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Abstract Planetary turbulent flows are observed to self-organize into large scale
structures such as zonal jets and coherent vortices. Recently, it was shown that a
comprehensive understanding of the properties of these large scale structures and of
the dynamics underlying their emergence and maintenance is gained through the
study of the dynamics of the statistical state of the flow. Previous studies addressed
the emergence of the coherent structures in barotropic turbulence and showed the
zonal jets emerge as an instability of the Statistical State Dynamics (SSD). In this
work, the equilibration of the incipient instabilities and the stability of the equili-
brated jets near onset is investigated. It is shown through a weakly nonlinear
analysis of the SSD that the amplitude of the jet evolves according to a
Ginzburg-Landau equation. The equilibrated jets were found to have a harmonic
structure and an amplitude that is an increasing function of the planetary vorticity
gradient. It is also shown that most of the equilibrated jets are unstable and will
evolve through jet merging and branching to the stable jets that have a scale close to
the most unstable emerging jet.

1 Introduction

Atmospheric turbulence is commonly observed to be organized into two large scale
zonal jets per hemisphere with long-lasting coherent waves embedded in them. The
jets and their associated storm tracks control the transport of heat, while the
coherent waves produce significant spatiotemporal variability of weather patterns.
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It is therefore important to understand the mechanisms for the emergence, equili-
bration, and maintenance of these coherent structures.

The simplest approximation that retains the relevant self-organization dynamics
is a turbulent barotropic flow on a β-plane. Numerical simulations of this model
have shown that robust, large scale zonal jets emerge in the flow out of a homo-
geneous background of turbulence and oftentimes coexist with westward propa-
gating coherent waves embedded in them (Galperin et al. 2010). In addition, as the
energy input rate is increased the initially emerging jets merge into larger scale jets
before they equilibrate at large amplitude. Recently, a theory that accurately pre-
dicts the formation and nonlinear equilibration of large scale coherent structures in
barotropic β-plane turbulence was developed (Bakas and Ioannou 2013). The
theory is based on the investigation of the dynamics of the statistical state of the
flow as obtained in the Stochastic Structural Stability Theory (S3T; Farrell and
Ioannou 2003). That is, instead of studying the evolution of the complex flow itself,
the goal is to study the evolution of the flow statistics, the dynamics of the cor-
responding equations and the stability of the statistical equilibria that emerge. Bakas
and Ioannou (2013) have shown that the coherent structures emerge as an instability
of the homogeneous equilibrium of the S3T dynamical system. In this work, we
focus on the unstable zonal jet structures and study the equilibration of the incipient
instabilities and the stability of the equilibrated jets near onset, seeking a theory that
predicts the amplitude for the equilibrated jets as well as when the jet merging
process occurs.

2 Formulation of Stochastic Structural Stability Theory

Consider a non-divergent barotropic flow with a velocity field u = (u, v) on a
β-plane with cartesian coordinates x = (x, y). The relative vorticity f ¼ @xv� @yu,
evolves according to the non-linear equation:

@t þ u � rð Þfþ bv ¼ �rfþ f ð1Þ

where β is the gradient of planetary vorticity, r is the coefficient of linear dissipation
that typically parameterizes Ekman drag in the Earth’s atmosphere and f is a random
stirring that parameterizes processes such as small scale convection or baroclinic
instability, that are missing from the barotropic dynamics. We assume that f is a
temporally delta correlated and spatially homogeneous random stirring. We also
assume that the forcing is isotropic, injecting energy at a rate ε in a narrow ring of
wavenumbers with radius Kf.

S3T describes the statistical dynamics of the first two same time moments of (1):
the mean of the vorticity field Z ¼ fðx; tÞ and the two point correlation function

C ¼ f0af
0
b of the vorticity deviation from the mean ζ′i ≡ ζi − Zi, where the subscript

i refers to the value of the relative vorticity at the two points xi. The overbar in the
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definition of the moments denotes a proper averaging operator that identifies the
coherent motions of the turbulent flow and additionally satisfies the ergodic
property that the average of any flow quantity is equal to an ensemble average over
the forcing realizations �� ¼ �h i. Since we are interested in this study in the emer-
gence of zonal jets, we consider the overbar as a zonal average. With this definition
of the mean, the equations governing the evolution of the two moments of the flow
are:

