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ABSTRACT

Eddy saturation refers to a regime in which the total volume transport of an oceanic current is insensitive to

the wind stress strength. Baroclinicity is currently believed to be the key to the development of an eddy-

saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over

topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics

above topography. It is demonstrated that themain factor controlling the appearance or not of eddy-saturated

states in the barotropic setting is the structure of geostrophic contours, that is, the contours of f/H (the ratio of

the Coriolis parameter to the ocean’s depth). Eddy-saturated states occur when the geostrophic contours are

open, that is, when the geostrophic contours span the whole zonal extent of the domain. This minimal re-

quirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasi-

geostrophic flow over two different topographies characterized by either open or closed geostrophic contours

with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced

through a barotropic–topographic instability that occurs because of the interaction of the large-scale zonal

flow with the topography. By studying this barotropic–topographic instability insight is gained on how eddy-

saturated states are established.

1. Introduction

The Southern Ocean, and in particular the Antarctic

Circumpolar Current (ACC), are key elements of the

climate system. The ACC is driven by a combination of

strongwesterlywinds and buoyancy forcing. Straub (1993)

advanced the remarkable hypothesis that the equilibrated

ACC zonal transport should be insensitive to the strength

of the wind stress forcing. This insensitivity was later

verified in eddy-resolving ocean models of the Southern

Ocean and is now referred to as eddy saturation (e.g.,

Hallberg and Gnanadesikan 2001; Tansley and Marshall

2001; Hallberg and Gnanadesikan 2006; Hogg et al. 2008;

Farneti et al. 2010; Meredith et al. 2012; Morrison and

Hogg 2013; Munday et al. 2013; Abernathey and Cessi

2014; Farneti et al. 2015; Marshall et al. 2017). Some in-

dications of eddy saturation are seen in observations

(Böning et al. 2008; Firing et al. 2011).

There is evidence that the strength of the westerly winds

over the Southern Ocean, which force the ACC, is in-

creasing (Thompson and Solomon 2002; Marshall 2003;

Yang et al. 2007; Swart and Fyfe 2012). Recently, Hogg

et al. (2015) using satellite altimetry data identified that

along with the strengthening of the westerlies comes also a

linear trend of the Southern Ocean surface eddy kinetic

energy (EKE), while the ACC zonal transport remains

insensitive or even has decreased. This way, Hogg et al.

(2015) concluded that the ACC is in an eddy-saturated

state. Given the strengthening of the Southern Ocean

westerly winds over the last decades, and the potential

enhanced strengthening under global warming forcing

(Bracegirdle et al. 2013), the question that naturally arises

is how will the ACC transport respond? Thus, un-

derstanding the mechanisms behind eddy saturation is

particularly relevant. This paper attempts to shed some

more insight in themechanismunderlying eddy saturation.

Initially the explanation for eddy saturation given by

Straub (1993) relied on baroclinic processes and on the

existence channel walls. In the following detailed

models of Nadeau and Straub (2009, 2012), Nadeau et al.

(2013), and Nadeau and Ferrari (2015), the arguments

for explaining eddy saturation were barotropic in heart.

Specifically, Nadeau and Ferrari (2015) argued that the

circulation can be decomposed to a circumpolar modeCorresponding author: Navid Constantinou, navid@ucsd.edu
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and a gyre mode (with the latter not contributing to the

total transport). Nadeau and Ferrari (2015) showed that

the wind stress curl spins barotropic gyres and, furthermore,

that an increase of wind stress strength spins up the gyres

while leaving the circumpolarmode intact; thus, the transport

remains insensitive. Still, though, all those explanations relied

in baroclinic instability for producing transient eddies to

transfer the momentum from the surface of the ocean down

to the bottom. On the other hand, Marshall et al. (2017) and

Mak et al. (2017) recently showed that eddy saturation can

emerge as a result of an eddy flux parameterization that

was introduced by Marshall et al. (2012). In agreement

with Straub (1993), Marshall et al. (2017) also relate the

production ofEKE to the vertical shear of the zonalmean

flow. Again, baroclinic instability is identified as the main

source of EKE. In this paper, we show that eddy satura-

tion can be observed without baroclinic eddies, without

channel walls, and without any wind stress curl, that is,

without any gyres.

According to Johnson and Bryden (1989), different

density layers are coupled via interfacial form stress that

transfers momentum downward from the sea surface to

the bottom. At the bottom it is topographic form stress

that transfers momentum from the ocean to the solid

earth (Munk and Palmén 1951). Note that only the

standing eddies result in time-mean topographic form

stress. Thus, it seems reasonable that topography should

play a dominant role in understanding what sets up the

total vertically integrated transport. There is a consen-

sus that topography acts as the main sink in the zonal

momentum balance [in agreement with Munk and

Palmén (1951)]. But can the topography also have an

active role in setting up the momentum balance, for

example, by shaping the standing eddy field and its as-

sociated form stress? Abernathey and Cessi (2014) ar-

gued in favor of the active role the topography can have

in setting up the momentum balance. They showed that

isolated topographic features result in localized absolute

baroclinic instability (i.e., baroclinic eddy growth in situ

above the topographic features) and an associated

almost-barotropic standing eddy field pattern. Transient

eddies are suppressed away from the topographic fea-

tures. Furthermore, Abernathey and Cessi (2014) dem-

onstrated that the topographic feature results in the

thermocline being shallower and the isopycnal slope

being smaller compared to the flat-bottom case. Thus,

the usual arguments assuming that the isopycnal slopes

are so steep as to be marginal with respect to the flat-

bottomed baroclinic instability cannot be invoked to explain

the ACC equilibration (and thus neither eddy saturation) in

a model configuration with localized topography. In

addition,ThompsonandNaveiraGarabato (2014), andmore

recently Youngs et al. (2017), further emphasized the role

of the standing eddies (or standing meanders) in setting

up the momentum balance and the ACC transport. In this

paper, we emphasize the role of the standing eddies and their

form stress in determining transport in an eddy-saturated

regime within a barotropic setting.

