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ABSTRACT

Stochastic structural stability theory (S3T) provides analytical methods for understanding the emergence and

equilibration of jets from the turbulence in planetary atmospheres based on the dynamics of the statistical mean

state of the turbulence closed at second order. Predictions for formation and equilibration of turbulent jets made

using S3T are critically comparedwith results of simulationsmade using the associated quasi-linear and nonlinear

models. S3T predicts the observed bifurcation behavior associatedwith the emergence of jets, their equilibration,

and their breakdown as a function of parameters. Quantitative differences in bifurcation parameter values be-

tween predictions of S3T and results of nonlinear simulations are traced to modification of the eddy spectrum

which results from two processes: nonlinear eddy–eddy interactions and formation of discrete nonzonal struc-

tures. Remarkably, these nonzonal structures, which substantially modify the turbulence spectrum, are found to

arise from S3T instability. Formation as linear instabilities and equilibration at finite amplitude of multiple

equilibria for identical parameter values in the form of jets with distinctmeridional wavenumbers is verified, as is

the existence at equilibrium of finite-amplitude nonzonal structures in the form of nonlinearly modified Rossby

waves. When zonal jets and nonlinearly modified Rossby waves coexist at finite amplitude, the jet structure is

generally found to dominate even if it is linearly less unstable. The physical reality of themanifold of S3T jets and

nonzonal structures is underscored by the existence in nonlinear simulations of jet structure at subcritical S3T

parameter values that are identified with stable S3T jet modes excited by turbulent fluctuations.

1. Introduction

Spatially and temporally coherent jets are a common

feature of turbulent flows in planetary atmospheres with

the banded winds of the giant planets constituting a fa-

miliar example (Vasavada and Showman 2005). Fjørtoft

(1953) noted that the conservation of both energy and

enstrophy in dissipationless barotropic flow implies that

transfer of energy among spatial spectral components

results in energy accumulating at the largest scales. This

argument provides a conceptual basis for understand-

ing the observed tendency for formation of large-scale

structure from small-scale turbulence in planetary at-

mospheres. However, the observed large-scale structure

is dominated by zonal jets with specific form and,

moreover, the scale of these jets is distinct from the

largest scale in the flow. Rhines (1975) argued that the

observed spatial scale of jets in beta-plane turbulence

results from arrest of upscale energy transport at the

length scale
ffiffiffiffiffiffiffi
u/b

p
, where b is the meridional gradient of

planetary vorticity and u is the root-mean-square ve-

locity in the turbulent fluid. In Rhines’s interpretation

this is the scale at which the turbulent energy cascade

is intercepted by the formation of propagating Rossby

waves. Balk et al. (1991) extendedRhines’s argument by

showing that in addition to energy and enstrophy,
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dissipationless barotropic turbulence conserves a third

quadratic invariant called zonostrophy, which constrains

the large-scale structures in dissipationless beta-plane

turbulence to be predominantly zonal (cf. Balk and

Yoshikawa 2009). While these results establish a con-

ceptual basis for expecting large-scale zonal structures

to form in beta-plane turbulence, the physical mecha-

nism of jet formation, the structure of the jets, and their

dependence on parameters remain to be determined.

Onemechanism for formation of jets is vorticitymixing

resulting from Rossby wave breaking, which leads to

homogenization of vorticity in localized regions and for-

mation of vorticity staircases. The risers of these stair-

cases correspond to thin prograde jets located at the

latitudes of steep vorticity gradients separating parabolic

retrograde jets corresponding to the well-mixed steps of

the staircase (Baldwin et al. 2007; Dritschel andMcIntyre

2008). While vorticity staircases have been obtained in

numerical simulations (Scott and Dritschel 2012), in

many cases mixing is insufficient to produce a staircase

structure. Moreover, jets are shown here to form from

a bifurcation at infinitesimal perturbation amplitude and

in the absence of wave breaking.

Arguments based on equilibrium statistical mechanics

have also been advanced to explain emergence of jets

(e.g., by Miller 1990 and Robert and Sommeria 1991).