@tUþ rU ¼ v0f0 ¼ GðCÞ ð2Þ

@tCþ Aa þAbð ÞC ¼ N ð3Þ

where U is the zonal mean flow of the jet Z ¼ �@yU
� �

, v0f0 is the eddy vorticity

flux that can be expressed as a function of the vorticity covariance v0f0 ¼ GðCÞ,

A ¼ �U@x � b� @2
yyU

� �
@xD

�1 � r

governs the linear dynamics of eddies about the instantaneous mean flow U and Ξ is
the spatial correlation function of the forcing. In obtaining (3), we have ignored the
third cumulant, that is we have ignored the non-linear term describing the
eddy-eddy interactions, so that (2–3) form a closed deterministic system that
governs the joint evolution of the zonal jet and of the eddy statistics. The S3T
system has bounded solutions and the fixed points UE and CE, if they exist, define
statistical equilibria of zonal jets with velocity UE, in the presence of an eddy field
with covariance CE.

3 Weakly Non-linear Dynamics of the Jet Forming
Instability

The S3T system (2), (3) admits the homogeneous equilibrium UE = 0, CE = Ξ/2r,
with no jets and a homogeneous eddy field with the spatial covariance of the
forcing. The homogeneous equilibrium becomes unstable when the energy input
rate passes a certain threshold εt and bifurcates to inhomogeneous equilibria in the
form of zonal jets (Farrell and Ioannou 2007). The linear stability analysis of the
S3T dynamical system (2–3) around the homogeneous equilibrium reveals that due
to the homogeneity of the equilibrium, the eigenfunctions consist of a sinusoidal
mean flow perturbation dU ¼ einy, with n the jet wavenumber. It was also shown
that the minimum threshold ec ¼ minnet required for instability, as well as the scale
of the jet 1/nc emerging at ec is a function of the non-dimensional planetary vorticity
gradient ~b ¼ b=Kf r.
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In this work, we focus near the onset of this jet forming instability. Near the
threshold ec, the S3T dynamics can be approximated by performing a multi-scale
perturbation expansion with respect to the supercriticality parameter
l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e=ec � 1
p

. That is, we expand the mean flow velocity and the corresponding
covariance

U ¼ lU1 þ l2U2 þ � � � ; C ¼ CE þ lC1 þ l2C2 þ � � �

in the limit of small supercriticality μ ≪ 1. At leading order, the mean flow and the
covariance is the eigenmode

U1 ¼ A Y ; Tð Þeincy þ c:c; C1 ¼ A Y ; Tð ÞCh xa � xbð Þe
inc ya þ ybð Þ

2 þ c:c;

which is harmonic with nc the critical wavenumber at the onset of instability and
has an amplitude A Y ; Tð Þ that is slowly varying in latitude Y ¼ ly and in time
T ¼ l2t. At second order, a jet with the double harmonic is generated

U2 ¼ a1A
2 Y ; Tð Þe2incy þ c:c

At next order there are secular terms produced that vanish only when the
amplitude Α satisfies the following real Ginzburg-Landau (G-L) equation:

c1@TA ¼ c2Aþ c3@
2
YYA� c4jAj2A; ð4Þ

The coefficients ci(β, r, nc, C
E) and a1 are real and positive for the isotropic

forcing and are given in Constantinou et al. (2016). The linear terms are obtained
from the linear stability analysis: the first term on the rhs gives the exponential
growth (with rate c2=c1) of the unstable jet with wavenumber nc, while the second
term corrects for the growth of zonal jets with a slightly different wavenumber than
nc which is lower than the most unstable jet. The non-linear term is important since
it controls the amplitude of the equilibrated jet. It can be shown that a harmonic
mean flow A ¼ R0eimY is an equilibrium solution with amplitude

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � m2c3Þ=c4

p
:

Figure 1 shows the amplitude R0 as a function of ~b for the most unstable jet
(ν = 0). For low ~b, the small scale jets (nc � Kf in this limit) equilibrate at low

amplitude R0 � ~b5=8, while at large ~b, the large scale jets (nc � Kf in this limit)

equilibrate at large amplitude R0 � ~b3=10.
The stability of these non-homogeneous zonal jet equilibria can be assessed by

first rewriting the G-L equation as follows. We assume that A Y ; Tð Þ ¼
R Y ; Tð Þeihð� ;TÞ where R is the amplitude and θ is the phase and substitute into (4).
Separating real and imaginary parts we obtain:
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c1@TR ¼ c2 � c3 @Yhð Þ2 þ c3@
2
YY