Lately, there has been increasing evidence arguing for

the importance of the barotropic processes in de-

termining the ACC transport. Ward and Hogg (2011)

studied the ACC equilibration using a multilayer prim-

itive equation wind-driven model with an ACC-type

configuration starting from rest. Following turn-on of

the wind a strong barotropic current forms within sev-

eral days that is able to transfer most of the imparted

momentum to the bottom; only after several years does

the momentum start being transferred vertically via in-

terfacial form stress. The fast response is that a bottom

pressure signal arises a few days after turn-on, and the

associated topographic form stress couples the ocean to

the solid earth. Subsequently, for about 10 years, and

contrary to the statistical equilibrium scenario described

by Johnson and Bryden (1989), interfacial from stress

transfersmomentum vertically from the bottom upward.

At equilibrium both eastward momentum is transferred

from the surface downward and also westward mo-

mentum from the bottom upward. On the other hand,

studies using in situ velocity measurements, satellite

altimetry, and output from the Southern Ocean State

Estimate (SOSE) also argue in favor of the importance

of the bottom velocity component of theACC transport,

which comes about from the barotropic component of

the flow1 (Rintoul et al. 2014; Peña Molino et al. 2014;

Masich et al. 2015; Donohue et al. 2016). For example,

using measurement from the cDrake experiment,

Donohue et al. (2016) estimated that the bottom ve-

locity component of the ACC transport accounts for

about 25% of the total transport.

Constantinou and Young (2017) discussed the role of

standing eddies using a simple barotropic model forced

by an imposed steady wind stress and retarded by a

combination of bottom drag and topographic form stress

(Hart 1979; Davey 1980; Holloway 1987; Carnevale and

Frederiksen 1987). Constantinou and Young (2017)

used a random,monoscale topography and argued that a

critical requirement for eddy saturation is that the ratio

of planetary potential vorticity (PV) gradient to topo-

graphic PV gradient is large enough so that the geo-

strophic contours (i.e., the contours of the planetary PV

1 Traditionally, the baroclinic component of the flow is obtained

through the thermal–wind relationship after assuming zero flow at

the bottom. Thus, any transport caused by the bottom flow is not

thought as part of the baroclinic component of the ACC transport.
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plus the topographic contribution to PV) are open in the

zonal direction. Here, we demonstrate that what matters

for eddy saturation is not the actual value of the ratio

of planetary PV over topographic PV but rather the

structure of the geostrophic contours themselves.

Themain goal of the present paper is to provide insight

on how eddy saturation is established in this barotropic

setting. We do that by comparing numerical results using

two simple sinusoidal topographies. We show that this

barotropic model without baroclinic instability can ex-

hibit impressive eddy saturation, provided that the geo-

strophic contours are open (see section 3). We do not

claim here that baroclinic processes are not important for

setting up the momentum balance in the Southern Ocean.

Instead, we emphasize the role of barotropic dynamics and

the fact that we can still observe eddy saturation without

baroclinicity. In this barotropic model, transient eddies

arise as an instability caused by the interaction of the

large-scale zonal flow with the topography. The simple

topography used here allows us to study in detail this

barotropic–topographic instability that gives rise to

transient eddies and thus provide insight on how eddy-

saturated states appear (see section 5). We show, in this

way, that topography does not only have a passive role in

setting the zonal momentum balance by acting as the

main sink of zonal momentum, but it can also have an

active role by producing transient eddies that shape the

standing eddy field and its associated form stress.

2. Setup

Consider the quasigeostrophic dynamics of a baro-

tropic fluid of depth H2hðx, yÞ on a beta plane. The

fluid velocity consists of a large-scale, domain-averaged

zonal flow U(t) along the zonal x direction plus smaller-

scale eddies with velocity (u, y). The eddy component of

the flow is derived via an eddy streamfunction c(x, y, t)

through (u, y) 5 (2›yc, ›xc); the streamfunction of the

total flow is2U(t)y1 c(x, y, t). The relative vorticity of

the flow is =2c, where =2 5
def

›2x 1 ›2y, and the quasi-

geostrophic potential vorticity (QGPV) of the flow is

f
0
1by1h1=2c . (1)

In (1), f0 is the Coriolis parameter at the center of

the domain, b is the planetary PV gradient, and

h(x, y)5
def

f0h(x, y)/H is the topographic contribution to

QGPV or simply the topographic PV. The QGPV and

the large-scale flow evolve through

›
t
=2c1 J(c2Uy,=2c1h1by)52D=2c, and (2a)

›
t
U5F2mU2 hc›

x
hi , (2b)

(Hart 1979; Davey 1980; Holloway 1987; Carnevale

and Frederiksen 1987). In (2a), J is the Jacobian,

J(a, b)5
def

(›xa)(›yb)2 (›ya)(›xb), and D5
def

m1 n4=
4 is

the dissipation operator, which includes linear Ekman

drag m and hyperviscosity n4 used for numerical stability.

On the right of (2b), hc›xhi is the topographic form stress,

with angle brackets denoting an average over the domain.

The large-scale flow U(t) in (2b) is forced by the constant

F 5 t/(r0H), where t is the uniform surface zonal wind

stress, and r0 is the reference density of the fluid, while is

being retarded by a combination of bottom drag and to-

pographic form stress. Being constant over the whole do-

main, the wind stress has no curl. The domain is periodic in

both the zonal and the meridional directions, with size

2pL3 2pL. FollowingBretherton andKarweit (1975), we

have in mind a midocean region that is smaller than ocean

basins but much larger than the length scale of ocean

macroturbulence. The role of hyperviscosity is limited only

to the removal of small-scale enstrophy. Thus, the hyper-

viscosity has a very small effect on larger scales, and energy

dissipation is mainly due to drag m.

