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ABSTRACT

Zonal jets and nonzonal large-scale flows are often present in forced–dissipative barotropic turbulence on

a beta plane. The dynamics underlying the formation of both zonal and nonzonal coherent structures is in-

vestigated in this work within the statistical framework of stochastic structural stability theory (S3T). Previous

S3T studies have shown that the homogeneous turbulent state undergoes a bifurcation at a critical parameter

and becomes inhomogeneous with the emergence of zonal and/or large-scale nonzonal flows and that these

statistical predictions of S3T are reflected in direct numerical simulations. In this paper, the dynamics underlying

the S3T statistical instability of the homogeneous state as a function of parameters is studied. It is shown that, for

weak planetary vorticity gradient b, both zonal jets and nonzonal large-scale structures form from upgradient

momentum fluxes due to shearing of the eddies by the emerging infinitesimal flow. For large b, the dynamics of

the S3T instability differs for zonal and nonzonal flows but in both the destabilizing vorticity fluxes decreasewith

increasing b. Shearing of the eddies by themean flow continues to be themechanism for the emergence of zonal

jets while nonzonal large-scale flows emerge from resonant and near-resonant triad interactions between the

large-scale flow and the stochastically forced eddies. The relation between the formation of large-scale structure

through modulational instability and the S3T instability of the homogeneous state is also investigated and it is

shown that the modulational instability results are subsumed by the S3T results.

1. Introduction

Atmospheric turbulence is commonly observed to be

organized into slowly varying large-scale structures such

as zonal jets and coherent vortices. Prominent examples

are the banded jets and theGreat Red Spot in the Jovian

atmosphere (Ingersoll 1990; Vasavada and Showman

2005). Laboratory experiments as well as direct nu-

merical simulations of turbulent flows have shown that

these coherent structures appear and persist for a very

long time despite the presence of eddy mixing (Vallis

and Maltrud 1993; Weeks et al. 1997; Read et al. 2004;

Espa et al. 2010; Di Nitto et al. 2013).

A model that exhibits many aspects of turbulent self-

organization into coherent structures yet is simple

enough to extensively investigate is a barotropic flow on

the surface of a rotating planet or on a beta plane with

turbulence sustained by random stirring. Numerical

simulations of this model have shown that robust zonal

jets coexist with large-scale westward-propagating co-

herent waves (Sukoriansky et al. 2008; Galperin et al.

2010). These waves were found to either obey a Rossby

wave dispersion or form nondispersive packets that are

referred to as satellite modes (Danilov and Gurarie

2004) or zonons (Sukoriansky et al. 2008). In addition,

the formation of these coherent structures was shown to

be a bifurcation phenomenon.As the energy input of the

stochastic forcing is increased, the flow bifurcates from

a turbulent, spatially homogeneous state to a state in

which zonal jets and/or nonzonal coherent structures

emerge and are maintained by turbulence (Bakas and

Ioannou 2013a; Constantinou et al. 2014). In this work,

we address the eddy–mean flow dynamics underlying

the emergence of both zonal and nonzonal structures.

Since organization of turbulence into coherent struc-

tures involves complex nonlinear interactions among

a large number of degrees of freedom, which erratically

contribute to the maintenance of the large-scale struc-

ture, an attractive approach is to study the statistical
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state dynamics (SSD) of the turbulent flow rather than

single realizations of the turbulent field. Recently, the

SSD of barotropic and baroclinic atmospheres has been

studied by truncating the infinite hierarchy of cumulant

equations to second order. Stochastic structural stability

theory (S3T) is such a second-order Gaussian approxi-

mation of the full SSD, in which the third cumulant is

parameterized as the sum of a known correlation func-

tion and a dissipation term (Farrell and Ioannou 2003).

This is equivalent to a parameterization of the eddy–

eddy nonlinearity as an exogenous random forcing with

the required dissipation to remove the energy injected by

the forcing. Such a representation is strongly supported

by the results of previous studies. Linear inverse model-

ing studies showed that this parameterization is the best

linear representation of the eddy–eddy nonlinear in-

teractions in planetary turbulence (DelSole and Farrell

1996; DelSole 1996; DelSole and Hou 1999; DelSole

2004), while earlier studies have shown that the turbulent

transport properties (heat and momentum fluxes) of the

midlatitude transient climatology are accurately obtained

as the stochastic response of the large-scale flow to sto-

chastic forcing (Farrell and Ioannou 1994, 1995;Whitaker

and Sardeshmukh 1998; Zhang and Held 1999). In addi-

tion, Bouchet et al. (2013) have shown that, in the limit of

weak forcing and dissipation, the formal asymptotic ex-

pansion of the probability density function of the Euler

equations around a mean flow that is assumed to only

have a singular spectrum of modes comprises the second-

order S3T closure with an additional stochastic term

forcing the mean flow. Therefore, S3T formally describes

the statistical equilibrium mean flow and the eddy sta-

tistics in this case, as the additional stochastic term only

produces fluctuations around this statistical equilibrium.

Similar to the S3T closure of the full SSD is the second-

order cumulant expansion (CE2) closure in which the

third-order cumulant is neglected without parameteriza-

tion (Marston et al. 2008; Marston 2010, 2012; Tobias and

Marston 2013). It has been shown that the predictions of

S3T (or CE2) simulations are reflected in corresponding

nonlinear simulations (O’Gorman and Schneider 2007;

Srinivasan and Young 2012; Tobias and Marston 2013;

Constantinou et al. 2014).

The second-order closure results in a nonlinear, au-

tonomous dynamical system that governs the evolution

of the mean flow and its consistent second-order per-

turbation statistics. Its fixed points define statistical

equilibria, whose instability brings about structural

reconfiguration of the mean flow and of the turbulent

statistics. Previous studies employing S3T addressed

the bifurcation from a homogeneous turbulent regime

to a jet-forming regime in barotropic beta-plane turbu-

lence and identified the emerging jet structures as

linearly unstable modes of the homogeneous turbulent

state equilibrium (Farrell and Ioannou 2003, 2007;

Bakas and Ioannou 2011; Srinivasan and Young 2012;

Parker and Krommes 2013, 2014). The S3T stability

analysis of the homogeneous equilibrium was further

advanced with the introduction of the continuum for-

mulation by Srinivasan and Young (2012), who derived

a compact analytic expression for the growth rate and

frequency of the unstable structures. Interestingly,

Carnevale and Martin (1982) using field theoretic tech-

niques have arrived at the same stability equation for the

statistical description of fluctuations about a homoge-

neous state.

Comparisons of the jet structure predicted by S3T

with direct numerical simulations have shown that the

structure of zonal flows that emerge in the nonlinear

simulations can be predicted by S3T (Srinivasan and

Young 2012; Tobias and Marston 2013; Constantinou

et al. 2014). However, Srinivasan and Young (2012)

found quantitative differences between the predictions

of S3T as seen in the bifurcation diagram for the emer-

gence of jets and the corresponding diagram obtained

from the nonlinear simulations, calling into question the

validity of the S3T (or CE2) approximations when the

mean flow is very weak. Constantinou et al. (2014)

demonstrated that this discrepancy was due to the prior

emergence of nonzonal coherent structures that modi-

fied the background equilibrium spectrum and showed

that S3T predictions were accurate when this modifica-

tion in the background spectrum was accounted for.

The nonzonal structures were treated in these studies

as incoherent because of the assumption that the en-

semble average over the forcing realizations is equiva-

lent to a zonal average and therefore their emergence

and effect on the jet dynamics could not be directly

addressed. By making the alternative interpretation of

the ensemble mean as a Reynolds average over the fast

turbulent motions that was introduced in earlier studies

of atmospheric blocking (Bernstein 2009; Bernstein and

Farrell 2010), Bakas and Ioannou (2013a, 2014) ad-

dressed the emergence of the nonzonal coherent struc-

tures in barotropic beta-plane turbulence in terms of the

parameters b*5b/(rL21
f ) and «*5 «/(r3L2

f ), where b is

the gradient of the planetary vorticity, Lf is the length

scale of the forcing, « is the energy input rate of the

forcing, and 1/r is the dissipation time scale. Character-

istic values of these parameters for Earth’s midlatitude

atmosphere and oceans and the Jovian atmosphere are

given in Table 1. It was found that for isotropic forcing

the homogeneous statistical equilibrium becomes un-

stable when the energy input rate exceeds a critical value

«c* that depends on b* as shown in the stability regime

diagram in Fig. 1. In marginally unstable flows with
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b* � 1 zonal jets first emerge, while for b* � 1

westward-propagating nonzonal structures first emerge

and equilibrate to finite-amplitude traveling waves. At

larger energy input rates, the finite-amplitude nonzonal

traveling states are unstable and the flow equilibrates to

mixed zonal jet–traveling wave states that consist of strong

zonal jets with weaker traveling nonzonal structures em-

bedded in them. These predictions of the S3T stability

analysis were verified by direct numerical simulations of

turbulent barotropic flow (Bakas and Ioannou 2014).

The S3T dynamics that underlie the formation of

large-scale structure cannot depend on turbulent an-

isotropic inverse cascade processes because local-in-

wavenumber-space eddy–eddy interactions are absent

in S3T. In S3T, large-scale structure emerges from a co-

operative instability arising from the nonlocal in wave-

number space interaction between the large-scale mean

flow and the forced, small-scale turbulent eddies. The

eddy–mean flow dynamics of this cooperative instability

has been investigated by Bakas and Ioannou (2013b) for

the case of zonal jet emergence in the limit of b* � 1. It

was shown that shear straining of the small-scale eddies

by the local shear of an infinitesimal sinusoidal zonal jet,

as described by Orr dynamics in a beta plane, produces

upgradient fluxes that intensify that zonal jet. In this

work we extend the study of this cooperative eddy–

mean flow instability to address not only zonal jet for-

mation but also formation of nonzonal coherent struc-

tures, and also we will address the formation of these

coherent structures for a wide range of values of b*. We

will show that for b*�1 the eddy–mean flow dynamics

of nonzonal structures is also dominated by shearing of

the eddies, whereas for b* � 1 resonant and near-

resonant interactions play an important role in the dy-

namics. The importance of near-resonant interactions in

the formation of large-scale flows has been previously

discussed by Lee and Smith (2007). However, this effect

is rigorously quantified in this work. Finally, we discuss

the connection between the modulational instability of

plane Rossby waves (Lorenz 1972; Gill 1974) and the

S3T stability of the homogeneous turbulent equilibrium.

This paper is organized as follows: In section 2 we derive

the S3T system for a barotropic flow and the resulting ei-

genvalue problem addressing the stability of the homo-

geneous statistical equilibrium. In section 3 we transform

the eigenvalue problem to a rotated frame of reference so

that the formation of zonal jets and nonzonal structures

can be studied under a uniform framework. In section 4we

identify the eddy–mean flow dynamics underlying the S3T

instability for isotropic stochastic forcing and in section 5

we study the effect of the forcing anisotropy to the S3T

instability. The results are summarized in sections 6 and 7.