This theory is based on the principle that dissipationless

turbulence tends to produce configurations that maximize

entropy while conserving both energy and enstrophy.

These maximum entropy configurations in beta-plane

barotropic turbulence assume the form,when observed at

large scale, of zonal jets or vortices (cf. Bouchet and

Venaille 2012).However, the relevance of these results to

planetary flows that are strongly forced and dissipated

and therefore out of equilibrium remains to be shown.

An important constraint on theories of jet mainte-

nance is that the primary mechanism by which planetary

turbulent jets are maintained is eddy momentum flux

systematically directed up the mean velocity gradient.

This upgradient momentum flux is produced by a broad

spectrum of eddies, implying that the large-scale jets are

maintained by spectrally nonlocal interaction between

the eddy field and the large-scale zonal jets. This has

been verified in observational studies on Jovian atmo-

sphere (Ingersoll et al. 2004; Salyk et al. 2006) and in

numerical simulations (Nozawa andYoden 1997; Huang

and Robinson 1998). Wordsworth et al. (2008) studied

jet formation in rotating tanks and found strong evi-

dence confirming that jets are maintained by spectrally

nonlocal energy transfer.

Laminar instability of a meridional Rossby wave or of

a zonally varying meridional flow can generate zonal

flows (Lorenz 1972; Gill 1974; Manfroi and Young 1999;

Berloff et al. 2009; Connaughton et al. 2010). Equations for

the dynamics of these jets in the weakly nonlinear limit

were obtained by Manfroi and Young (1999). This in-

stability, referred to as modulational instability, produces

spectrally nonlocal transfer to the zonal flow from the

forcedmeridionalwaves but presumes a constant source of

these finite amplitude meridional waves. In baroclinic

flows, baroclinic instability has been advanced as the

source of these coherent waves (Berloff et al. 2009).

Stochastic structural stability theory (SSST, contracted

to S3T) addresses turbulent jet dynamics as a two-way

interaction between the mean flow and its consistent field

of turbulent eddies (Farrell and Ioannou 2003). Both S3T

and modulational instability involve nonlocal interac-

tions in wavenumber space but these theories differ in

that in S3T the mean flow is supported by its interaction

with a broad turbulence spectrum rather than with spe-

cific waves. In fact, S3T is a nonequilibrium statistical

theory that provides a closure comprising a dynamics for

the evolution of themean flow togetherwith its consistent

field of eddies. In S3T, the dynamics of the turbulence

statistics required by this closure are obtained from

a stochastic turbulence model (STM), which provides

accurate eddy statistics for the atmosphere at large scale

(Farrell and Ioannou 1993, 1994, 1995; Zhang and Held

1999). Marston et al. (2008) have shown that the S3T

system is obtained by truncating the infinite hierarchy of

cumulant expansions to second order and they refer to

the S3T system as the second-order cumulant expansion

(CE2). In S3T, jets initially arise as a linear instability of

the interaction between an infinitesimal jet perturbation

and the associated eddy field and finite-amplitude jets

result from nonlinear equilibria continuing from these

instabilities. Analysis of this jet formation instability de-

termines the bifurcation structure of the jet formation

process as a function of parameters. In addition to jet

formation bifurcations, S3T predicts jet breakdown bi-

furcations, as well as the structure of the emergent jets,

the structure of the finite amplitude equilibrium jets to

which they continue, and the structure of the turbulence

accompanying the jets. Moreover, S3T is a dynamics so it

predicts the time-dependent trajectory of the statistical-

mean turbulent state as it evolves and, remarkably, the

mean turbulent state is often predicted by S3T to be time

dependent in the sense that the statistical mean state of

the turbulence evolves in a manner predicted by the

theory (Farrell and Ioannou 2009b). The formation of

zonal jets in planetary turbulence was studied as a bi-

furcation problem in S3T by Farrell and Ioannou (2003,

2007, 2008, 2009a,c), Bakas and Ioannou (2011), and

Srinivasan and Young (2012). A continuous formulation

of S3T developed by Srinivasan and Young (2012) has

facilitated analysis of the physical processes that give rise
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to the S3T instability and construction of analytic ex-

pressions for the growth rates of the S3T instability in

homogeneous beta-plane turbulence (Srinivasan and

Young 2012; Bakas and Ioannou 2013b).