The model formulated in (2) is the simplest model that

can be used to investigate beta-plane turbulence above

topography driven by a large-scale zonal wind stress ap-

plied at the surface of the fluid. It has been used in the past

for studying the interaction of zonal flowswith topography

(Hart 1979; Davey 1980; Holloway 1987; Carnevale and

Frederiksen 1987) and recently by Constantinou and

Young (2017) for studying the geostrophic flow regimes

above random monoscale topography.

Inspired by the Southern Ocean, we take L 5
775 km, H 5 4 km, r0 5 1035 kgm23, f0 5 21.26 3
1024 s21, and b 5 1.14 3 10211 m21 s21. Also, we take

hrms 5
def ffiffiffiffiffiffiffiffiffihh2ip

5 200m, which implies that hrms 5 6.3 3
1026 s21. For Ekman drag we use m5 6.33 1028 s21’
(180 day)21 (Arbic and Flierl 2004).

Results are reported using two sinusoidal topographies:

hk 5
ffiffiffi
2

p
h
rms

cos(14x/L) and (3a)

h3 5 2h
rms

cos(10x/L) cos(10y/L) . (3b)

Both topographies in (3) are monoscale, that is, they are

characterized by a single length scale ‘h 5hrms/j=hjrms,

which is

‘kh ’ ‘3h 5 0:071L5 55:03 km.

Thus, for both topographies the ratio of planetary PV

gradient to topographic PV gradient is b/j=hjrms 5 0.1.

An important factor controlling the behavior of the flow

is the structure of the geostrophic contours, that is, the
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level sets of by 1 h(x, y). Figure 1 shows the structure of

geostrophic contours for the two topographies hk and h3

using the parameters given above. Here, we distinguish

between open and closed geostrophic contours. Open

geostrophic contours span the full zonal extent of the do-

main; see, for example, the two contoursmarkedwith thick

black curves in each panel of Fig. 1. For any nonzero b, all

geostrophic contours for topographyhk are open, while for
topography h3 there exist both closed as well as open

geostrophic contours. However, for topography h3

open geostrophic contours, such as the one shown in

Fig. 1b, are only found in the vicinity of narrow chan-

nels that span the horizontal extent of the domain

snaking around local maxima and minima of by1h3.

We say, therefore, that h3 is characterized by closed

geostrophic contours.

It is useful to decompose the eddy streamfunction

c into time-mean standing eddies with streamfunction c

and residual transient eddies c0 so that

c(x, y, t)5c(x, y)1c0(x, y, t),

where the timemean isc5
def

limT/‘(1/T)
Ð t01T

t0
c(x, y, t0) dt0,

with t0, the time the flow needs to reach a statistically

steady state. Similarly, all fields can be decomposed

into time-mean and transient components, for example,

U(t)5U1U 0(t). We are interested in how the time-mean,

large-scale flowU, which is directly related to the time-mean

total zonal transport, depends on wind stress forcing F.

All solutions presented in this paper employ 5122 grid

points; this resolution allows about six grid points within

‘h. We have verified that results remain unchanged with

double the resolution. The hyperviscosity coefficient is

set to n4 5 2.27 3 109m4 s21. Model (2) is evolved

using the exponential, time-differencing, fourth-order,

Runge–Kutta time-stepping scheme (Cox andMatthews

2002; Kassam and Trefethen 2005).2 Time-averaged

quantities are calculated by averaging the fields over

the interval 30 # mt # 60.

3. Results

a. Variation of the time-mean large-scale flow with
wind stress forcing

Figure 2 shows how the time-mean, large-scale flowU

varies with wind stress forcing F for the two topogra-

phies. A generic feature of model (2), for both topog-

raphies used here (as well as other more complex and/or

multiscale topographies) is the following: as wind stress

strength varies from weak to stronger values, the flow

transitions from a regime with relatively small time-

mean, large-scale flowU to a regime with largeU. Spe-

cifically, for very high wind stress forcing values,

the time-mean, large-scale flow becomes U’F/m,

which is the value for U in the flat-bottom case

[cf. (2b) with h 5 0]. The flat-bottom value F/m is

marked with the dashed–dotted line in both panels of

Fig. 2. These two flow regimes are referred to as the

lower branch and the upper branch (Davey 1980), and

they are indicated in Fig. 2. In both branches, the flow

reaches a steady state without any transients after an

initial adjustment on the time scale of O(m21). For in-

termediate wind stress forcing values, the flow develops

transients and becomes turbulent.

FIG. 1. The structure of the geostrophic contours by1h for the

two types of topographies used in this paper: (a) hk and (b) h3. For

both cases b‘h/hrms 5 0:1. An open geostrophic contour for each

case is marked with a thick curve. The case by1hk consists of only
open geostrophic contours, while by1h3 consists of mostly closed

ones. (Only a quarter of the flow domain is shown.)

2 AMATLAB code used for solving (2) is available at the github

repository: https://github.com/navidcy/QG_ACC_1layer.
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In the remainder of this subsection we describe in

detail the qualitative features of the flow on the lower

and upper branches as well as the transition from one

branch to the other for the two topographies.

For weak wind stress forcing values (i.e., on the

lower branch) the equilibrated solutions of (2) are time

independent without any transient eddies. These steady

states have a large-scale flow U and an associated sta-

tionary eddy flow field c that both vary linearly with

wind stress forcing F. As a result, EKE varies qua-

dratically with wind stress, that is, as F2. Figure 3a

shows how EKE varies with wind stress forcing for

topography hk and confirms the F2 dependence on the

lower branch (similar behavior is found for topography

h3; not shown). As the wind stress increases beyond a

certain value, the lower-branch steady states undergo

an instability and develop transients. Even though the

topography used here imposes a length scale ‘h, the

transient eddies can have scales much smaller than ‘h.