2. Formulation of S3T dynamics and emergence of
nonzonal coherent structures

Consider a barotropic flow on an infinite beta plane

with x and y Cartesian coordinates along the zonal and

the meridional direction respectively and with planetary

vorticity gradient, b5 (0, b). The nondivergent velocity

field with (x, y) components (u, y) is expressed in terms

of the streamfunction,c, asu5 ẑ3$c, where ẑ is the unit

TABLE 1. Typical parameter values for geophysical flows. The typical forcing length scale Lf is taken as the deformation radius in each

geophysical setting.

Lf (km) 1/r [day (524 h)] Urms (m s21) b (10211 m21 s21) « (m22 s23) b* «*

Earth’s atmosphere 1000 10 15 1.6 23 1023 15 1300

Earth’s ocean 20 100 0.1 1.6 1029 3 1600

Jovian atmosphere 1000 1500 50 0.35 0:53 1025 450 43 107

FIG. 1. The critical energy input rate «c* for the emergence of

either zonal or nonzonal large-scale structure (thick solid line) and

«c* for the emergence of zonal jets (thin solid line) as a function of

the nondimensional planetary vorticity gradient b* when the sto-

chastic forcing is isotropic. Jets or nonzonal structures emerge with

the least energy input for b
min
* ’ 3:5. For b*�1, the critical input

rate for the emergence of jets increases as «c*;b*2, and as

«c*;b*1/2 for the emergence of nonzonal structures. In the light-

shaded region only nonzonal coherent structures emerge, while in

the dark-shaded region both zonal jets and nonzonal coherent

structures emerge. For b*,b
min
* (the shaded region to the left of

the dashed line) zonal jets have larger growth rate, while

for b*.b
min
* nonzonal structures have a larger growth rate.

Parameter values for Earth’s atmosphere, Earth’s ocean, and

Jupiter’s atmosphere are marked with stars.

MAY 2015 BAKAS ET AL . 1691



vector normal to the plane of the flow. The vorticity of the

fluid z5 ›xy2 ›yu5Dc, with D[ ›2xx 1 ›2yy, evolves as

›tz1 J(c, z1b � x)52rz1
ffiffiffi
«

p
j , (1)

where x5 (x, y) and J is the two-dimensional Jacobian,

J(A, B)[ (›xA)(›yB)2 (›yA)(›xB). The flow is dissi-

pated with linear damping at a rate r, which typically

models Ekman drag in planetary atmospheres. Turbu-

lence is maintained by the external stochastic forcing j,

which models exogenous processes, such as turbulent

convection or energy injected by baroclinic in-

stability. We assume that
ffiffiffi
«

p
j(x, t) is a temporally

delta-correlated and spatially homogeneous random

stirring that injects energy at a rate «. We non-

dimensionalize (1) using the dissipation time-scale 1/r

and the typical length scale of the stochastic excitation

Lf . In these units z*5 z/r, c*5c/(rL2
f ), b*5b/(rL21

f ),

«*5 «/(r3L2
f ), j*5 j/(r1/2L21

f ), and r*5 1, where the

asterisks denote nondimensional variables.We hereinafter

drop the asterisks for simplicity.

To construct the S3T dynamical system in the con-

tinuous formulation of Srinivasan and Young (2012), we

proceed as follows:

1) The averaged fields, denoted with uppercase letters,

are calculated by taking a time average, denoted with

T [�], over an intermediate time scale, larger than the

time scale of the turbulentmotions but smaller than the

time scale of the large-scale motions. Deviations from

the mean (eddies) are denoted with dashes and lower-

case letters. For example, the vorticity field is split as

z5Z1 z0, where Z5 T [z]. The equations for the

mean and the eddies that derive from (1) are

›tZ1 J(C,Z1b � x)52T [J(c0, z0)]2Z and

(2a)

›tz
0 5A(U)z0 1 fNL 1

ffiffiffi
«

p
j , (2b)

where

A(U)[2U � $1 [(DU) � $1 ẑ � (b3$)]D212 1

(3)

is the linear perturbation operator about the in-

stantaneous mean flow U5 ẑ3$C and fNL [
T [J(c0, z0)]2 J(c0, z0). Neglecting the nonlinear term

fNL in (2b) we obtain the quasi-linear system:

›tZ1 J(C,Z1b � x)52T [J(c0, z0)]2Z and

(4a)

›tz
0 5A(U)z01

ffiffiffi
«

p
j . (4b)

2) Thequasi-linear system(4)under theergodic assumption

that the time average over the intermediate time scale is

equal to an ensemble average produces the S3T system:

›tZ1 J(C,Z1b � x)5R(C)2Z and (5a)

›tC5 [Aa(U)1Ab(U)]C1 «Q , (5b)

where C is the ensemble-mean eddy-vorticity spatial

covariance between points xa and xb;

C(xa, xb, t)5 hz0(xa, t)z
0(xb, t)i ; (6)

Q is the spatial covariance of the delta-correlated

and spatially homogeneous forcing, defined by

hj(xa, t1)j(xb, t2)i5Q(xa2 xb)d(t12 t2) ; (7)

and R(C)[ hJ(c0, z0)i5 T [J(c0, z0)] is the ensemble-

mean vorticity forcing of the large scales by the eddy

field, given by

R(C)[2$ �
�
ẑ

2
3 ($aD

21
a 1$bD

21
b )C

�
x
a
5x

b

. (8)

The subscript a (b) in the operators indicates that

the coefficients of the operator are evaluated on

a (b) and that the operator acts only on the variable

xa (xb). The subscript xa 5 xb indicates that any func-

tion of xa and xb is evaluated at the same point, xa 5 xb.

The S3T system (5) is a closure of the statistical dy-

namics of (2) at second order. Being autonomous, it may

posses statistical equilibria (Ze, Ce), the stability of

which is addressed by considering small perturbations

(dZ, dC) and performing an eigenanalysis of the line-

arized S3T equations about these equilibria.

For any spatially homogeneous forcing Q, there is

always the homogeneous S3T equilibrium

Ze 5 0 and Ce5
«

2
Q , (9)

with no mean flow and a homogeneous eddy field—that

is, with a translationally invariant covarianceCe(xa 2 xb).

The stability of the homogeneous equilibrium (9) is de-

termined from eigenalysis of the linearized S3T equa-

tions about this equilibrium:

›tdZ1 J(dC,b � x)5R(dC)2 dZ and (10a)

›tdC5 (Ae
a1Ae

b)dC1 (dAa1 dAb)C
e , (10b)

withAe [ ẑ � (b3$)D21 2 1 [obtained by settingUe 5 0

in (3)] and dA[A(dU)2Ae. It can be shown from (10)

that the homogeneous equilibrium is S3T stable for

0# «, «c and becomes unstable when « exceeds
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the critical value «c that depends on b and on the

structure ofQ. In this work we focus our analysis close

to the instability threshold «’ «c and identify the

physical processes underlying the S3T instability. We

follow Srinivasan and Young (2014) and consider

a ring stochastic forcing of waves of total wavenumber

k5 jkj5 1, with power spectrum:1

Q̂(k)5 4pd(k2 1)G(g) , (11)

where

G(g)5 11m cos(2g) , (12)

with g5 arctan(ky/kx) and k5 (kx, ky). The parameter m

modulates the anisotropy of the spectrumof the forcing and

takes values jmj# 1 in order that the spectrum is every-

where positive and therefore physically realizable. Example

realizations of the spatial structure of stochastic excitations

at differentm are shown in Fig. 2.Whenm5 0, the forcing is

isotropic and could model the forcing of the Jovian atmo-

sphere at cloud level from turbulent convection. When

m. 0, the stochastic excitation favors small-jkyj Fourier
components as the baroclinic forcing of the upper-level jet

in the midlatitude atmosphere. When m, 0, the forcing

favors the almost-zonal Fourier components around kx 5 0.

3. Emergence of nonzonal structures as zonal flows
in a rotated frame

The eigenfunctions of the S3T stability equations

shown in (10) are specified by their two components: the

mean-flow component d ~Zest and the covariance com-

ponent d ~Cest. Because the stability equations given in

(10) are linearized about the homogeneous equilibrium

depicted in (9), the eigenfunction structure simplifies

significantly and assumes the form

d ~Z(x)5 ein�x and (13a)

d ~C(xa, xb)5
~C(h)
n (xa2 xb)e

in�(x
a
1x

b
)/2 , (13b)

FIG. 2. (top) The forcing covariance spectrum, Q̂(k)5 4pd(k2 1)[11m cos(2g)], for (a)m5 1, (b)m5 0, and (c)m521 (the support of

the delta function is represented as a thin ring). (bottom) Contours of the vorticity field induced by a realization of the stochastic forcing

for (d) m5 1, (e) m5 0, and (f) m521.

1 The power spectrum of a spatially homogeneous co-

variance is the Fourier transform of the covariance Q̂(k)5Ð Ð1‘
2‘ Q(xa 2 xb)e

2ik�(xa2xb)d2(xa 2 xb).
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where n5 (nx, ny) is the wavevector that characterizes

the eigenfunction and ~C(h)
n (xa 2 xb) is the homogeneous

component of the covariance eigenfunction. The mean-

flow component of each eigenfunction has the form of

a zonal flowwhen nx 5 0 and the form of a nonzonal flow

when nx 6¼ 0. However, nonzonal mean-flow perturba-

tions can be rendered zonal through a rotation of the

frame of reference.

For an eigenfunction with wavenumber n, clockwise

rotation of the axes by an angle u5 arctan(nx/ny)

transforms the components of n to

n0x5 nx cosu2 ny sinu5 0 and

n0y5 nx sinu1 ny cosu5 n , (14)

with n5 jnj and the components of the planetary vorticity

gradient tob5 (2b sinu, b cosu). Correspondingly, in the
rotated frame the eigenfunction has only the mean-flow

component d ~U(y0), which is of the formof a zonal jet in the

x0 direction (i.e., the wavevector n has zero x0 component;

cf. Fig. 3), and d ~Z52›y0d ~U. The eigenvalue problem (10)

about the homogeneous equilibrium transforms to

s›y0d
~U52b sinud ~U2 ›y0d

~U1 ›y0(dhy
0z0i) and

(15a)

sd ~C5 (Ae0

a 1Ae0

b )d
~C1 (dA0

a1 dA0
b)C

e0 , (15b)

with Ae0 [ 2(b sinu›y0 1b cosu›x0)D
21 2 1 and dA0 5

2d ~U›x0 1 (›2y0y0d
~U)›x0D

21. The equilibrium covariance in

the rotated frame Ce0 is defined as Ce0(x0a 2 x0b, y
0
a 2 y0b)5

Ce(xa 2 xb, ya 2 yb), where (x
0
a, y

0
a) are the components of

xa in the rotated frame. The perturbation vorticity flux

dhy0z0i is given in terms of d ~C as

dhy0z0i5
�
1

2
(D21

a ›x0a
1D21

b ›x0
b
)d ~C

�
x
a
5x

b

. (16)

In writing the S3T eigenvalue problem in the rotated

frame and by transforming a nonzonal perturbation into

a zonal jet perturbation, there is a twofold gain. The first

is that we can use the methods that were previously

developed by Bakas and Ioannou (2013b) in the context

of the emergence of zonal jets in order to understand the

mechanisms responsible for the emergence of nonzonal

structures. The second is that we can directly address the

eddy–mean flow dynamics that give rise to zonal jets

with constant topographic vorticity gradient but in a di-

rection other than the meridional (Boland et al. 2012).