Relating S3T to jet dynamics in fully nonlinear turbu-

lence is facilitated by studying the quasi-linear model,

which is intermediate between the nonlinear model and

S3T. The quasi-linear (QL) approximation to the full

nonlinear dynamics (NL) results when eddy–eddy in-

teractions are not explicitly included in the dynamics but

are either neglected entirely or replaced with a simple

stochastic parameterization, so that no turbulent cascade

occurs in the equations for the eddies, while interaction

between the eddies and the zonal-mean flow is retained

fully in the zonal-mean equation. S3T is essentially QL

with the additional assumption of an infinite ensemble of

eddies replacing the single realization evolved under QL.

Although the dynamics of S3T and QL are essentially the

same, by making the approximation of an infinite en-

semble of eddies, the S3T equations provide autonomous

and fluctuation-free dynamics of the statistical-mean

turbulent state, which transforms QL from a simulation

of turbulence into a predictive theory of turbulence.

A fundamental attribute of QL–S3T is that the non-

linear eddy–eddy cascade of NL is suppressed in these

systems. It follows that agreement in predictions of jet

formation and equilibration between NL and QL–S3T

provides compelling evidence that cascades are not

required for jet formation and theoretical support for

observations showing that the turbulent transfers of

momentum maintaining finite amplitude jets are non-

local in spectral space.

Previous studies demonstrated that unstable jets main-

tained by body forcing can be equilibrated using QL dy-

namics (Schoeberl and Lindzen 1984; DelSole and Farrell

1996;O’Gorman and Schneider 2007;Marston et al. 2008).

In contrast to these studies, in this work, we investigate the

spontaneous emergence and equilibration of jets from

homogeneous turbulence in the absence of any coherent

external forcing at the jet scale. S3T predicts that in-

finitesimal perturbations with zonal jet form organize ho-

mogeneous turbulence to produce systematic upgradient

fluxes giving rise to exponential jet growth and eventually

to the establishment of finite-amplitude equilibrium jets.

Specifically, the S3T equations predict initial formation

of jets by themost unstable eigenmode of the linearized

S3T dynamics. In agreement with S3T, Srinivasan and

Young (2012) found that their NL simulations exhibit

jet emergence from a homogeneous turbulent state with

subsequent establishment of finite-amplitude jets, while

noting quantitative differences between bifurcation pa-

rameter values predicted by S3T and the parameter

values for which jets were observed to emerge in NL.

Tobias and Marston (2013) also investigated the cor-

respondence of CE2 simulations of jet formation with

corresponding NL simulations and found that CE2

reproduces the jet structure, although they noted some

differences in the second cumulant, and suggested

a remedy by inclusion of higher cumulants.

In this paper, we useNL and itsQL counterpart together

with S3T to examine further the dynamics of emergence

and equilibration of jets from turbulence. Qualitative

agreement in bifurcation behavior among these systems,

which is obtained for all the spatial turbulence forcing

distributions studied, confirms that the S3T instability

mechanism is responsible for the formation and equili-

bration of jets. Quantitative agreement is obtained for

bifurcation parameters between NL and QL–S3T when

account is taken of the modification of the turbulent

spectrum that occurs in NL but not in QL–S3T. Re-

markably, a primary component of this spectral modifica-

tion can itself be traced to S3T instability, but of nonzonal

rather than of zonal form. We investigate the formation

and equilibration of these nonzonal S3T instabilities and

the effect these structures have on the equilibrium spec-

trum of beta-plane turbulence. We also investigate cir-

cumstances under which nonzonal structures are modified

and suppressed by the formation of zonal jets.