The onset of this instability is roughly at F/(‘hh
2
rms) ’

7.0 3 1023 for both topographies. (The stability of the

lower-branch steady states for topography hk is studied
in detail in section 5.)

For wind stress forcing values beyond the threshold of

the lower-branch instability, the flow above the two to-

pographies is qualitatively very different: topography hk

shows eddy saturation, while topography h3 does not

(see Fig. 2).

For topography hk, as wind stress continues to in-

crease beyond the onset of the transient eddy instability,

the time-mean, large-scale flowU ceases to grow linearly

with F; instead,U grows at a much slower rate. In fact,U

shows only a very weak dependence on wind stress

strength in the shaded region of Fig. 2a:U increases only

about fourfold in the course of a 60-fold wind stress in-

crease from F/(‘hh
2
rms) 5 7.0 3 1023 up to 4.1 3 1021.

This regime is identified as the eddy saturation regime.

FIG. 3. (a) Variation of the equilibrated EKE and the standing

eddy EKE (sEKE) with wind stress forcing for the topography hk,
as the flow transitions from the lower branch to the eddy satu-

ration regime. Dashed–dotted lines mark the slopes 1 and 2.

(b) Variation of the equilibrated, time-mean, large-scale flow U

with bottom drag m while wind stress forcing is kept constant at

F/(‘hh
2
rms)5 1:43 1021 [the value highlighted in (a)].

FIG. 2. The equilibrated, time-mean, large-scale flow U as a func-

tion of the nondimensional forcing for the two topographies. (a) The

case with open geostrophic contours; (b) the case with closed geo-

strophic contours. Dashed–dotted lines mark the slope 1 and the

time-mean large-scale flow U5F/m. In (a), the eddy saturation

regime 7:03 1023 #F/(‘hh
2
rms)# 4:13 1021 is shaded. The thick

semitransparent green curve marks the stability region of the

steady solution (9). The points marked with a squareu, a triangle

4, and a diamond ) correspond to the three typical cases for

which the energy spectra and flow field snapshots are shown in

Figs. 4 and 5.
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The eddy saturation regime in Fig. 2a terminates at

F/(‘hh
2
rms) ’ 4.1 3 1021 by a discontinuous transition to

the upper branch, marked with a dashed vertical line. The

upper-branch steady solutions are characterized by much

larger values of time-mean, large-scale flowU compared

to ones in the eddy saturation regime or on the lower

branch. This discontinuous transition has been coined

drag crisis (Constantinou andYoung 2017). The location of

the drag crisis exhibits hysteresis (Charney and DeVore

1979). As we increase wind stress forcing the drag crisis and

the transition to the upper branch occurs at F/(‘hh
2
rms)

’ 4.1 3 1021. However, if we initiate our model with the

upper-branch solutions and start decreasing the wind stress

forcing, we can find solutions on the upper branch down to

F/(‘hh
2
rms) ’ 2.44 3 1022 (see Fig. 2a). We note that to

obtain the upper-branch solutions we have to be very del-

icate in initiating the system appropriately. Thus, al-

though the upper-branch solutions shown in Fig. 2a are

linearly stable, their basin of attraction is smaller than

that of the coexisting eddy-saturated solutions. The ex-

tent of the region ofmultiple stable equilibria is explained

by studying the stability of the upper-branch solution (see

section 5).

On the other hand, the case with topography with

closed geostrophic contours h3 in Fig. 2b does not ex-

hibit any drag crisis or any multiple equilibria. Also,

the solutions using topography h3 do not show

any sign of eddy saturation; there is only a slight,

barely noticeable decrease from the linear growth

of the time-mean, large-scale flow U in the range

8:03 1024 #F/(‘hh
2
rms)# 3:03 1023, and for those wind

stress values the flow does not have any transient

eddies. Transient eddies appear for wind stress

forcing F/(‘hh
2
rms). 4:23 1023. For wind stress forcing

values beyond the onset of transient eddies the flow

transitions from the lower to the upper branch in a

continuous manner between F/(‘hh
2
rms)’ 8:03 1023 and

4:23 1022 and at a rate much faster than linear.

b. The flow regimes

As described in the previous subsection, we distin-

guish three qualitatively different flow regimes for each

topography. There exist, for both topographies, a lower-

branch flow regime for weak wind stress forcing and an

upper-branch flow regime for strong wind stress forcing.

These flow regimes consist of steady flows without any

transient eddies. In between the lower- and upper-

branch flow regimes there exists a regime in which the

flow has a transient component: the eddy saturation regime

for topography hk case and the transient regime for to-

pography h3. These intermediate regimes are character-

ized by flows that feature strong transients and are

turbulent, especially the eddy-saturated case.Moreover, in

these regimes the flow shows energy in a wide range of

spatial scales. Figures 4 and 5 show the energy spectra

and a snapshot of the flow fields for a typical represen-

tative case of each of the three flow regimes (the cases

presented in Figs. 4 and 5 are the ones marked with a

square; a triangle and a diamond in Figs. 2a and 2b).

The eddy field c in the eddy-saturated regime is

characterized as two-dimensional turbulence. The wind

stress F directly drives the large-scale flow U in (2b),

and, in turn, U drives the eddy field through the term

U›xh in (2a). This leads to a forward transfer of energy

from the largest possible scale to the eddies on the

length scale of the topography ‘n and then nonlinearity

transfers energy from length scale ‘n to all other scales.