h i
R� c4R

3; ð5Þ

c1R@Th ¼ 2c3@YR@Yhþ c3R@
2
YYh; ð6Þ

Assume now the equilibrium jet with constant amplitude R0 and linearly varying
phase θ = νY and small wavelike perturbations in the amplitude ρ and the phase φ
of the form q;u½ � ¼ q̂; û½ �eiqY þrt. Linearizing (5–6) around the harmonic equi-
librium and solving for σ we obtain the dispersion relation:

r ¼ � q2 þR2
0

� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
0 þ 4c23m2q2

q

We have instability for jqj 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6m2 � 2m2e

p
, so only the zonal jets with m
 me=

ffiffiffi
3

p

are unstable. The maximum instability occurs for q ¼ ðme2 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 m

me

� �4
þ 2 m

me

� �2
�1

r

with the growth rate r ¼ c3 3m2 � m2e
� �2

=4m2. This is the Eckhaus instability first
discovered in studies of pattern formation in convection and results in a transfor-
mation of the Eckhaus unstable jets into stable jets through a series of jet mergings
or branchings depending on whether the jet has n[ nc or n\nc respectively.

We will now test the accuracy of the G-L equation in describing the equilibration
of the jet forming instability and the stability of the equilibrated jets. The quanti-
tative accuracy of the G-L equation is unfortunately limited only to parameter
values that are very close to the stability boundary, i.e., only for 0 < μ < 0.1 (not
shown). However, the G-L dynamics show qualitatively the same behavior as the
S3T dynamics for low supercriticalities (up to l � 0:5) and reveal the dynamics of
the Eckhaus instability that attracts the finite amplitude states to the Ekchaus stable

Fig. 1 Amplitude R0 of
equilibrated harmonic jets
corresponding to the most
unstable jet structure with
wavenmber nc as a function of
the non-dimensional planetary
vorticity gradient ~b ¼ b=Kf r
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structures. To show this, we present a comparison of the predictions of the fully
non-linear S3T dynamics integrated numerically in a 2π × 2π doubly periodic box
for a certain set of parameters (β = 9.49, Kf = 14, r = 0.1) and its approximation by
G-L dynamics at supercriticality μ = 0.1. For these parameters, the homogeneous
equilibrium for the periodic box is unstable to only three jets with n = 5, 6 and 7
due to quantization of the wavenumbers. At this supercriticality the n = 5 jet
equilibrium is Eckhaus unstable to n = 6. To illustrate the Eckhaus instability both
simulations are initiated from the homogeneous state perturbed by an n = 5 jet
mean flow perturbation that is contaminated with an n = 6 mean flow perturbation
with an amplitude 10−5 times smaller. The jet evolution shown in Fig. 2 exhibits
qualitatively the same behavior: the n = 5 jet mean flow perturbation initially grows
exponentially and reaches finite amplitude. This equilibrium is Eckhaus unstable
and both dynamics subsequently transition to the stable n = 6 jet state through jet
branching. The only differences are quantitative and regard the amplitude of the
finally equilibrated flow. Similar qualitative agreement between S3T and G-L
dynamics is also found for the n = 7 jet equilibrium that transitions to the same
n = 6 state through jet merging. Therefore we conclude the jet mergers/branchings
at small supercriticalities are manifestations of the equilibration of the Eckhaus
instabilities.

4 Conclusions

In summary, we studied jet formation based on a theory for the statistical state
dynamics of the flow (S3T). We focused on the equilibration of the incipient
instability of the S3T system governing the evolution of the flow statistics, that
gives rise to zonal jets. We showed that the jet amplitude follows a
Ginzburg-Landau equation and that the instabilities equilibrate as harmonic jets.
The amplitude of the jets was found to be increasing with the non-dimensional

Fig. 2 Comparison of the evolution of the zonal mean flow U of the unstable jet structure with
n = 5, as predicted by a S3T and b G-L dynamics. The solid lines mark the zero contour, while the
parameters are β = 9.49, Kf = 14, r = 0.1
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planetary vorticity gradient ~b ¼ b=Kf r. Only a band of wavenumbers close to the
most unstable jet with wavenumber nc was found to be stable. As a result of the
secondary instability, the rest of the emerging jets are attracted to the stable equi-
libria through a series of jet mergings/branchings. The role of the Eckhaus insta-
bility in jet mergings observed at large energy input rates will be the subject of
future research.
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