From here on we will study the S3T instability of

the homogeneous equilibrium (9) in the rotated

frame. While in the rotated frame all eigenfunctions

have the form of a zonal jet, we distinguish the per-

turbations as zonal when u5 08 and nonzonal when

u 6¼ 08 (i.e., as they manifest in the unrotated frame).

A direct implication of (15a) is that that the vorticity

flux dhy0z0i induced by eigenfunction d ~U, d ~C must be

proportional to d ~U and it therefore can be written as

dhy0z0i5 «f (s)d ~U , (17)

with f determining the amplitude and relative phase of

the vorticity flux feedback induced by the mean-flow

eigenfunction d ~U with eigenvalue s. When the real part

of f is positive, the induced vorticity flux is upgradient,

and when it is negative, the flux is downgradient. It is

shown in appendix A that

f (s)5

ð ð1‘

2‘

dk0x dk
0
y

(2p)2

2nk02x (k
0
y1 n/2)(k22 n2)

(s1 2)k2s k
21 2inb cosuk0x(k

0
y1 n/2)2 inb sinu(k02x 2 k02y 2 nk0y)

Q̂0(k0x, k
0
y)

2
, (18)

FIG. 3. A nonzonal plane wave perturbation with wavevector n at

an angle u to the northward direction (the direction of b) becomes

a zonal perturbation when the coordinate frame is rotated clock-

wise by u. Under this rotation the components of the wavevector

k5 (cosg, sing) are transformed to k5 (cosq, sinq), with q5
g1u. In (22) F (n, q) is the mean momentum flux convergence

from plane wave perturbations that arise from excitations with

wavevectors k and 2k.
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with ks 5 k1 n, ks 5 jksj, and (k0x, k
0
y)5 k(cosq, sinq).

The power spectrum of the stochastic forcing given in

(11) in the rotated frame takes the form

Q̂0(k0x, k
0
y)5 4pd(k2 1)G(q2u) . (19)

With this notation, the eigenvalues s of (15) satisfy the

equation

s1 12 ib sinu/n5 «f (s) . (20)

For u5 08, (20) reduces to the eigenvalue relation of

Srinivasan and Young (2012) that governs the sta-

bility of the homogeneous equilibrium (9) to zonal

jet perturbations in the unrotated frame. For

mirror symmetric forcing [i.e., with covariance

satisfying Q(xa 2 xb, ya 2 yb)5Q(xb 2 xa, ya 2 yb) or

Q(xa 2 xb, ya 2 yb)5Q(xa 2 xb, yb 2 ya)], like (11),

and for n, 1 we find numerically2 that the eigen-

value corresponding to unstable zonal jet eigen-

functions have si [ Im(s)5 0; that is, the unstable

zonal jets grow in situ. For u 6¼ 08 the above ex-

pression produces the eigenvalue relation obtained

by Bakas and Ioannou (2014) for the growth rate

of nonzonal perturbations with wavenumbers

(nx, ny)5 (n sinu, n cosu) in the unrotated frame. The

growing eigenfunctions in this case are numerically

found to be propagating (si 6¼ 0) and at marginal sta-

bility for b � 1 their frequency si becomes the Rossby

wave frequency

vn [
ẑ � (b3 n)

n2
(21)

for a plane wave with wavevector n.

From (20), we obtain that a necessary condition for

S3T instability is that the real part of the vorticity flux

feedback factor Re(f ) must be positive. To illuminate

the eddy–mean flow dynamics underlying the S3T in-

stability, we study the behavior of Re(f ) for energy input

rates close to «c. Near the stability boundary

sr [Re(s)’ 0 and under the assumption that at mar-

ginal stability3 si ’2vn 5b sinu/n, the feedback on the

mean flow for the delta function forcing (19) can be

written as

fr [Re[f (2ivn)]5

ðp
0
F (q, n) dq , (22)

where F (q, n) (cf. appendix A) is the contribution to fr
from Fourier components of the forcing with wave-

vectors k and 2k (see Fig. 3). When fr . 0, the induced

vorticity fluxes are upgradient and the critical energy

input rate is «c 5 1/fr. The integrand F (q, n) can be al-

ternatively interpreted as the contribution of the sto-

chastically forced waves or eddies to the vorticity fluxes.

These forced waves have a total wavenumber k5 1 and

are characterized only by the angle q between their

phase lines and the y0 axis. We can isolate the de-

pendence of the feedback factor on b by writing

F (q, n)5F(q, n)1F(18081q, n) with

F(q,n)5
ND0

D2
01b2D2

2

, (23)

and, as shown in appendix A, functions N , D0, and D2

independent of b.

In the following sections we will determine the con-

tribution of the various waves to the vorticity flux

feedback and identify the angle q that produces the

most significant contribution to this feedback. We will

also calculate fr as a function of the mean-flow wave-

number n for 08#u# 908. We will limit our discussion

to the emergence of mean flows with n, 1 (i.e., with

scale larger than the scale of the forcing). In section 4 the

analysis is mostly focused to isotropic forcing (G5 1)

while the effect of anisotropy is discussed in section 5.

4. Eddy–mean flow dynamics leading to formation
of zonal and nonzonal structures for isotropic
forcing

a. Induced vorticity fluxes for b � 1

We expand the integrand F of (22) in powers of b:

F 5F 0 1b2F 21O(b4) , (24)

with F 2 5 (1/2)›2bbFjb50. The leading-order term F 0 is

the contribution of each wave with wavevector

k5 (cosq, sinq) to the vorticity flux feedback in the

absence of b and is shown in Fig. 4a. For b5 0, the dy-

namics are rotationally symmetric and for isotropic

forcing fr is independent of u. Therefore all zonal and

nonzonal eigenfunctions with the same wavenumber n

grow at the same rate. Upgradient fluxes (F 0 . 0) to

a mean flow with wavenumber n are induced by waves

2We have been unable to find a counterexample to these as-

sertions or to prove them when n, 1. For n. 1, there exist un-

stable jet eigenfunctions that have si 6¼ 0 for mirror symmetric

forcing.
3While the phase speed of the marginally unstable nonzonal

structures almost matches the corresponding Rossby phase speed

for b � 1, it overestimates the Rossby phase speed by almost by

a factor of 2 when b;O(1) or smaller. However, at these values of

b, we have found that the results presented in this work are not

sensitive to the value of the frequency.
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with phase lines inclined at angles satisfying

4 sin2q, 11 n2 (cf. appendix B). This implies that all

waves with jqj, 308 necessarily produce upgradient

vorticity fluxes to anymean flowwithwavenumber n, 1,

while waves with 308, jqj, 458 produce upgradient

fluxes for anymean flowwith large-enoughwavenumber

(cf. Fig. 4a). The eddy–mean flow dynamics was in-

vestigated in the limit of n � 1 by Bakas and Ioannou

(2013b). It was shown that the vorticity fluxes can be

calculated by time averaging the fluxes over the life cycle

of an ensemble of localized stochastically forced wave-

packets initially located at different latitudes. For n � 1,

the wavepackets evolve in the region of their excita-

tion under the influence of the infinitesimal local shear

of dU and are rapidly dissipated before they shear over.

As a result, their effect on the mean flow is dictated

by the instantaneous (with respect to the shear time

scale) change in their momentum fluxes. Any pair of

wavepackets having a central wavevector with phase

lines forming angles jqj, 308with the y axis surrender

instantaneously momentum to the mean flow and

reinforce it, whereas pairs with jqj. 308 gain in-

stantaneously momentum from the mean flow and

oppose jet formation. Therefore, anisotropic forcing

that injects significant power into Fourier components

with jqj, 308 (such as the forcing from baroclinic in-

stability that primarily excites Fourier components with

q5 08) produces robustly upgradient fluxes that as-

ymptotically behave antidiffusively. That is, for a sinu-

soidal mean-flow perturbation d ~U5 sin(ny) we haveÐ p
0 F 0 dq5Kn2 with K positive and proportional to the

anisotropy factor m [cf. appendix B and Bakas and

Ioannou (2013b)].

For isotropic forcing, the net vorticity flux produced

by shearing of the perturbations vanishes (i.e.,Ð p
0 F 0 dq5 0), given that the upgradient fluxes produced

by waves with jqj, 308 exactly balance the down-

gradient fluxes produced by the waves with jqj. 308.
However, a net vorticity flux feedback is produced and

asymptotically behaves as a negative fourth-order hy-

perdiffusion with coefficient O(b2) for b � 1 [cf. (25)

and Bakas and Ioannou (2013b)]. In appendix B it is

shown that the feedback factor fr for isotropic forcing in

the limit b � 1 with b/n � 1 is

fr 5b2n
4

64
[21 cos(2u)]1O(b4) , (25)

which is accurate even up to n’ 1, as shown in Fig. 5. To

understand the contribution of b to the vorticity flux

feedback, we plot F 2/n
4 for a zonal (Fig. 4b) and

a nonzonal perturbation (Fig. 4c) as a function of the

mean-flow wavenumber n and wave angle q. We choose

to scale F 2 by n4 because in (25) fr increases as n4.

Consider first the case of a zonal jet. It can be seen that at

every point, F 2 has the opposite sign to F 0, implying

that b tempers both the upgradient (for roughly

jqj, 308) and the downgradient (for jqj. 308) fluxes of

FIG. 4. (a) Contours of F 0(q, n) in a (q, n) polar plot (n radial

and q azimuthal). Shown are the magnitude and sign of the vor-

ticity flux induced by waves with phase lines oriented at an angle q

to the y axis in the presence of an infinitesimal mean-flow pertur-

bation of total wavenumber n when b5 0. The contour interval is

33 1023 and note that F 0(q, n) is independent of u. (b) Contours
of the normalized F 2(q, n)/n

4 show the O(b2) correction to

F 0(q, n) for the case of zonal jet perturbations (u5 08). The

contour interval is 0.02. (c) As in (b), but for nonzonal perturba-

tions with u5 158. The contour interval is 0.04. In all panels the

forcing is isotropic (m5 0), solid (dashed) lines indicate contours

with positive (negative) values, the thick line is the zero contour,

the radial grid interval is Dn5 0:25 and the 308 wedge is marked

(dashed–dotted). In (a) and (b) the zero contour is the curve

4 sin2q5 11n2 (see appendix B).
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F 0. However, in the sector jqj. 308 the values ofF 2 are

much larger than in the sector jqj, 308 and the net

fluxes integrated over all angles are upgradient, as in

(25) for the isotropic case.