This turbulent regime is anisotropic; for example, for the

case marked with a triangle in Fig. 2a and also shown in

Fig. 4c, the transient eddy velocities are related by

hu02i’ 0:57hy02i. The turbulent eddy flow exhibits re-

gimes that resemble the energy and enstrophy inertial

ranges. For length scales smaller than ‘n, the energy

spectrum even shows a slope close to23 resembling the

enstrophy inertial range as predicted by homogeneous

isotropic turbulence arguments. Characteristically, for

the open geostrophic contours case (Fig. 4) the eddy-

saturated solution shows energy content in spatial scales

other than ‘n that is at least eight orders of magnitude

larger compared to the steady lower- and upper-branch

solutions. Similar behavior is seen for the closed geo-

strophic contours case of Fig. 5. The difference between

these two cases is that for topography h3 the lower- and

upper-branch solutions are not monochromatic, that is,

they do not show energy content only at scale ‘n; the

nonlinearity caused by the nonvanishing Jacobian term

J(c, h3) induces energy to cascade to scales smaller

than scale ‘n.

c. Further characteristics of the eddy saturation
regime for topography hk

It has been noted that in the eddy saturation regime

even though the total ACC transport varies very little

with wind stress, the domain-averaged EKE is approx-

imately linearly related to the wind stress (see, e.g.,

Hallberg and Gnanadesikan 2001, 2006). Figure 3a

shows how this is reflected in this barotropic model; in-

deed, in the eddy saturation regime the EKE varies with

wind stress forcing at a rate much slower than quadratic.

It is also apparent from Fig. 3a that strong transient

eddies characterize the eddy saturation regime; this can

be seen by the diminishing of the standing eddy EKE

(sEKE), that is, the EKE that results from the standing

eddies alone.

The barotropic model (2) predicts that for a fully

eddy-saturated state, that is, whenU does not vary at all
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with F, the EKE should vary linearly with wind stress

forcing. If the flow is completely saturated, then from

(2b) we get that the form stress hc›xhi varies linearly

with F. With that in hand, we can understand why EKE

varies linearly with wind stress from the energy power

integral, that is, h2c3 ð2aÞi gives

FIG. 4. (a) The energy spectra for three typical cases using topographyhk with open geostrophic contours. The dashed–dotted linemarks the slope

23. (b)–(d)Afinal snapshot of the sumof the relative vorticity and the topographic PV,=2c1h (colors)with the total streamfunction superimposed,

and c2Uy (contours) for each of the three cases presented in (a). [In (b)–(d) only a fraction of the flow domain is shown for better visualization.]

FIG. 5. As in Fig. 4, but for three typical cases using topography h3 with closed geostrophic contours.
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Uhc›
x
hi1U 0hc0›

x
hi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

negligible

5 2m

�
1

2
j=cj2

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

5
def

EKE

1 small hyperviscous dissipation. (4)

If we consider the energy transfers among the various

flow components, we deduce that U 0hc0›xhi should be

less than Uhc›xhi (Constantinou and Young 2017).

Moreover, the numerical solutions of (2) suggest that in

the eddy saturation regime the ratio of U 0hc0›xhi to

Uhc›xhi is less than about 1023 and therefore negligible.

Thus, (4) implies that EKE is proportional to form stress

hc›xhi, that is, EKE varies linearly with F.

Results both from quasigeostrophic models (Hogg

and Blundell 2006; Nadeau and Straub 2012; Nadeau

and Ferrari 2015) and also primitive equation models

(Marshall et al. 2017) demonstrated the somehow

counterintuitive fact that in the eddy saturation regime

the total transport increases with increasing bottom

drag. Hogg andBlundell (2006) suggested that this effect

comes about because increasing the bottomdrag decreases

the strength of the transient eddies that are responsible for

transferring momentum to the bottom where the topo-

graphic form stress acts; thus, the strength of the zonal

current increases. Nadeau and Straub (2012) on the

other hand, argued that increase of the bottom drag

damps the gyre circulation and its associated form

stress; thus, the zonal current increases to provide the

drag needed to balance themomentum imparted by the

wind stress.

In the barotropic model studied here, we also show

that transport increases with increasing bottom drag in

the eddy saturation regime. Figure 3b shows how the

time-mean, large-scale flowU varies when wind stress

forcing is kept fixed at F/(‘hh
2
rms)5 1:43 1021, while

bottom drag m varies; we find thatU increases with m

(up to a point). Here, the forcing is a steady, mean, zonal

wind stress with no curl and thus large gyres do not form.

Therefore, only the explanation by Hogg and Blundell

(2006) can be applicable here. Within model (2) large

bottom drag damps the eddy field c, thereby decreas-

ing the form stress. Hence, increased bottom drag

strengthens the time-mean, large-scale flowU, which is

necessary to balance the wind stress forcing F in the

eddy saturation regime [cf. (2b)]. If we increase bottom

drag m beyond a certain threshold the flow becomes

laminar and transitions from the eddy saturation regime

to the lower-branch solution (for the case in Fig. 3b this

transition occurs at m/hrms 5 33 1022). On the lower

branch the time-mean, large-scale flowU decreases with

increasing m.

