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Despite the nonlinear nature of wall turbulence, there is evidence that the mechanism underlying
the energy transfer from the mean flow to the turbulent fluctuations can be ascribed to linear
processes. One of the most acclaimed linear instabilities for this energy transfer is the modal growth
of perturbations with respect to the streamwise-averaged flow (or streaks). Here, we devise a
numerical experiment in which the Navier–Stokes equations are sensibly modified to suppress these
modal instabilities. Our results demonstrate that wall turbulence is sustained with realistic mean
and fluctuating velocities despite the absence of streak instabilities.

Turbulence is a primary example of a highly nonlin-
ear phenomenon. Nevertheless, there is ample agreement
that the energy-injection mechanisms sustaining wall tur-
bulence can be partially attributed to linear processes [1].
The different scenarios stem from linear stability theory
and constitute the foundations of many control and mod-
eling strategies [2, 3]. One of the most prominent linear
mechanisms is the modal instability arising from mean-
flow inflection points between high and low streamwise ve-
locity regions, usually referred to as ‘streaks’. Although
the modal instability of the streak plays a central role
in several theories of the self-sustaining turbulence [4–
6], other linear mechanisms have also been implicated in
the process [7–9]. Up to date, the relative importance of
linear growth in sustaining turbulence remains an open
question. Here, we devise a novel numerical experiment
of a turbulent flow over a flat wall in which the Navier–
Stokes equations are minimally altered to suppress the
energy transfer from the mean flow to the fluctuating ve-
locities via modal instabilities. Our results show that the
flow remains turbulent in the absence of such instabilities.

Several linear mechanisms have been proposed within
the fluid mechanics community as plausible scenarios to
rationalize the transfer of energy from the large-scale
mean flow to the fluctuating velocities. Generally, it
is agreed that the ubiquitous streamwise rolls (regions
of rotating fluid) and streaks [10, 11] are involved in a
quasi-periodic regeneration cycle [12–16] and that their
space-time structure plays a crucial role in sustaining
shear-driven turbulence (e.g., Refs. [4, 5, 7, 15, 17–22]).
Accordingly, the flow is often decomposed into two com-
ponents: a base state defined by the streamwise-averaged
velocity U(y, z, t) with zero cross-flow (where y and z are
the wall-normal and spanwise directions, respectively),

and the three-dimensional fluctuations (or perturbations)
about that base state. Figure 1 illustrates this flow de-
composition.

Inasmuch as the instantaneous realizations of the
streaky flow are strongly inflectional, the flow U(y, z, t)
at a frozen time t is invariably unstable [22]. These in-
flectional instabilities are markedly robust and their ex-
citation has been proposed to be the mechanism that
replenishes the perturbation energy of the turbulent
flow [4, 5, 23–26]. Consequently, the modal instability of
the streak is thought to be central to the maintenance of
wall turbulence. The above scenario, although consistent
with the observed turbulence structure [16], is rooted in
simplified theoretical arguments. Whether the flow fol-
lows this or any other combination of mechanisms for
maintaining the turbulent fluctuations remains unclear.

To investigate the role of modal instabilities, we exam-
ine data from spatially and temporally resolved simula-
tions of an incompressible turbulent channel flow driven
by a constant mean pressure gradient. Hereafter, the
streamwise, wall-normal, and spanwise directions of the
channel are denoted by x, y, and z, respectively, and the
corresponding flow velocity components and pressure by
u, v, w, and p. The density of the fluid is ρ and the chan-
nel height is h. The wall is located at y = 0, where no-slip
boundary conditions apply, whereas free stress and no
penetration conditions are imposed at y = h. The stream-
wise and spanwise directions are periodic. The grid res-
olution of the simulations in x, y, and z is 64× 90 × 64,
respectively, which is fine enough to resolve all the scales
of the fluid motion. Additional details on the numerical
setup are offered in Ref. [22].