The asymptotic analysis of Bakas and Ioannou

(2013b), which is formally valid for n � 1, offers un-

derstanding of the dynamics that lead to the inequality

F 2F 0 , 0 and to the positive net contribution ofF 2 (i.e.,

to
Ð p
0 F 2 dq. 0). Any pair of wavepackets with wave-

vectors at angles jqj. 308 instantaneously gain mo-

mentum from the mean flow as described above (i.e.,

F 0 , 0 for jqj. 308), but their group velocity is also

increased (decreased) while propagating northward

(southward). This occurs because shearing changes their

meridional wavenumber and consequently their group

velocity. The instantaneous change in the momentum

fluxes resulting from this speed up (slow down) of the

wavepackets is positive in the region of excitation

leading to upgradient fluxes (F 2 . 0). The opposite

happens for pairs with jqj, 308 [cf. Fig. 3 in Bakas and

Ioannou (2013b)]; however, the downgradient fluxes

produced are smaller than the upgradient fluxes, leading

to a net positive contribution when integrated over all

angles. Figure 4b shows that this result is valid for larger

mean-flow wavenumbers as well.

Consider now the case of a nonzonal perturbation

(Fig. 4c).We observe that the angles for which the waves

have significant positive or negative contributions to the

vorticity flux feedback are roughly the same as in the

case of zonal jets. In addition, the vorticity flux feedback

factor decreases with the angle u of the nonzonal

perturbations [cf. (25)]. As a result, zonal jet perturba-

tions always produce larger vorticity fluxes compared to

nonzonal perturbations and are therefore the most un-

stable in the limit b � 1. Additionally, these results

show that, for b � 1, the mechanism for structural in-

stability of the nonzonal structures is the same as the

mechanism for zonal jet formation, which is shearing of

the eddies by the infinitesimal mean flow.

b. Induced vorticity fluxes for b � 1

Consider first the emergence of nonzonal structures in

the limit b � 1. The contribution F of each Fourier

component of the forcing to the vorticity flux feedback fr
for the case of nonzonal structures at b5 200 is shown in

Fig. 6a. In contrast to the cases with b � 1 [or b5O(1),

discussed in section 4c], there is only a small band of

FIG. 5. Vorticity flux feedback factor fr as a function of n for

b5 0:1 and isotropic forcing. Note that the fluxes are upgradient

(i.e., fr . 0) for all mean-flowwavenumbers n. Shown is fr foru5 08
and u5 608 (solid lines), as well as the asymptotic expression (25)

(dashed–dotted) derived for the feedback factor in the limit b � 1

and b/n � 1.

FIG. 6. (a) Contours ofF (q, n) in a (q, n) polar plot (n radial and

q azimuthal) for isotropic forcing and b5 200. This panel shows

the vorticity fluxes induced by waves with phase lines oriented at an

angle q to the y0 axis in the presence of a nonzonal perturbation

with mean-flow wavenumber n and u5 158. Solid (dashed) lines

indicate contours with positive (negative) values, the contour in-

terval is 2:53 1023, and the thick line is the zero contour. (b) Locus

of the roots of D2(q, n) on the (q, n) plane for nonzonal pertur-

bations with u5 158. The roots correspond to resonant interaction

between waves with phase lines oriented at an angle q with the y0

axis and nonzonal perturbations with n. Thick solid (dashed) lines

indicate whether the vorticity fluxes produced by the resonant

waves are upgradient (downgradient). The radial grid interval in

both panels is Dn5 0:25.
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Fourier components that contribute significantly to the

vorticity flux feedback, as indicated with the narrow

tongues in Fig. 6a. The reason for this selectivity in the

response is that for b � 1 the components that produce

appreciable fluxes, as seen from (23), are concentrated

on the (q, n) curves that satisfy D2 5 0 (shown in

Fig. 6b) or equivalently for the (q, n) that satisfy the

resonant condition vk 1vn 5vk1n [cf. (A9)]. This is the

resonant condition satisfied when a Rossby wave with

wavevector k and frequency vk forms a resonant triad

with the nonzonal structure with wavevector n and fre-

quency vn. We concentrate our analysis to these ‘‘reso-

nant contributions’’ because they dominate the vorticity

flux feedback of nonzonal perturbations for b � 1.

Resonant triads do not occur for all mean-flow per-

turbations n. For (n, u) in region D of Fig. 7a,D2 has no

roots and therefore there are no Fourier components

with k5 (cosq, sinq) that form a resonant triad with n

and F is determined by the sum over the nonresonant

contributions as illustrated in Fig. 7b. In region B of

Fig. 7a, there are only two resonant angles q. The res-

onant and nonresonant contribution for a typical case in

region B is shown in Fig. 7c. Note that it is the resonant

contributions that determine the vorticity flux feedback.

However, they produce a negative vorticity flux feed-

back (a downgradient tendency), which is stabilizing,

a result that holds for all (n, u) in region B. In regions A

andC, there exist four resonant angles that dominate the

vorticity flux. In C, all resonant contributions are stabi-

lizing and therefore C is also a stable region. In regionA,

which at most extends tou5 608 (cf. appendix B), two of
the four resonances give positive contributions to fr (cf.

Figs. 7d,e). Therefore, only for (n, u) in region A does

a destabilizing vorticity flux feedback occur. The largest

destabilizing feedback occurs when the positively con-

tributing resonances are near coalescence (i.e., as in

Fig. 7d), which occurs for (n, u) close to the curve sep-

arating regions A and B. The reason is that when the

FIG. 7. (a) The curves separating the regions in the (n, u) plane for which D2 has no roots (region D), two roots

(region B), and four roots (regions A and C). Waves with q corresponding to two out of the four roots ofD2 found in

regionAproduce upgradient fluxes. (b)–(d) The vorticity fluxesF as a function of the angleq subtended by the phase

lines of the waves and the y0 axis in the presence of a nonzonal perturbation with u5 158 at b5 200. The mean-flow

wavenumber is (b) n5 0:25 (in region D), (c) n5 0:5 (in region B), (d) n5 0:592 (in region A), and (e) n5 0:75 (in

region A). The resonant angles (i.e., the roots of D2) are marked by upward (downward) triangles when the waves

induce upgradient (downgradient) fluxes. Note that the scale in (b) is much smaller.
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resonances are apart, as in Figs. 7c and 7e, the significant

contributions come from near-resonant waves with an-

gles within a band ofO(1/b) around the resonant angles

and the integrated resonant contributions to the vor-

ticity flux areO(1/b). However, when the resonances are

near coalescence, as for the case shown in Fig. 7d, the

band of near-resonant waves contributing significantly

increases as the integrand assumes a double-humped

shape and, as shown in Appendix B, the destabilizing

vorticity flux feedback becomes Oð1/
ffiffiffi
b

p
Þ. Note that as

b/‘, the width over which we have significant contri-

butions diminishes and therefore fr / 0 unless an in-

finite amount of energy is injected exactly at the

resonant angles (as is assumed in modulational in-

stability studies).

It can be shown (cf. appendix B) that the resonant

contribution for b � 1 asymptotically approaches

f (R)
r 5

1ffiffiffi
b

p �
M

j51

pN jhj

2D1/2
0, j jljj

1/2
, (26)

where the subscript j indicates the value of the functions

at the jth of theM roots ofD2 and l5 ›2qqD2. The values

N j,D0,j, and lj are allO(1), whereas hj is always positive

and the only quantity that has dependence on b. It is

O(1) only for (n, u) just above the separating bound-

aries of regions A and B and regions B and D in Fig. 7a

yielding f (R)r ; 1/
ffiffiffi
b

p
and is O(1/

ffiffiffi
b

p
) elsewhere yielding

f (R)r ; 1/b, as is also qualitatively described above. The

sign of the jth resonant contribution to the total vorticity

flux feedback depends only on the sign ofN j. For (n, u)
just above the boundary separating regions B and D,

N j , 0 and fr attains its minimum value, which corre-

sponds to the largest stabilizing tendency. This is illus-

trated in Fig. 8, showing fr as a function of n. For (n, u)
just above the boundary separating regions A and B,

coalescence of the two positive contributing resonances

occurs and fr attains its maximum value, which corre-

sponds to the largest destabilizing tendency. For small

mean-flow wavenumbers n (corresponding to region D),

the vorticity flux feedback is negative and O(b22) owing

to the absence of resonant contributions.

An interesting exception to the results discussed

above occurs for the important case of zonal jet per-

turbations (u5 08). In that case, N j 5 0 in (26) as the

roots of D2 and N coincide and the resonant contribu-

tion (26) is exactly zero. As shown in Fig. 9, positive

vorticity flux feedback is obtained from a broad band of

the nonresonant Fourier components with g5q’ 08,
corresponding to waves with lines of constant phase

nearly aligned with the y axis (remember that, for

smaller b, the region that produces destabilizing fluxes

extends up to jqj’ 308). For large b, fr is always desta-

bilizing for all zonal jet perturbations with n, 1, as

shown by (B18) and Fig. 8, and the largest destabilizing

vorticity flux feedback, fr,max 5 (21m)b22, is obtained

for jets with the largest allowed scale. The reason for the

weak fluxes and the preference for the emergence of jets

of the largest scale in this limit is understood by noting

that the stochastically forced eddies forb � 1 propagate

withO(b) group velocities. Therefore, in contrast to the

limit of b � 1 in which they evolve according to their

local shear, the forced waves will respond to the in-

tegrated shear of the sinusoidal perturbation over their

large propagation extent, which will be very weak.

FIG. 8. Vorticity flux feedback fr as a function of n for b5 200.

Positive (negative) values correspond to upgradient (down-

gradient) fluxes. Shown is fr for u5 08 (multiplied by b2) and for

u5 158 (multiplied by b). Also shown are the asymptotic expres-

sions (B18) for u5 08 and (26) for u5 158 (dashed–dotted). The
crosses mark the mean-flow wavenumbers n5 0:43 and n5 0:59

that separate regions A, B, and D in Fig. 7a for u5 158.

FIG. 9. Contours of F (q, n) in a (q, n) polar plot (n radial and q

azimuthal) for zonal jet perturbations (u5 08) and b5 100. Solid

(dashed) lines indicate contours with positive (negative) values, the

contour interval is 23 1024, the thick line is the zero contour, and

the radial grid interval is Dn5 0:25.
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To summarize, although zonal jets and most nonzonal

perturbations induce fluxes that decay as 1/b2 for large b,

resonant and near-resonant interactions arrest the decay

rate of certain nonzonal perturbations by a factor of

O(b3/2), leading to fluxes that decay as 1/
ffiffiffi
b

p
. This makes

the nonzonal perturbations to be the most S3T unstable

perturbations for b � 1. Also in contrast to b � 1 when fr
is positive for all n and u (cf. Fig. 5), the vorticity flux

feedback is negative for (n, u) in regionsB andDofFig. 7a.