4. The effect of the transient eddies on the standing
eddy field

The eddy PV fluxes

E 5
def

(U 0 1 u0)=2c, y0=2c
� �

, (5)

appear as forcing in the standing eddy field c. To elu-

cidate how the zonal momentum balance is shaped by

the transient eddies for the two different topographies,

we compute the divergence of the eddy PV fluxes = � E.
Figure 6 compares the structure of the eddy PV flux

divergence (shading) with the actual standing eddy field

c (contours) for the two example cases with different

topographies shown in Figs. 4c and 5c. There is an ap-

parent qualitative difference between the two cases. For

the open geostrophic contours case in Fig. 6a, the eddy

PV fluxes are dominant over the whole domain, and, to a

large extent, they are aligned with the standing eddy

streamlines. This is not at all the case for the topography

with closed geostrophic contours in Fig. 6b. In model (2)

we can verify, by considering the energy budgets among

components (Constantinou and Young 2017), that the

only source of transient eddy energy is the energy con-

version from the standing field component through the

term hc= � Ei. Thus, the stronger the transient eddies

are the stronger the correlation between eddy PV flux

divergence and time-mean streamlines should be. In

section 5 we show that for the case shown in Fig. 6a there

is a strong transient eddy instability that explains this

almost-perfect alignment between eddy PV fluxes and

standing field streamlines.

More importantly, however, notice how for the case

with cos(14x/L) topography shown in Fig. 6a, the eddy

PV fluxes are offset from the topography contours by

one-eighth wavelength (see Fig. 6c). This offset in the

eddy forcing induces a standing flow that projects onto

the sin(14x/L) rather than the cos(14x/L), that is, pro-

jects onto ›xh
k rather than hk. Since the time-mean to-

pographic form stress is hc›xhi, it is apparent that only
the sin component of the standing eddy field can pro-

duce nonzero topographic form stress. Thus, the mis-

alignment between the topography and the transient eddy

forcing induces a standing eddy field that contributes to the

form stress.

In conclusion, the transient eddies have the ability to

shape the standing eddy field so that it projects more
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onto ›xh, therefore enhancing the time-mean topo-

graphic form stress. This shaping of the standing eddy

field by the transient eddies is prominent in Fig. 6a with

topography hk but not in the case with h3. Specifically,

for the case shown in Fig. 6a the offset by one-eighth

wavelength implies that = � E projects equally3 to both

h and ›xh (i.e., onto the cos and sin). Indeed,

corr(hk,= � E)’ corr(›
x
hk,= � E)5 0:69, (6a)

where corr(a, b)5
def habi/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha2ihb2ip

. For topography h3

in Fig. 6b these correlations are at least an order of mag-

nitude less:

corr(h3,= � E)5 0:01 and corr(›
x
h3,= � E)520:07 .

(6b)

5. The stability of the lower- and upper-branch
solutions for topography hk

For topography of the form h 5 h0cos(mx) [as is (3a)],

we can understand both the transitions among the three

flow regimes as well as the role that the transient eddies

play on eddy saturation by studying a three-dimensional

invariant manifold of model (2).

It is easy to verify in this case that there exists a three-

dimensional invariant manifold by assuming that the

eddy streamfunction is

c5 [S(t) sin(mx)1C(t) cos(mx)]=m . (7)

Inserting (7) into (2), the Jacobian term J(c, h) vanishes

identically, and thus (2) reduces to

dC

dt
52mC1m b/m2 2U

� 	
S , (8a)

dS

dt
52mS2m b/m2 2U

� 	
C2h

0
U, and (8b)

dU

dt
5F2mU1

1

2
h
0
S , (8c)

(after also ignoring n4 in D). Steady equilibrium solu-

tions of (8) can be found in the form:

U5Ue, c5 [Se sin(mx)1Ce cos(mx)]=m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

ce

. (9)

Both the lower- and upper-branch solutions for the case

with topography hk are exactly such steady solutions in

the form of (9) (see Figs. 4b,d).

Starting with the work by Hart (1979), the stability of

solutions (9) to perturbations that liewithin this invariant

manifold has been extensively studied (Hart 1979;

FIG. 6. (a),(b) A comparison of the eddy flux divergence =�E (shading) with the standing eddy streamlines c

(black contours) for a case with topography (a) hk and a case with topography (b) h3. The cases shown correspond

to the two examples marked with a triangle4 in Fig. 2 and also shown in Figs. 4c and 5c. For the open geostrophic

contours case, the eddy PV fluxes dominate the whole domain and aligned with the mean flow streamlines.

(c) Comparison of the normalized y-integrated eddy PV flux divergence with the topography for the case shown in

(a). Notice how the eddy PV flux divergence is offset by one-eighth wavelength from the topography, thus exciting

the sin(mx) component of the streamfunction. In all panels dashed white lines mark the h 5 0 contour.

3 A misalignment of one-eighth wavelength implies that both

correlations in (6a) are 1/
ffiffiffi
2

p
.
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Pedlosky 1981; Källén 1982; Rambaldi and Flierl 1983;

Yoden 1985). Here, we study the stability of (9) to any

general perturbation that may or may not lie within the

invariantmanifold. Charney andFlierl (1980) studied the

stability of the inviscid and unforced version of (8), that

is, withm5F5 0 and assuming the large-scalemean flow

Ue to be a given external parameter of the problem.

Here, we perform the stability of the forced–dissipative

problem. Thus, we use Ue that results from a steady so-

lution of (2) [or, for hk, a steady solution of (8)]. We

investigate how this instability may elucidate why eddy

saturation is observed.

a. Stability calculation

Assume perturbations about the steady state (9):

U(t)5Ue 1U(t),c(x, y, t)5ce(x, y)1f(x, y, t)

1 [s(t) sin(mx)1 c(t) cos(mx)]/m . (10)

In (10), we write the perturbation streamfunction as a

sum of a perturbation that lies within the three-state

invariant manifold [s sin(mx) 1 c cos(mx)]/m and a

perturbation f that does not project on the invariant

manifold. That is, f satisfies hf eimxi5 0.