The simulations are characterized by the non-
dimensional Reynolds number, defined as the ratio be-
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FIG. 1: Decomposition of the instantaneous flow into a streamwise mean base state and fluctuations. Instantaneous
isosurface of streamwise velocity for (a) the total flow u, (b) the streak base state U , and (c) the absolute value of
the fluctuations |u′|. The values of the isosurfaces are 0.8 (a and b) and 0.1 (c) of the maximum streamwise velocity.
Colors represent the distance to the wall located at y = 0. The arrow in panel (a) indicates the mean flow direction.

tween the largest and the smallest length-scales of the
flow, h and δv = ν/uτ , respectively, where ν is the kine-
matic viscosity of the fluid and uτ is the characteristic ve-
locity based on the friction at the wall [27]. The Reynolds
number selected is Reτ = δ/δv ≈ 180, which provides a
sustained turbulent flow at an affordable computational
cost [28]. The flow is simulated for 100h/uτ units of
time, which is orders of magnitude longer than the typ-
ical lifetime of individual energy-containing eddies [29].
The streamwise, wall-normal, and spanwise sizes of the
computational domain are L+

x ≈ 337, L+
y ≈ 186, and

L+
z ≈ 168, respectively, where the superscript + denotes

quantities normalized by ν and uτ . Jiménez and Moin [18]
showed that turbulence in such domains contains an ele-
mental flow unit comprised of a single streamwise streak
and a pair of staggered quasi-streamwise vortices, that
reproduce the dynamics of the flow in larger domains.
Hence, the current numerical experiment provides a fun-
damental testbed for studying the self-sustaining cycle of
wall turbulence.

We focus on the dynamics of the fluctuating velocities
u′ ≡ (u′, v′, w′), defined with respect to the streak base

state U(y, z, t) ≡ L−1
x

∫ Lx

0
u(x, y, z, t) dx, such that u′ ≡

u− U , v′ ≡ v, and w′ ≡ w. The fluctuating state vector
q′ ≡ (u′, v′, w′, p′/ρuτ ) is governed by

P
∂q′

∂t
= A(U)q′ +N(q′), (1)

where A is the linearized Navier–Stokes operator for the
fluctuating state vector about the instantaneous U(y, z, t)
(see Fig. 1b), the operator P accounts for the kinematic
divergence-free condition ∇ · u′ = 0, and N collectively
denotes the nonlinear terms (which are quadratic with re-
spect of fluctuating flow fields). The corresponding equa-
tion of motion for U(y, z, t) is obtained by averaging the

Navier–Stokes equations in the streamwise direction.
The modal instabilities of the streaks at a given time

are obtained by eigenanalysis of the matrix representa-
tion of the operator A about the instantaneous base state
U ,

A(U) = QΣQ−1, (2)

where Q consists of the eigenvectors organized in columns
and Σ is the diagonal matrix of associated eigenvalues,
σi. The streak is unstable when any of the growth rates
λi ≡ Real(σi) is positive. Figure 2 shows a representa-
tive example of the streamwise velocity of an unstable
eigenmode. The predominant eigenmode has the typical
sinuous structure of positive and negative patches of ve-
locity flanking the velocity streak side by side, which may
lead to its subsequent meandering and breakdown.
We consider two numerical experiments. First, we sim-

ulate the Navier–Stokes equations without any modifi-
cation, in which the modal growth of perturbations is
naturally allowed. We refer to this case as the “regular
channel.” On average, the operator A contains 2 to 3 un-
stable eigenmodes at a given instant. Figure 3(a) shows
the evolution of the maximum growth rate supported by
A and denoted by λmax. The flow is modally unstable
(λmax > 0) 70% of the time. The corresponding kinetic
energy of the perturbations averaged over the channel is
shown in Fig. 3(b).
For the second numerical experiment, we modify the

operator A so that all the unstable eigenmodes are ren-
dered neutral for all times. We refer to this case as the
“channel with suppressed modal instabilities” and we in-
quire whether turbulence is sustained in this case. The
approach is implemented by replacing A at each time-
instance by the modally-stable operator