As a result, themean flows that produce negative fluxes and

are bynecessity S3T stable are interestingly in the interior of

the dumbbell shape shown in Fig. 10. The largest destabi-

lizing fluxes occur in the narrow region adjacent to the outer

boundaries of the dumbbell shape, which demarcates the

boundary separating regions A and B. Because of the se-

lectivity of the resonances these results do not depend on

the forcing anisotropy as we will see in the next section.

c. Induced vorticity fluxes for b;O(1)

We have seen that in the singular case of isotropic

forcing the only process available for the emergence of

mean flows is the fourth-order antidiffusive vorticity flux

feedback induced by the variation of the group velocity

of the forced eddies due to the mean flow shear. For

b � 1, the waves interact with the local shear producing

fluxes proportional to b2d4dU/dy4. As b increases, this

growth is reduced since the waves interact with an effective

integral shear within their propagation extent, which is

weak and, eventually, as we have seen in the previous sec-

tion, for b � 1, the fluxes decay as b22. Therefore, the

fluxes attain their maximum at an intermediate value of b.

This occurs for b’ 3:5, as can be seen in Fig. 11a where the

maximum fr over all (n, u) is shown. It will be demon-

strated in the next section that this intermediate b maxi-

mizes the S3T instability for all forcing spectra.

While the eddy–mean flow interaction of both zonal and

nonzonal perturbations is dominated by the same dy-

namics when b � 1, for b � 1 the eddy–nonzonal flow

interaction is dominated by resonances that do not occur

for zonal flow perturbations. The resonant interactions

lead to the possibility of arrested decay of the vorticity flux

at the rates ofb21/2 andb21 instead of theb22 decay in the

absence of resonances. The vorticity flux attains its maxi-

mum at an intermediate value b;O(1) for nonzonal

mean flows as well, which is nonetheless large enough for

the resonant contributions to reinforce the contribution

from the shearing mechanism. Figure 12 shows the con-

tribution to the vorticity flux feedback induced by the

variouswave components that are excited for two values of

b (b5 2 and b5 12) in the case of zonal jets (u5 08) and
nonzonal perturbations (u5 158). As b increases, the

resonant contributions start playing an important role for

nonzonal perturbations as there is enhanced contribution

to the vorticity flux feedback in the vicinity of the D2 5 0

curves, indicated by the white dashed lines. These reso-

nant contributions enhance the vorticity fluxes relative to

the fluxes obtained for zonal jets and render the nonzonal

structures more unstable compared to zonal jets when

b* 3:5 (Bakas and Ioannou 2014).

5. Effect of anisotropic forcing on S3T instability

In this section we investigate the effect of the anisotropy

of the excitation on the S3T instability. The maximum

vorticity flux feedback fr for three cases of anisotropy

(m561 and m5 1/4) and for isotropic forcing (m5 0) is

shown in Fig. 11a. For b � 1, the main contribution to fr
for zonal jet perturbations comes from forced waves

with nearly meridional constant phase lines (angles near

q5 g5 08; cf. Fig. 9). Therefore, fr attains larger

(smaller) values for a stochastic forcing that injects more

(less) power in waves with angles near g5 08—that is,

for positive (negative) anisotropicity factorm (cf. Fig. 2).

The maximum value of fr over all wavenumbers n de-

pends in this case linearly on m (cf. appendix B),

fr,max5 (21m)b221O(b24) . (27)

For nonzonal perturbations, themain contribution comes

from forced waves satisfying the resonant condition

FIG. 10. Contours of fr in a (u, n) polar plot (n radial and u az-

imuthal) for the case b5 200. Shown are contours of positive

values, so the white area corresponds to negative values indicating

downgradient vorticity fluxes. The contour interval is 1023 and the

radial grid interval is Dn5 0:25. Note that the feedback factor is

always negative (downgradient fluxes) foru$ 608 (cf. appendix B).
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vk 1vn 5vk1n and fr depends only on the sum of the

resonant contributions. The sign of N j that determines

whether the resonant contribution is positive or negative

[cf. (26)] depends only on the sign of sinqj 1 n/2 and not

on m [cf. (A7c)]. The anisotropicity affects only the

magnitude ofN j. For any 08,u, 908 it is found that the
resonances giving positive contribution occur at angles

qj for which jgjj5 jqj 2uj, 458. A stochastic excitation,

which injects more power near g5 08 (m. 0) will give

larger positive resonant contributions and therefore fr
increases with m. However, the effect on the maximum

vorticity feedback is weak, as the spectral selectivity of

the resonances renders the characteristics of the most

unstable nonzonal structure independent of the spec-

trum of the forcing. That is, (n, u) that correspond to the
maximum fr asymptotically approaches to n’ 0:5,

u’ 108 (marked with star in Fig. 7a) as b/‘, a result

that is very weakly dependent on m (cf. Figs. 11b,c).

For b � 1, the characteristics of the S3T instability

are dependent on the anisotropy of the stochastic forc-

ing. The vorticity flux feedback is at leading order pro-

portional to m:

fr 5
1

8
mn2(12n2) cos(2u)1O(b2) . (28)

This shows that there can be upgradient vorticity

fluxes leading to S3T instability for b5 0 as long as

m cos(2u). 0. For m. 0, the maximum fr 5m/32 is

achieved by zonal jets (u5 08), while for m, 0 any

nonzonal perturbation with u. 458 can grow, with the

maximum fr 5 jmj/32 achieved for u5 908 when the

FIG. 11. The maximum value of fr over all wavenumbers n for zonal jets (solid) and over all wavenumbers n and

angles u 6¼ 08 for nonzonal perturbations (dashed) as a function of the planetary vorticity for the three forcing

covariance spectra seen in Fig. 2 and for m5 1/4. Also shown are the asymptotic expressions (B4), (B6), and (B19)

(dashed–dotted) and the b21/2 slope (dotted). For m521, zonal jet perturbations are stable for b, 1:67. (b) The

mean-flow wavenumber n and (c) the angle u for which the maximum value of fr [shown in (a)] is attained. The

asymptotes n5 1/
ffiffiffi
2

p
(for b � 1) and n5 0:5 (for b � 1) are shown in (b) (dashed–dotted), and the asymptote

u5 108 (for b � 1) is also shown in (c) (dashed–dotted).
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nonzonal perturbations assume the form of jets in the y

direction (meridional jets) (cf. Fig. 11c).

It is worth noting that Srinivasan and Young (2014)

also find that that the eddy momentum fluxes are

proportional to m when a constant shear flow is sto-

chastically forced with power spectrum (11). This re-

sult is intriguing as the two studies address two

different physical regimes. This work treats the limit

appropriate for emerging structures in which the shear

time scale is far larger than the dissipation time scale

with the fluxes determined by the instantaneous re-

sponse of the eddies on the shear. Srinivasan and

Young (2014) study the opposite limit in which the

mean-flow shear is finite and the shear time scale is

much shorter than the dissipation time scale with the

fluxes determined by the integrated influence of the

shear on the eddies over their whole life cycle, which

may include complex effects such as reflection and

absorption at critical levels.

In summary,

1) the S3T instability of the homogeneous state is

a monotonically increasing function of m for all b,

2) the forced waves that contribute most to the in-

stability are structures with small g (i.e., waves with

phase lines nearly aligned with the y axis, as in

Fig. 2a), and

3) the anisotropy of the excitation affects prominently

the S3T stability of the homogeneous state only for

b& 3:5.

6. Discussion

In this work we addressed the dynamics underlying

the onset of the S3T instability leading to the formation

of large-scale structure but not the nonlinear de-

velopment and equilibration of the instability. The

emergent structure may be susceptible to either hydro-

dynamic or structural secondary instabilities as it rea-

ches finite amplitude [cf. Farrell and Ioannou 2003, 2007;

Parker and Krommes (2014) for zonal jets and Bakas

and Ioannou (2014) for nonzonal flows]. For example,

the most unstable jet structure for marginally unstable

parameters is at the scale of the forcing Lf [for small b,

maximum instability occurs at a scale slightly larger than

Lf for isotropic forcing and close to
ffiffiffi
2

p
Lf for anisotropic

forcing4 while for larger b, maximum instability occurs

FIG. 12. Contours of the F (q, n) in a (q, n) polar plot (n radial and q azimuthal). Shown is (a) F for a zonal jet

perturbation (u5 08) and (c) a nonzonal perturbation with u5 158 when b5 2. (b),(d) As in (a) and (c), but for the

case b5 12. In all panels, solid (dashed) lines indicate contours with positive (negative) values, the contour interval is

23 1023, the thick lines indicate the zero contour, and the radial grid interval is Dn5 0:25. White dashed lines in

(c) and (d) correspond to the locus of the roots of D2(q, n) on the (q, n) plane.

4 The value of n that produces maximum instability has a non-

uniform limit as m/ 0, b/ 0 because isotropic forcing (m5 0) is

singular in that the S3T homogeneous equilibrium is always stable

for b5 0.
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at about 2Lf (cf. Fig. 11b)]. Most geophysical flows are

far from marginal stability and the jet scale predicted at

marginal stability does not characterize the scale of the

actual jets. S3T predicts that the emergent jets through

a series of mergers usually equilibrate at a much larger

scale (Farrell and Ioannou 2007; Parker and Krommes

2014). These predictions of S3T have been shown to be

accurately reflected in sample nonlinear simulations

(Srinivasan and Young 2012; Constantinou et al. 2014).

Although in this work we examined the statistical

dynamical instability of a homogeneous state of turbu-

lence in the presence of forcing and dissipation, the re-

sults bear a relation to the deterministic barotropic

hydrodynamic instability of nonzonal flows on a b plane

in the absence of forcing and dissipation. Parker and

Krommes (2015) have recently shown that in the in-

viscid limit the modulational instability of a Rossby

wave cp 5A cos(p � x2vpt) (Lorenz 1972; Gill 1974;

Connaughton et al. 2010) and the S3T instability of

a homogeneous turbulent state with equilibrium vor-

ticity power spectrum corresponding to the Rossby

wave: Ĉe(k)5 (2p)2p4jAj2[d(k2 p)1 d(k1 p)] obey the

same stability condition. This equivalence is formal be-

cause physically the two problems are very different. In

the problem of Lorenz (1972), the stability of a basic

state in the form of a coherent Rossby plane wave is

studied, while S3T addresses the statistical stability of an

incoherent homogeneous state with the power spectrum

of the Rossby wave. In that sense, as noted also by

Parker and Krommes (2015), S3T stability analysis

embeds the modulational instability results into a more

general physical framework. In appendix C we extend

the result of Parker and Krommes (2015) and show the

formal equivalence between the modulational in-

stability of any solution of the barotropic equation,

which may be time dependent in general but has sta-

tionary power spectrum, with the S3T instability of the

homogeneous state with the same power spectrum. Such

a nonlinear solution of the inviscid barotropic vorticity

equations is for example a superposition of any number

of Rossby waves:

c5 �
N

j51
jp

j
j5p

Aj cos(pj � x2vp
j

t) , (29)

all with the same total wavenumber, jpjj5 p, that forms

a nondispersive structure moving westward (cf. appen-

dix C). If we assume a zonal jet perturbation super-

imposed on this nonlinear solution, then the results in

this work show further that the dynamics underlying the

instability of this structure can be interpreted in the limit

of b � 1 as shearing of the finite-amplitude solution by

the weak shear of the jet perturbation.