By inserting (10) into (2) we get the linearized

equations for the perturbations. When projected on the

invariant manifold the perturbation equations read

dc

dt
52mc1m(b/m2 2Ue)s2mSeU , (11a)

ds

dt
52ms2m(b/m22Ue)c2(h

0
2mCe)U , and (11b)

dU
dt

52mU1
1

2
h
0
s , (11c)

while the orthogonal complement of the perturbation

equations is

›
t
=2f52[(Ue=2 1b)›

x
1m=2]f2 f[Se cos(mx)

2Ce sin(mx)](=2 1m2)1mh
0
sin(mx)g ›

y
f .

(12)

Eigenanalysis of (11) determines the stability of steady-

state (9) to perturbations within the invariant manifold;

eigenanalysis of (12) determines the stability of (9) to

perturbations outside the manifold. Details for the eigen-

analysis of (12) are provided in the appendix.

b. Stability results

The region of stability of steady states (9), bothwithin and

outside the low-dimensional manifold [i.e., with respect to

both (11) and (12)], ismarkedwith the thick semitransparent

curve in Fig. 2a. The onset of this barotropic–topographic

instability explains (i) the appearance of transient eddies as

wind stress is increased and (ii) the termination of the upper-

branch solution as wind stress is decreased.

Figure 7a shows the large-scale flow Ue of the steady

states (9) as a function of wind stress forcing F, together

with their stability as predicted by (11) and (12). Also

shown in Fig. 7a for comparison are the numerical re-

sults of (2). It is clear that the transition from the lower

branch to the turbulent regime, in which eddy saturation

is observed, is triggered by the instability caused by (12)

rather than by (11). This instability of the lower branch

first occurs at F/(‘hh
2
rms)5 7.153 1023. Figure 7c shows

the most unstable eigenfunction just beyond the mar-

ginal point of instability. This eigenfunction has small-

scale meridional structure; the meridional wavenumber

of the eigenfunction shown in Fig. 7c is ny5 2.5m. Thus,

the instability of the lower branch caused by (12) in-

troduces y dependence in the flow (see Fig. 7c).

Next, we would like to investigate how this instability

contributes to the occurrence of eddy saturation. What is

interesting here is how the instability maximum growth rate

varies with the large-scale flow Ue. Figure 7b shows that in

the regime in which we find eddy saturation the instability

maximal growth rate caused by (12) increases dramatically

with U; growth rates increase by a factor of 1000 when U

increases only by a factor of 15. The transient eddy source

thus increases significantly for only small changes inU. In this

way, and by analogy with arguments for baroclinic eddy

saturation, larger wind stress forcing implies the need for

stronger eddies, but much stronger eddies can be produced

with just a slight increase in Ue, thus leading to eddy satu-

ration. Furthermore, the above argument suggests that the

flow adjusts to a state close to marginal stability for this

barotropic–topographic instability, similarly to the baroclinic

marginal stability argument first invoked by Stone (1978).

The stability calculations presented in this section are

based on the fact that the topography does not depend on y.

However, the sameflow transitionsoccur for flowswithopen

geostrophic contours above complex topographies. In that

case, finding the lower- andupper-branch equilibrium steady

states ismuchmorepainful since someof the Jacobian terms,

for example, J(ce, h), are not identically zero. Therefore,

the lower- and upper-branch solutions do not lie within any

low-dimensional manifold. Methods for obtaining such

equilibria were developed by Tung and Rosenthal (1985).

6. Discussion

The results reported here demonstrate that eddy sat-

uration can occur even without baroclinicity. A bare

barotropic setting is capable of producing an eddy

406 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48



saturation regime in which the transport is insensitive to

wind stress forcing. The model shows in addition some

other features of eddy saturation that were previously

observed in more elaborate ocean models; EKE varies

close to linearly with wind stress forcing (instead of

quadratically) and also transport increases with in-

creasing bottom drag.

In this barotropic model with no baroclinic eddies, the

flow relies on the barotropic–topographic instability to

produce transient eddies. For the y-independent topog-

raphywith open geostrophic contourshk, we extended the
stability analysis of Hart (1979) to encompass any general

flow perturbations. Thus, we managed to identify the

various flow transitions shown in Fig. 2a with the onset of

an instability. The stability calculations presented in sec-

tion 5 crucially depend on the topography hk not de-

pending on y. However, in the context of this barotropic

model, we expect that the same flow transitions above

more complex topography h(x, y) with open geostrophic

contours would result from a similar barotropic–

topographic instability. More importantly, by studying

the barotropic–topographic instability we showed that for

the case with eddy saturation the transient eddy source

(i.e., the barotropic–topographic instability) had a partic-

ular property. The growth rate of the instability increases

dramatically with small changes of the large-scale flow.

This explains why eddy saturation occurs: an increase of

the wind stress strength requires the generation of more

transient eddies to carry this excess of momentum to the

solid earth through form stress; but only a slight change in

the transport can give rise to the transient eddies needed

to balance the momentum. This is analogous with argu-

ments for baroclinic eddy saturation.

The factor that controls the appearance or not of

eddy-saturated states in a barotropic setting is whether

or not the geostrophic contours are open. This was

demonstrated here using two simple sinusoidal topog-

raphies that bare this distinction. However, the bare

FIG. 7. (a) The steady solutions (9) for topography hk and their stability as predicted by (11) and (12). Also shown

for comparison are the numerical solutions of (2) with circles. (b) The instability growth rates, that is, the real part

of the eigenvalue l. Only unstable eigenvalues are shown. (c) The structure of the most unstable eigenfunction

that correspond to Ue just above the marginal point for instability. (d) The structure of the eigenfunction for Ue

just before maximum instability. The eigenfunction in (c) has ny 5 2.5m and Bloch wavenumber nx 5 m/2; the

eigenfunction in (d) has ny 5 m and Bloch wavenumber nx 5 0. The dashed black lines in (c) and (d) mark the

topographic PV wavelength. Notice that only part of the domain is show for clarity. [The eigenfunctions were

obtained with eigenanalysis of (A4).]
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existence of the eddy saturation in this simple setting

depends on the presence of a transient eddy source (i.e.,

of an instability). The range of wind stress forcing values

where eddy saturation could potentially occur is limited

by the range of wind stress forcing values for which the

barotropic–topographic instability occurs. The latter

crucially depends on the height of the topography. For

the flat-bottom case with h 5 0, all geostrophic contours

are open, but there is no eddy saturation since there is no

instability. Figure 8 shows the steady states (9) together

with their stability (similarly to Fig. 7a) for various to-

pography heights. The range of wind stress forcing values

that produces instability scales roughly as h2
rms.