Ã = QΣ̃Q−1, (3)
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FIG. 2: Isosurface of the instantaneous streamwise
velocity for the eigenmode associated with the most

unstable eigenvalue λmaxh/uτ ≈ 3 at t = 5.1h/uτ . The
values of the isosurface are −0.5 (blue) and 0.5 (yellow)
of the maximum streamwise velocity. The transparent
gray isosurface shows the streak at the same instance

from Fig. 1(b).
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FIG. 3: (a,c) The evolution of the most unstable
eigenvalue λmax of (a) A for the regular channel flow
and (c) Ã for the channel flow with suppressed modal

instabilities. (b,d) The evolution of the kinetic energy of
the perturbations EK = u′ · u′/2 averaged over the
channel domain for (b) the regular channel flow and

(d) for the channel flow with suppressed modal
instabilities.

where Σ̃ is the stabilized version of Σ obtained by setting
the real part of all unstable eigenvalues of Σ equal to zero.
We do not modify the equation of motion for U(y, z, t).
The stable counterpart of A in Eq. (3), Ã, represents the
smallest intrusion into the system to achieve modally sta-
ble wall turbulence at all times while leaving other linear
mechanisms almost intact. Figure 3(c) shows the maxi-
mum modal growth rate of Ã at selected times with the
instabilities successfully neutralized. It was verified that
turbulence persists when A is replaced by Ã (Fig. 3d).

Our main result is presented in Fig. 4, which com-
pares the mean velocity profile and turbulence intensities
for both the regular channel and the channel with sup-
pressed modal instabilities. The statistics are compiled
for the statistical steady state after initial transients. No-
tably, the turbulent channel flow without modal insta-
bilities is capable of sustaining turbulence. The differ-
ence of roughly 15%–25% in the turbulence intensities
between cases indicates that, even if the linear instabil-
ity of the streak manifests in the flow, it is not a requi-
site for maintaining turbulent fluctuations. The new flow
equilibrates at a state with augmented streamwise fluctu-
ations (Fig. 4b) and depleted cross flow (Fig. 4c,d). The
outcome is consistent with the occasional inhibition of
the streak meandering or breakdown via modal instabil-
ity, which enhances the streamwise velocity fluctuations,
whereas wall-normal and spanwise turbulence intensities
are diminished due to a lack of vortices succeeding the
collapse of the streak.

In summary, we have investigated the linear mecha-
nism of energy injection from the streamwise-averaged
mean flow to the turbulent fluctuations by modal insta-
bilities. We have devised a numerical experiment of a tur-
bulent channel flow in which the linear operator is altered
to render any modal instabilities of the streaks stable,
thus precluding the energy transfer from the mean to the
fluctuations via exponential growth. Our results estab-
lish that wall turbulence with realistic mean velocity and
turbulence intensities persists even when modal instabil-
ities are suppressed. Therefore, we conclude that modal
instabilities of the streaks are not required to attain a self-
sustaining cycle in wall-bounded turbulence. The present
outcome is consequential to comprehend, model, and con-
trol the structure of wall-bounded turbulence by linear
methods (e.g., Refs. [8, 9, 30, 31]).

Our conclusions refer to the dynamics of wall turbu-
lence in channels computed using minimal flow units,
chosen as simplified representations of naturally occur-
ring wall turbulence. The approach presented in this
Letter paves the path for future investigations at high-
Reynolds-numbers turbulence obtained for larger uncon-
straining domains, in addition to extensions to different
flow configurations in which the role of modal instabilities
remains elusive.
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FIG. 4: (a) Streamwise mean velocity profile as a
function of the wall-normal distance and (b) streamwise,
(c) wall-normal, and (d) spanwise root-mean-squared

fluctuating velocities for the regular channel ( ) and
the channel with suppressed modal instabilities ( ).
The Reynolds number of both simulations is Reτ = 186.
Angle brackets represent averaging in the homogeneous

directions and time.
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