7. Conclusions

The mechanism for formation of coherent structures

in a barotropic beta plane under a spatially homoge-

neous and temporally delta-correlated stochastic forcing

was examined in the framework of stochastic structural

stability theory (S3T). In this framework, a second-order

closure for the dynamics of the flow statistics is obtained

by ignoring or parameterizing the eddy–eddy non-

linearity. The resulting deterministic system for the joint

evolution of the coherent flow and of the second-order

turbulent eddy covariance admits statistical equilibria.

For a spatially homogeneous forcing covariance,

a homogeneous state with no mean coherent structures

is such an equilibrium solution of the S3T dynamical

system.When a critical energy input rate of the forcing is

exceeded, this homogeneous equilibrium is unstable and

propagating nonzonal coherent structures and/or sta-

tionary zonal jets emerge in agreement with direct nu-

merical simulations. To identify the processes that lead

to the formation of coherent structures, the vorticity

fluxes induced by a plane wave-mean flow, which is the

eigenfunction of the linearized S3T system around

the homogeneous equilibrium, were calculated close to

the bifurcation point and closed form asymptotic ex-

pressions for these fluxes were obtained. Upgradient

fluxes in this limit are consistent with S3T instability and

coherent structure formation.

The induced fluxes were calculated in a rotated frame

of reference, in which the plane wave-mean flow corre-

sponds to a zonal jet evolving in a beta plane with

a nonmeridional planetary vorticity gradient. This was

done because in this rotated frame of reference the in-

tuition gained by previous studies for the eddy–mean

flow dynamics underlying zonal jet formation can be

utilized to clarify the dynamics underlying nonzonal

wave formation, or formation of zonal jets when the

effect of topography is equivalent to a nonmeridional

planetary vorticity gradient.

In the limit of a weak planetary vorticity gradient

(b � 1), the eddy–mean flow dynamics are similar for

both zonal jets and nonzonal structures. The stochasti-

cally forced eddies that propagate with slow group ve-

locities in this limit are rapidly dissipated as they are

sheared over by the infinitesimal mean flow. Their effect

on the mean flow is therefore determined at leading

order by the instantaneous, with respect to the shear

time scale, change in their momentum fluxes and to

second order by the instantaneous change in their group

velocity. The waves with constant phase lines that form
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angles jqj, 308 with the meridional direction in-

stantaneously surrender momentum to the mean flow

and lead to upgradient fluxes that reinforce the mean

flow for an anisotropic forcing. For an isotropic forcing,

this leading-order effect produces no net fluxes when

integrated over all forced waves and the instability is

controlled by the second-order effect that the in-

stantaneous change of the waves’s group velocity has on

the momentum fluxes. In this case, the group velocity of

waves that form angles jqj. 308 with the meridional

direction is instantaneously increased (decreased) for

waves propagating northward (southward) because of

refraction. The difference in momentum fluxes resulting

from this change in group velocity is positive in the re-

gion of their excitation leading to upgradient fluxes. As

a result, the anisotropy of the forcing has a significant

effect on the induced fluxes and the S3T instability in

this limit. In any case, the effect of the eddies on the

mean flow due to shearing is larger for zonal jets com-

pared to nonzonal perturbations and consequently zonal

jets are more unstable in this limit.

In the limit of strong planetary vorticity gradient

b � 1, the eddy–mean flow dynamics producing up-

gradient vorticity fluxes are different for zonal and

nonzonal perturbations, but in both cases the fluxes

decrease with b. Zonal jets continue to induce upgra-

dient vorticity fluxes through wave shearing, which de-

crease asO(b22) � 1. The reason is that in this limit the

waves that can propagate in the meridional direction are

influenced by the integrated shear over the sinusoidal

flow, which is very small. However, the nonzonal mean-

flow perturbations can sustain fluxes that decrease only

as O(b21/2). The reason for these larger fluxes is that

resonant and near-resonant interactions dominate the

dynamics in this limit [cf. section 3.26 in Pedlosky

(1992)]. Resonance occurs between the emerging

structure, which, close to the stability boundary, satisfies

the Rossby wave dispersion, and the stochastically

forced waves satisfying the Rossby wave frequency

resonant condition. The resonant interactions that occur

for nonzonal structures may produce upgradient or

downgradient net fluxes and it was found that upgra-

dient fluxes cannot be induced by nonzonal flows with

wavenumbers in a region of wavenumber space in the

shape of a dumbbell. Maximum upgradient fluxes occur

for both zonal and nonzonal flows for b;O(1). In this

regime, shearing of the forced waves by the infinitesimal

nonzonal flows is reinforced by fluxes from the resonant

interactions, enhancing the vorticity fluxes and render-

ing the nonzonal structures more unstable compared to

zonal jets when b* 3:5. In contrast to the limit b � 1,

these results were found to be insensitive to the anisot-

ropy of the forcing.

Finally, the relation of the S3T instability and mod-

ulational instability of finite-amplitude Rossby waves

was discussed. Parker and Krommes (2015) showed

that the growth rates obtained when three Rossby

waves interact with the primary finite-amplitude

Rossby wave match exactly in the inviscid limit that

the growth rates obtained by the S3T stability analysis

for the homogeneous equilibrium with the vorticity

covariance produced by the primary Rossby wave. It

was shown in this work that this agreement can be

found for more general cases (e.g., when the covariance

is produced by any linear combination of Rossby waves

with the same total wavenumber). Such an agreement

occurs because retaining only the interaction between

four waves in modulational instability is equivalent to

neglecting the eddy–eddy nonlinearity in S3T. The

equivalence of the dynamics underlying modulational

and S3T instability in this case shows that S3T stability

analysis generalizes modulational instability analysis to

stochastically forced dissipative flows. However, con-

trary to modulational instability, the underlying S3T

dynamics can capture both the emergence of large-

scale structure and its equilibration. In addition, the

dynamics underlying modulational instability can be

interpreted under the alternative eddy–mean flow view

adopted in this work.
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APPENDIX A

Eddy-Vorticity Flux Response to a Mean-Flow
Perturbation

In this appendix we study the eigenvalue problem

(15), which determines the S3T stability of jet pertur-

bations to the homogeneous turbulent equilibrium (9) in

the rotated frame of reference. The eigenfunction cor-

responding to eigenvalue s has the spatial structure

d ~U5 einy
0

and (A1a)

d ~C5 ~C(h)
n (xa2 xb)e

in(y0a1y0b)/2 . (A1b)

The power spectrum of the homogeneous part of the

covariance eigenfunction, ~C(h)
n (xa 2 xb), is determined

from (15b) to be

1704 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



Ĉ(h)
n (k)5

i«k0x
2

k22(k
2
1 2 n2)Q̂0

1 2 k21 (k22 2 n2)Q̂0
2

(s1 2)k1
2k22 1 2inb cosuk0xk

0
y2 inb sinu(k02x 2k02y 1 n2/4)

, (A2)

with k6 5 k6 n/2, n5 (0, n), k5 jkj, k6 5 jk6j, Q̂0
6 5 Q̂0(k6), and Q̂0 the Fourier transform of the forcing co-

variance (19). The vorticity flux dhy0z0i induced by this eigenfunction is

dhy0z0i5
�
1

2
(D21

a ›x0a
1D21

b ›x0
b
)d ~C

�
x
a
5x

b

5 in[ein(y
0
a1y0b)/2]x

a
5x

b

ð ð1‘

2‘

d2k

(2p)2

"
k0xk

0
y

k1
2k22

Ĉ(h)
n (k)eik�(xa2x

b
)

#
x
a
5x

b

5 d ~U

ð ð1‘

2‘

d2k

(2p)2

ink0xk
0
y

k1
2k22

Ĉ(h)
n (k)[ «f (s)d ~U , (A3)

which is proportional to d ~U. By using the symmetryCe(xa, xb)5Ce(xb, xa), which implies that Ĉe(k)5 Ĉe(2k), and

by changing the integration variable in (A3) to k2 n/2, we obtain the following expression for the feedback factor f :

f (s)5

ð ð1‘

2‘

dk0x dk
0
y

(2p)2

2nk02x (k
0
y1 n/2)(k22 n2)

(s1 2)k2s k
21 2inb cosuk0x(k

0
y1 n/2)2 inb sinu(k02x 2 k02y 2 nk0y)

Q̂0(k0x, k
0
y)

2
, (A4)

with ks 5 k1 n and ks 5 jksj.
Introducing (A3) into (15a) we obtain the stability

equation (20) that determines s, which can be shown to

be exactly the stability equation obtained by Bakas and

Ioannou (2014). The stability equation can be written in

terms of the real and imaginary part of s as

sr 5211 «Re[f (s)] and (A5a)

si 5b sinu/n1 « Im[f (s)] . (A5b)

The real part of the vorticity flux feedback fRe[f (s)]g
contributes to the growth rate of the mean flow and the

imaginary part fIm[f (s)]g determines the departure of

the phase speed of the mean flow from the Rossby

wave frequency (2b sinu/n). For b � 1 the first term in

(A5b) is O(b) while for marginally unstable ei-

genfunctions Im(f ) is at most of O(1/b). As will be

shown, the critical « increases as b1/2 or as b and

therefore the frequency of the marginally unstable

waves is approximately equal to the Rossby phase

frequency.

We focus on the real part of the feedback gain [Re(f )]

near marginal stability (sr ’ 0). Setting s52ivn 5
b sinu/n in (A5a) for the marginally unstable structures

and for the ring forcing in the rotated frame, Q̂0(k0x, k
0
y)5

4pd(k2 1)G(q2u), fr [Re[f (2ivn)] takes the form

fr 5Re

�ð2p
0

N
D01 ibD2

dq

�
5

ð2p
0

ND0

D2
01b2D2

2

dq ,

(A6)

with

D0(q,n)5 2(11 n21 2n sinq) , (A7a)

D2(q, n)5 (11 n21 2n sinq) sinu/n1 n2 cos(q2u)

1 n sin(2q2u), and

(A7b)

N (q, n)5
1

p
n(12 n2) cos2q(sinq1 n/2)G(q2u) .