We note that the flow characteristics that were described

in section 3 are not quirks of the simple sinusoidal topog-

raphies in (3). The eddy saturation regime, the drag crisis,

and multiple equilibria that are present here when geo-

strophic contours are openhave been all also recently found

to exist in this model for a flow above a randommonoscale

topography with open geostrophic contours (Constantinou

and Young 2017) and also above a multiscale topography

that has a k22 power spectrum (not reported).

In conclusion, the results presented here emphasized that

barotropic processes might play a role in shaping the zonal

momentum balance in the ACC and in producing eddy

saturation. Inparticular, barotropicprocesses are responsible

at least for the component of the transport that is related to

the bottom flow velocity of the ACC. [This bottom velocity

component of theACC transport accounts for about 25%of

the total transport according toDonohue et al. (2016).] Even

though theACC is strongly affected by baroclinic processes,

our results here reinforce the increasing evidence arguing for

the importanceof thebarotropicmechanisms in determining

the ACC transport (Ward and Hogg 2011; Thompson and

Naveira Garabato 2014; Youngs et al. 2017). Additionally,

the results of this paper argue that topography does not only

have a passive role in the momentum budget acting merely

as a sink for zonal momentum, but it can also have an active

role by producing transient eddies that shape the standing

eddy field and its form stress.
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APPENDIX

Stability of Steady States (9) to Perturbations outside
the Low-Dimensional Manifold

For the eigenanalysis of (12), first note that if f is

independent of y then (12) implies stability. Therefore, a

necessary condition instability of (12) is ›yf 6¼ 0. In this

case, also note that

(i) (12) is homogeneous in y, that is, if f(x, y, t) is a

solution so is f(x, y 1 a, t) for any a; and

(ii) the coefficients of (12) remain unchanged under

x1 x1 2pk/m for any integer k, that is, if f(x, y, t)

is a solution so is f(x 1 2pk/m, y, t).

Remark i implies that the linear operator in (12) com-

mutes with the translation operator in y, and therefore

they share the same eigenfunctions. Thus, the eigenso-

lution has y-dependence} einyy. Remark ii implies that

the linear operator in (12) commutes with the appro-

priate translation operator by 2pk/m in x, and thus the

eigensolution has an x dependence in the form of a

Bloch wavefunction.4 Therefore, we search for the

eigensolutions of (12) as

f(x, y, t)5 elt einyy~f
nx
(x) , (A1)

FIG. 8. Steady solutions (9) for topography hk with varying rms to-

pographic height. Also shown is their stability as predicted by (11) and

(12).The rangeofF values forwhich there is instability scales roughly as

h2
rms. The dashed–dotted curve marks the flat-bottom solution F/m.

4 For a more detailed discussion on Bloch eigenfunctions the

reader is referred, for example, to the textbook by Ziman (1972) or

to appendix D in the thesis of Constantinou (2015).
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with

~f
nx
5
def

einxx �
1‘

M52‘
c
M
eiMmx. (A2)

In (A1), it is understood that the eigenvalue l depends on

both nx and ny. In (A2), nx is the zonal Bloch wave-

number, and it is restricted to take values jnxj # m/2 (in

condensed matter physics this is referred to as the first

Brillouin zone). To see why nx is restricted, consider what

(A2) (or equivalently what remark ii) implies for the

zonal spectral power of f. Eigenfunction f cannot have

spectral power in any arbitrary zonal wavenumber but

instead it can only have power at zonal wavenumbers:

6n
x
, 6 (n

x
6m), 6 (n

x
6 2m), . . . . (A3)

From (A3) we can verify that Bloch wavenumbers nx
and 6(nx 2 m) are completely equivalent, and thus we

only need to study the stability for jnxj#m/2 (cf. Ziman

1972; Constantinou 2015).

With the ansantz (A1) the stability of (12) reduces to a

generalized eigenvalue problem for each meridional

wavenumber ny:

l=2
ny
~f
nx

5 L
ny

~f
nx
, (A4)

where =2
ny
5
def
›2x 2 n2

y and

L
ny
5
def

2 [(Ue=2
ny
1b)›

x
1m=2

ny
]2 in

y
f[Se cos(mx)

2Ce sin(mx)](=2
ny
1m2)1mh

0
sin(mx)g. (A5)

The problem is further reduced if we insert (A2) into (A4).

Then, the eigenproblem (A4) reduces into an infinite sys-

tem of equations whose unknowns are the coefficients cM
and the eigenvalue l. Truncating the sum in (A2) up to

jMj # Mmax leaves us with 2Mmax 1 1 equations for

2Mmax 1 2 unknowns: c2Mmax
, c2Mmax11, . . . , cMmax

and l.

These equations are compactly written as

A(l)[c
2Mmax

, . . . , c
Mmax

]T 5 0 , (A6)

where A is a (2Mmax 1 1) 3 (2Mmax 1 1) matrix. A

nontrivial solution of (A6) exists only when

det[A(l)]5 0, and this last condition determines the ei-

genvalues l that correspond to the eigenfunction with

wavenumbers nx and ny (Lorenz 1972; Gill 1974; Charney

and Flierl 1980).
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