsymbol{v}} \propto \Delta t \, \overline{\boldsymbol{v}^2} \, \partial_y U$$
$$\implies -\partial_y \overline{\boldsymbol{u}} \overline{\boldsymbol{v}} = \partial_y \left[-\gamma \Delta t \, \overline{\boldsymbol{v}^2} \, \partial_y U \right]$$

negative turbulent viscosity

$$\boldsymbol{B}(t=0) \& U(y) \longrightarrow \Delta \overline{B_x B_y} \propto \overline{B_y^2} \partial_y U$$
$$\Longrightarrow \frac{1}{\mu_0} \partial_y \overline{B_x B_y} = \partial_y \left[\alpha \frac{1}{\mu_0} \Delta t \overline{B_y^2} \partial_y U \right]$$

magnetic viscosity

 $\alpha, \gamma =$ nondim constants of O(1)

Putting it all together

zonal flow equation:

$$\frac{\partial \overline{\rho u}}{\partial t} = \frac{1}{\mu_0} \frac{\partial B'_x B'_y}{\partial y} - \frac{\partial \overline{\rho u' v'}}{\partial y} + \dots$$
$$= \frac{\partial}{\partial y} \left[\left(\alpha \frac{\overline{B_y^2}}{\mu_0} - \gamma \rho \overline{v^2} \right) \tau_{\text{corr}} \frac{\partial \overline{u}}{\partial y} \right] + \dots$$

total turbulent viscosity

We verify magnetic viscosity in 2D magnetohydrodynamic simulations

We verify magnetic viscosity in 2D magnetohydrodynamic simulations

Parker & Constantinou, Phys. Rev. Fluids, 2019

Ready for a leap of faith?
Use
$$\frac{\partial \overline{\rho u}}{\partial t} = \frac{\partial}{\partial y} \Big[\Big(\alpha \frac{\overline{B_y^2}}{\mu_0} - \gamma \rho \overline{v^2} \Big) \tau_{\text{corr}} \frac{\partial \overline{u}}{\partial y} \Big] + \dots$$

to predict how deep the jets in Jupiter & Saturn should go.

[[]French et al., ApJ Supp. S. (2012)]

Use typical flow values from cloud tops

We get: Jupiter 3500 km

- Use $B^2 = \text{Rm } B_0^2$ (empirical relation) to get a critical $\text{Rm} \rightarrow \text{critical } \eta$
- Use current internal structure models for each gas giant to compute the depth that corresponds to the $\eta_{\rm crit}$ value

Saturn 8000 km

[Juno \rightarrow Jupiter 3000 km Cassini \rightarrow Saturn 8500 km]

take home messages

Identified an MHD regime ($Rm \gg 1 \& \mathscr{A} \ll 1$) in which there is *magnetic eddy viscosity* of mean shear flow

Simple derivation with clear physical picture: Shear flow + MHD frozen-in law + "short" decorrelation due to turbulence

Confirmed in 2D incompressible MHD simulations

Magnetic eddy viscosity provides a plausible explanation for the depth-extent of the zonal jets in Jupiter and Saturn

Constantinou and Parker (2018). Magnetic suppression of zonal flows on a beta plane. *Astrophysical Journal*, **863**, 46. Parker and Constantinou (2019). Magnetic eddy viscosity of mean shear flows in two-dimensional magnetohydrodynamics. *Physical Review Fluids*, **4**, 083701

Constantinou (2018). Jupiter's magnetic fields may stop its wind bands from going deep into the gas giant, The Conversation, August 10th, 2018