(A7c)

Positive values of fr indicate that the vorticity flux in-

duced by the stochastic forcing at marginal stability on

the mean flow with wavenumber n and nonzonality pa-

rameter u is upgradient, and the marginal energy input

rate is «c 5 1/fr.

Note that F(q, n), which is defined in (23) as the rhs of

(A6), is unchanged when the angle u is shifted by 1808
(u/ 18081u) or when there is a simultaneous shift of

u/ 18082u and q/ 18082q. As a result, it suffices

to only consider cases with 08#u# 908.
As Parker and Krommes (2015) noted, the stability

equation (20) can be written in coordinate independent

form as

s1 11 ivn

5 «

ð ð1‘

2‘

d2k

(2p)2
jk3 nj2(k2s 2 k2)(k2 2n2)

k4k2s n
2[(s1 2)2 i(vk 2vk1n)]

Q̂(k)

2
,

(A8)
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where vk is the Rossby frequency of a wave with wave-

number k [defined in (21)]. As a result, in coordinate-free

form

bD2(q,n)5 k2s (2vn 2vk 1vk1n) , (A9)

and the roots of D2 on the (q, n) plane satisfy the res-

onant condition

vn1vk5vk1n . (A10)

APPENDIX B

Asymptotic Expressions for the Induced Vorticity
Flux Feedback

In this appendix we calculate in closed form asymp-

totic expressions for the vorticity flux feedback induced

by a mean-flow perturbation in the form of a zonal jet in

the rotated frame of reference with wavenumber n for

b � 1 and b � 1.

a. Case b � 1

When b � 1 and for n satisfying b/n � 1, we expand

F (q, n)5F(q, n)1F(18081q, n) in (22) in powers of

b. Since F is a function of b2, we have the expansion

F 5F 01b2F 21O(b4) , (B1)

with F 2 5 (1/2)›2bbFjb50. The leading-order term is

F05
1

p
n2(12 n2)G(q2u)

11 n22 4 sin2q

(11 n2)22 4n2 sin2q
cos2q

(B2)

owing to the property G(18081q)5G(q). Positive

values ofF 0 indicate that the stochastically forcedwaves

with phase lines inclined at an angleqwith respect to the

y0 direction induce upgradient vorticity fluxes to a mean

flow with wavenumber n when b5 0. Given that n, 1

and G. 0,F 0 is positive for any forcing distribution only

in the sector shown in Fig. 4a in which 4 sin2q, 11 n2.

Specifically, in the absence of b all waves with jqj# 308
reinforce mean flows with n, 1. Note that the condition

4 sin2q, 11 n2 is also the necessary condition for

modulational instability of a Rossby wave with wave-

vector components (cosq, sinq) to anymean flow (zonal

or nonzonal) of total wavenumber n for b � 1 (Gill

1974).

The total vorticity flux feedback fr for G(q2u)5
11m cos[2(q2u)] is at leading order

fr 5
m

8
n2(12 n2) cos(2u)1O(b2) , (B3)

which is proportional to the anisotropy factor m. The

maximum feedback factor is in this case

fr,max5
jmj
32

, (B4)

and is achieved for mean flows with n5 1/
ffiffiffi
2

p
. This

maximum is achieved for zonal jets (u5 08) if m. 0 and

for meridional jets (u5 908) if m, 0. This implies that

for b � 1 the first structures to become unstable are

zonal jets if m. 0 and meridional jets if m, 0, as shown

in Fig. 11c.

For isotropic forcing (m5 0), the leading-order term is

zero and fr depends quadratically on b:

fr 5b2n
4

64
[21 cos(2u)]1O(b4) for n, 1, (B5)

producing upgradient f luxes for n, 1. Note that for the

delta function ring forcing
Ð 2p
0 F 2 dq is discontinuous at

n5 1, with positive values for n5 12 and negative

values for n5 11. The accuracy of these asymptotic

expressions is shown in Fig. B1. The maximum feedback

factor, shown in Fig. 11a, is

fr,max5
3b2

64
(B6)

and is attained by zonal jets (u5 08) with wavenumber

n/ 12 as b/ 0, a result that was previously derived by

Srinivasan and Young (2012). The accuracy of (B4) and

(B6) extends to b’ 0:1, as shown in Fig. 11a.

b. Case b � 1

When b � 1, we write (A6) in the form

fr 5
I

b2
, with I5

ð2p
0

Fx(q,n) dq , (B7)

where

Fx(q, n)5
ND0

x2D2
01D2

2

(B8)

and x[ 1/b. When D2 ;O(1) for all angles q, then the

feedback factor is fr ;O(b22). However, ifD2 ;O(b21)

for some angle q, then as we will show in this appendix,

fr decays as O(b21) or as O(b21/2). This is illustrated in

Fig. B1 showing fr as a function of b in cases in whichD2

vanishes.

For any given (n, u), D2 can have at most four roots,

08#qj # 3608 ( j5 1, 2, 3, 4). At these angles, the

resonance condition (A10) is satisfied. To calculate as-

ymptotic approximations to the integral I, we split the

range of integration to a small range close to the roots of
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D2 for which we have resonance I(R) and to a range away

from the roots of D2, I
(NR):

I5 �
M

j51

2
666666664
ðq

j
2dq

q
j21

1dq
Fx(q,n) dq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I
(NR)
j

1

ðq
j
1dq

q
j
2dq

Fx(q,n) dq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I
(R)
j

3
777777775
,

(B9)

where M is the total number of the roots of D2 and

q0 [qM. Asymptotic approximations to the integral

over the two ranges are then found separately using

a proper rescaling for the regions close to the roots ofD2

(cf. Hinch 1991).

When the distance between two consecutive roots is

jqj 2qj21j.
ffiffiffi
x

p
, as in the examples shown in Figs. 7c

and 7e, then the dominant contribution to the integral

comes from the O(x) regions close to the roots qj, since

Fx(q, n) close to qj is approximately a Lorentzian of

half-widthO(x). Therefore, choosing the range dq close

to the roots to be
ffiffiffi
x

p � dq � 1, Taylor expanding

Fx(q, n) close to qj and rescaling q5qj 1xu we obtain

I
(R)
j 5

1

x

ðdq/x
2dq/x

N jD0,j du

D2
0, j1D02

2, ju
2
1O(x23) , (B10)

whereD0
2 [ ›qD2 and the subscript j denotes the value at

qj. In the limit dq/x/‘ we obtain

I
(R)
j 5

1

x

pN j

jD0
2, jj

, (B11)

and as a result, the resonant contribution produces the

asymptotic approximation

f (R)
r 5

1

b
�
N

r

j51

pN j

jD0
2, jj

. (B12)

However, special attention should be given to the case

in which two consecutive roots are close to each other.

When jqj 2qj21j;O(
ffiffiffi
x

p
) then D0

2,j ;O(
ffiffiffi
x

p
) and f (R)r

scales as 1/
ffiffiffi
b

p
instead of 1/b for b � 1. Indeed, when Fx

is double peaked, as in Fig. 7d, the dominant contribu-

tion comes from the whole range between the two res-

onant angles which are a distance O(
ffiffiffi
x

p
) apart. The

proper scaling for the angles close to qj is therefore

q5qj 1
ffiffiffi
x

p
u. Taylor expanding the denominator under

this scaling we obtain

x2D2
01D2

2 5x2D2
0, j 1 xD02

2, ju
21 x3/2D02

2, jD00
2, ju

3

1x2
�
1

4
D002

2, j 1
1

3
D0

2, jD000
2, j

�
u41O(x5/2),

(B13)

where D00
2 [ ›2qqD2 and D000

2 [ ›3qqqD2. When D0
2,j ;

O(
ffiffiffi
x

p
) all the terms in (B13) are O(x2) and writing

D0
2,j 5

ffiffiffi
x

p
d(n, qj)[

ffiffiffi
x

p
dj, where d is of O(1), the

leading-order resonant contribution is

I
(R)
j 5 x23/2

ðdq/ ffiffiffi
x

p

2dq/
ffiffiffi
x

p
N jD0,j du

D2
0,j 1 d2j u

21 djlju
31

1

4
l2j u

4

1O(x21) ,

(B14)

where lj [D00
2, j. In the limit dq/

ffiffiffi
x

p
/‘ the integral can

be evaluated from the residues from two of the four

poles of the integrand. The poles are at u52dj/lj 6
jzjj1/2sgn(lj)e6iwj/2, where jzjj5D0, jjljj21(k2j 1 4)1/2,

FIG. B1. Feedback factor for a nonzonal perturbation with n5 0:4751 and u5 108 (which is in region A of Fig. 7a)

(solid lines) in the case of a forcing covariance with (a) m5 0 and (b) m5 1/4. Also shown are asymptotic expressions

(B6) [in (a)], (B4) [in (b)] forb � 1, and (26) for b � 1 (dashed–dotted). For b � 1, (B12) is also plotted (dashed). It

can be seen that only (26) can capture the b21/2 decrease of fr.
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wj 5 arctan(2/kj), and kj [d2jD21
0,j jljj

21 is an increasing

function of the distance between the two roots of D2.

Therefore,

I
(R)
j 5 x23/2

pN jhj

D1/2
0, j jljj

1/2
1O(x21) (B15)

and

f (R)
r 5

1

b2 �
N

r

j51

1

2
I
(R)
j 5

1ffiffiffi
b

p �
N

r

j51

pN jhj

2D1/2
0, j jljj

1/2
, (B16)

which is exactly (26). The factor 1/2 in (B16) arises

because the range of integration includes both reso-

nant angles and (B15) must be divided by 2 in order to

avoid double counting. The resonant response is pro-

portional to

h5 2(k21 4)23/4csc

�
1

2
arctan(2/k)

�
, (B17)

which is always positive, because k. 0 as D0 . 0. The

factor h is shown as a function of k (which is a rough

measure of the distance between the roots) in Fig. B2.

We observe that the maximum value is attained at

k5 2/
ffiffiffi
3

p
’ 1:16—that is, when the roots are at a dis-

tanceO(x1/2) apart. Note also that by taking the limit of

the resonant angles being away from each other—that is,

by taking the limit k � 1—h; 2/
ffiffiffi
k

p
and (B16) reduces

to (B12). Consequently, (B16) is a valid asymptotic ex-

pression regardless of the distance between the roots qj.

The accuracy of (B12) and (B16) in comparison with the

numerically obtained integral is shown in Fig. B1.

The sign of the resonant contribution depends only on

the sign of N . From (A7c) we see that N . 0 when

sinq.2n/2 for n, 1; this region is highlighted with

light shading in Fig. B3. It should be noted that for the

important case of zonal jet perturbations (u5 08) the

resonant contribution is exactly zero because N j 5 0, as

shown in Fig. B3a. The asymptotic behavior of the

feedback factor for this case is found from the non-

resonant part of the integral. Expanding in this case the

integrand for x � 1, we obtain to leading order

fr ’ f (NR)
r 5 (12 n2)(21m)b22 1O(b24) , (B18)

with the maximum feedback gain

fr,max5 (21m)b22 1O(b24) (B19)

occurring for n/ 0. [For the special case of isotropic

forcing, m5 0, this reduces to the result found by

Srinivasan and Young (2012).]