A dynamic of potential importance to climate is the

possibility of multiple equilibria of the statistical-mean

turbulent state being supported with the same system

parameters (Farrell and Ioannou 2003, 2007). Multiple

jet equilibria were recently related to pattern formation

in the context of S3T by Parker andKrommes (2014).We

verify existence of multiple equilibria, predicted by S3T,

in our NL simulations. Finally, we show that weak jets

result from stochastic excitation by the turbulence of

stable S3T modes, which demonstrates the physical

reality of the stable S3T modes. Turbulent fluctuation

induced excitation of these stable S3T jet modes and

the weak but zonally extended jets that equilibrate

from weak instabilities at slight supercriticality may

explain the enigmatic latent jets of Berloff et al.

(2011).

2. Formulation of nonlinear and quasi-linear
barotropic beta-plane dynamics

Consider a beta plane with x and y Cartesian co-

ordinates along the zonal and the meridional direction,

respectively. The nondivergent zonal and meridional

velocity fields are expressed in terms of a streamfunction

c as u52›yc and y 5 ›xc. The absolute vorticity is z1
2V 1 by, where z 5 Dc and D[ ›2xx 1 ›2yy. The NL dy-

namics of this system is governed by the barotropic

vorticity equation:
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›tz1 u›xz1 y›yz1by52rz2 n4D
2z1

ffiffiffi
«

p
F . (1)

The flow is dissipated with linear damping at rate r and

hyperviscosity with coefficient n4. Periodic boundary

conditions are imposed in x and y with periodicity 2pL.

Distances have been nondimensionalized by L 5 5000km

and time by T 5 L/U, where U 5 40m s21, so that the

time unit is T 5 1.5 days and b 5 10 corresponds to

a midlatitude value. Turbulence is maintained by sto-

chastic forcing with spatial and temporal structure F

and amplitude «.

Flow fields are decomposed into zonal-mean com-

ponents, denoted with an overbar, and deviations from

the zonal mean (eddies), which are indicated lowercase

with primes. The zonal velocity isU(y, t)1 u0(x, y, t), with
U the zonal-mean velocity, the meridional velocity is

y0(x, y, t), and the eddy vorticity is z0(x, y, t). FromEq. (1),

equations for the evolution of the zonal-mean flow U

and the associated eddy field z0 obtained by zonal av-

eraging are

›tU5 y0z0 2 rU , (2a)

›tz
052U›xz

0 1 (›yyU2b)›xc
02 rz0

2 n4D
2z01Fe1

ffiffiffi
«

p
F , (2b)

where Fe 5 [›y(y0z0)2 ›y(y
0z0)]2 ›x(u

0z0) is the non-

linear term representing the eddy–eddy interactions.

FIG. 1. Contour plots of the spatial Fourier coefficients of the forcing vorticity covariances [cf. Eq. (B6)], used in this study and example

realizations of the forcing. (a) ~Qk‘ for NIF with k5 1, . . . , 14 and s5 0:2/
ffiffiffi
2

p
. (d) ~Qk‘ for IRFn atKf 5 14 and dkf 5 1. (g) ~Qk‘ for IRFw at

Kf 5 14 and dkf 5 8/
ffiffiffi
2

p
. Realizations of these forcings in (b),(e),(h) the vorticity field and (c),(f),(i) the streamfunction field.
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Equations (2) define the nonlinear system, NL. Note

that the stochastic forcing appears only in Eq. (2b).

The QL approximation of NL is obtained by setting

Fe 5 0, which implies neglect of the eddy–eddy inter-

actions in Eq. (2b), while retaining the Reynolds stress

forcing y0z0 in the zonal-mean flow equation:

›tU5 y0z0 2 rU , (3a)

›tz
052U›xz

0 1 (›yyU2b)›xc
02 rz02 n4D

2z01
ffiffiffi
«

p
F .

(3b)

Both the NL system [Eq. (2)] and its QL counterpart

[Eq. (3)] conserve both energy and enstrophy in the

absence of forcing and dissipation.

3. S3T formulation of barotropic beta-plane
dynamics

The S3T system governs evolution of the ensemble-

mean state of the QL system [Eqs. (3)]. Derivation and

properties of S3T can be found in Farrell and Ioannou

(2003, 2007). Expressed in matrix form, the S3T system is

›tU52 �
N

k

k51

k

2
vecd[Im(D21

k Ck)]2 rU , (4a)

›tCk 5Ak(U)Ck1CkAk(U)y1 «Qk, k5 1, . . . ,Nk .