Consider now nonzonal perturbations (u 6¼ 08). There
is a large region in the (n, u) plane (region D in Fig. 7a)

in which D2 has no roots and fr 5O(b22). For larger

values of n (region B in Fig. 7a), and for any given u,
D2 5 0 for exactly two qj that satisfy the inequality

sinqj ,2n/2. Consequently, N j , 0 and the resonant

contribution from these roots is negative. For even

larger values of n (regions A and C in Fig. 7a), D2 has

exactly four roots. Only two of the roots in region A

produce positive resonant contributions. Note also that

region A extends to u, 608 and u. 1208.B1

The maximum response, which is O(b21/2), arises in

region A close to the curve separating regions A and C

where k’ 1:16.While the roots ofD2 are independent of

b, the location and the size of the region of maximum

response depends on b through the dependence of k on

FIG. B2. The factor h5 2(k2 1 4)23/4csc[(1/2) arctan(2/k)] as

a function of k that is a measure of the distance between two

consecutive resonant angles. Themaximum value of hmarkedwith

an open circle (and consequently of the feedback gain that is

proportional to h) is h5 33/4/2’ 1:14 and it is achieved at

k5 2/
ffiffiffi
3

p
’ 1:16. Also shown is the asymptote h5 2/

ffiffiffi
k

p
that h

follows for k � 1 (dashed). This suggests that the resonant con-

tribution is maximum when the two roots are very close to each

other (k’ 1) but not on top of each other (k � 1).

B1 It can be shown that fluxes from the resonant contributions for

n, 1 are necessarily downgradient (negative) for 608#u# 1208.
Proof: a positive contribution is produced when the D2 5 0 curve

enters into the N . 0, highlighted with light gray in Fig. B3. There

are four roots ofD2 on the unit circle n5 1 (on which alsoN 5 0) at

anglesq5 2108, 2708, 3308, andq5 9081 2u (marked with A, B, C,

and D, respectively). The D2 5 0 curve can cross the curve AOC,

which separates positive from negative N , only at points A and C,

since D2 5 0 only at these points on AOC. Therefore, the D2 5 0

curve can enter the N . 0 region (i) through point D, if it lies

outside the arc ABC, and/or (ii) through point A or C. However,

for 608#u# 1208 point D lies within the arc ABC and, moreover,

the gradient$D2 at pointsA andC is oriented in suchway that does

not allow the D2 5 0 curve to enter N . 0, as ›nD2 , 0 and

›qD2 # 0 (›qD2 $ 0) at point A (point C).
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b. However, as b increases this dependence is weak and

as b/‘ the maximum response occurs in a narrow

region near n’ 0:5 and u’ 108, marked with a star in

Fig. 7a. The width of this region decreases with b,

making it exceedingly hard to locate for large b, and the

asymptotic approach of (n, u) to (0:5, 108) is shown in

Figs. 11b and 11c.

APPENDIX C

Formal Equivalence between S3T Instability of
a Homogeneous Equilibrium with Modulational

Instability of a Corresponding Basic Flow

In this appendix we demonstrate the formal equiva-

lence between the modulational instability (MI) of any

solution of the barotropic equation, which may be in

general time dependent but has stationary power spec-

trum, with the S3T instability of the homogeneous state

with the same power spectrum.

Consider a solution cG(x, t), with vorticity zG 5DcG,

of the inviscid and unforced nonlinear barotropic

equation (1) with time-independent power spectrum.

Because J(cG, zG)5 0, zG satisfies the equation

›tzG 5L(h)zG , (C1)

with L(h) 5 ẑ � (b3$)D21. Linear perturbations dz to

this solution evolve according to the equation

›tdz5Ldz , (C2)

where

L5 2uG � $1 (DuG) � $D
21|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L
G
0

1 ẑ � (b3$)D21|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
L(h)

5L0
G 1L(h) (C3)

is the time-dependent linear operator about zG that has

been decomposed into a spatially homogeneous opera-

tor L(h) that governs the evolution of zG and the in-

homogeneous operator L0
G that depends on zG. The

hydrodynamic instability of zG is ascertained when the

largest Lyapunov exponent of (C2) is positive.

We proceed with the study of the modulational in-

stability by decomposing the perturbation into a mean

dZ5 hdzi and deviations from the mean dz0 5 dz2 dZ,

where the angle brackets represent an averaging oper-

ation. The averaging operation in modulational in-

stability is projection to the eigenstructure with

wavenumber n, which is orthogonal to zG, because only

orthogonal eigenstructures to zG could become un-

stable. With this averaging operator hzGi5 0, and

therefore zG 5 z0G, whereas the perturbation has a non-

zero dZ and a deviation and is expressed as

dz5 dZ1 dz0. For example, if cG is a sum of Rossby

waves as in (29) the perturbation field from Bloch’s

theorem comprises Fourier components with wave-

numbers n, n6 pj, n6 2pj, n6 3pj, . . . for all pj. In this

case dZ is a plane wave with wavenumber n and dz0

comprises the remaining Fourier components. With

these definitions (C2) is equivalently written as

›t(dZ1 dz0)5L0
GdZ1L(h)dz01L0

Gdz
01L(h)dZ ,

(C4)

FIG. B3. Locus of the roots ofD2(q, n) in a (q, n) polar plot for (a) zonal jet perturbations (u5 08), (b) nonzonal perturbations with
u5 158, and (c) nonzonal perturbations with u5 758. Shaded areas indicate the region n# 1. Light (dark) shading corresponds to

(q, n) satisfying sinq.2n/2 (sinq,2n/2) for which we have N . 0 (N , 0) [i.e., positive (negative) resonant contributions]. Points

of intersection of the D2 5 0 curve with the unit circle are marked with A, B, C, and D. The radial grid interval is Dn5 0:25. Note that

the curve D2 5 0 does not enter the N . 0 area for 608#u# 1208 and that is there are no positive contributions when u$ 608.
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where L0
G is primed in order to stress that the operator

linearly depends on the deviation quantity z0G. Equation

(C4) is then separated to form an equivalent system of

equations for the evolution of dZ and dz0:

›tdZ5L(h)dZ1 hL0
Gdz

0i and (C5a)

›tdz
0 5L(h)dz01L0

GdZ1L0
Gdz

0 2 hL0
Gdz

0i . (C5b)

The stability equation (C2) and the stability quations (C5)

for dZ and dz0 are equivalent. In modulational instability

studies the term L0
Gdz

0 2 hL0
Gdz

0i in (C5b) is neglected

and the stability of the following simpler system is studied:

›tdZ5L(h)dZ1 hL0
Gdz

0i and (C6a)

›tdz
0 5L(h)dz01L0

GdZ . (C6b)

For example, if cG is in the form of (29) the neglected

term comprises waves with wavevectors n6 2pj, n6
3pj, . . . and the truncated system (C6) allows only in-

teraction between the primary finite-amplitude waves

pj, the perturbation n, and the waves n6 pj. If zG is

a single wave p (as in MI studies), (C6) is referred to as

the four-mode truncation or ‘‘4MT’’ system.

However, instead of studying the MI stability of

dZ and dz0 using the approximate (C6) equations,

we can equivalently study the stability of dZ and

dC(xa, xb, t)5 hz0G(xa, t)dz0(xb, t)1z0G(xb, t)dz
0(xa, t)i[

hz0G,adz
0
b1z0G,bdz

0
ai. With these definitions we obtain

from (C1) and (C6b) the evolution equation for dC:

›tdC5 h(›tz
0
G,a)dz

0
b 1 (›tz

0
G,b)dz

0
a 1 z0G,a(›tdz

0
b)

1 z0G,b(›tdz
0
a)i5 (L(h)

a 1L(h)
b )dC

1 hz0G,aL0
G,bdZb1 z0G,bL0

G,adZai . (C7)

We note from the definition of L0
G [cf. (C3)] that

L0
GdZ52(ẑ3$c0

G) � $dZ1 (ẑ3$z0G) � $dC
5 (ẑ3$dZ) � $c0

G 2 (ẑ3$dC) � $z0G
5 (DdU) � ($c0

G)2 (dU) � ($z0G)5 dAz0G ,

(C8)

where dU5 ẑ3$dC is the velocity field associated with

dZ and dA52dU � $1 (DdU) � $D21 is the operator

that also appears in (10b). As a result, (C7) becomes

›tdC5 (L(h)
a 1L(h)

b )dC1 (dAa1 dAb)C
G , (C9)

where CG 5 hz0G,az
0
G,bi. Returning now to (C6a) we note

that hL0
Gdz

0i5R(dC), where R(dC) is defined in (8) as

R(dC)52$ �
�
ẑ

2
3 ($aD

21
a 1$bD

21
b )hz0G,adz

0
b 1 z0G,bdz

0
ai
�
x
a
5x

b

52$ � fẑ3 h($c0
G)dz

0 1 ($dc0)z0Gig

52$ � hu0Gdz01 du0z0Gi5 h2u0G � $dz01 (Du0G) � $dc0i5 hL0
Gdz

0i . (C10)

Consequently, theMI of z0G is equivalently determined

from the stability of the system

›tdZ5LhhidZ1R(dC) and (C11a)

›tdC5 (L(h)
a 1L(h)

b )dC1 (dAa 1 dAb)C
G , (C11b)

which is identical to (10), which determines the S3T

stability of the homogeneous equilibrium with zero

mean flow,Ue 5 0, and equilibrium covariance Ce 5CG

under the ergodic assumption that ensemble averages

are equal to averages under operation h�i.
For example, consider the nonlinear solution

c(x, t)5

ð2p
0

a(q) cos(p � x2vpt) dq , (C12)

with wavevectors p5 (cosq, sinq) on the unit circle

(p5 1). Expanding the plane waves into cylindrical waves,

ei[(x1bt)cosq1ysinq] 5 �
1‘

m52‘
imJm(r)e

im(f2q) , (C13)

with r2 5 (x1bt)2 1 y2, f5 arctan[y/(x1bt)], and Jm
the mth Bessel function of the first kind, this can be

shown to be the nondispersive structure

c(x1bt, y)5Re

"
�
1‘

m52‘
gmJm(r)e

imf

#
, (C14)

propagating westward with velocity b, where gm 5Ð 2p
0 a(q)e2imq dq. The results in this appendix show that

the modulational instability of the propagating structure

(C12) is equivalent to the S3T instability of the homo-

geneous equilibrium with covariance Ce prescribed by

power spectrum Ĉe(k)5 (2p)2ja(q)j2d(k2 1). Note that

this S3T equilibrium is also an exact homogeneous sta-

tistical equilibrium of the nonlinear barotropic equa-

tions without approximation.
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