(4b)

In these equations, the eddy fields and the forcing have

been expanded in zonal harmonics—that is, z0(x, y, t)5
Re[�Nk

k51ẑk(y, t)e
ikx]—with k 5 1, . . . Nk the zonal wave-

numbers. The zonal-mean flow U and the k Fourier

components of the eddy vorticity ẑk form column vec-

tors with elements of their corresponding values at the

Ny discretization points yj for j5 1, . . . ,Ny. The second-

order statistics of the eddy field are specified by the Nk

covariances Ck 5 hẑkẑkyi, with the angle brackets de-

noting an ensemble average over realizations and the

superscript dagger denoting the Hermitian transpose.

The operator vecd(M) returns the column vector of the

diagonal elements of matrix M and Im returns the

imaginary part. The matrix Ak is

Ak(U)52ik[U2 (Uyy 2bI)D21
k ]2 rI2 n4D

2
k , (5)

where Dk 5 D2 2 k2I, D2 is the discretized ›yy operator,

I is the identity matrix, D21
k is the inverse of Dk, U is the

diagonal matrix with vecd(U) 5 U, and Uyy is the di-

agonal matrix with vecd(Uyy) 5 D2U. The forcing am-

plitude is controlled by the parameter « and the spatial

covariance of the forcing enters Eq. (4b) as Qk 5FkF
y
k,

with [Fk]jp 5 Fkp(yj), where the Fourier component of

the stochastic forcing F̂k(y, t) is assumed to have the

form F̂k(y, t)5�Ny

p51Fkp(y)jkp(t) (cf. appendix B).

4. Stochastic forcing structure

Because the S3T instability mechanism that results

in jet bifurcation from a homogeneous turbulent state

differs for isotropic and nonisotropic turbulence, we

consider examples of both isotropic and nonisotropic

turbulence forcing. The jet forming instability in the case

of homogeneous, nonisotropic forcing arises from the

upgradient fluxes induced by shearing of the turbulence

by the infinitesimal perturbation jet, while the upgradient

fluxes for the case of homogeneous isotropic forcing arise

from the refraction of the eddies caused by the variation

in the potential vorticity gradient induced by the in-

finitesimal perturbation jet (Bakas and Ioannou 2013b).

Three stochastic forcing structures will be used in our

investigation of the correspondence among S3T, QL,

and NL dynamics. The first independently excites a set

of zonal wavenumbers. This forcing was first used by

Williams (1978) to parameterize excitation of barotropic

dynamics by baroclinic instabilities. This forcing was

also used by DelSole (2001) in his study of upper-level

tropospheric jet dynamics and in the study of jet for-

mation using S3T dynamics by Farrell and Ioannou

(2003, 2007) and Bakas and Ioannou (2011). This sto-

chastic forcing is spatially homogeneous but not iso-

tropic and will be denoted as nonisotropic forcing

(NIF). The second forcing is an isotropic narrow ring

FIG. 2. Growth rate of the S3T eigenfunction with jet structure

dUn5 sin(ny) as a function of n and « for (a) NIF and for (b) IRFn.

The stability boundary (sr 5 0) is marked with a thick solid line.

For NIF, the instability occurs at n 5 4 and the energy input rate

required for instability is «c5 2.563 1025. For IRFn, the instability

occurs at n 5 5 and the energy input rate required for instability is

«c 5 1.40 3 1025. Parameters are r 5 0.01 and b 5 10.
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forcing (IRFn) concentrated near a single total wave-

number, Kf. This forcing structure has been used exten-

sively in studies of beta-plane turbulence (cf. Vallis and

Maltrud 1993) and was also used in the recent study of

Srinivasan and Young (2012). It was introduced by Lilly

(1969) in order to isolate the inverse cascade from the

forcing in a study of two-dimensional turbulence.1 The

third forcing that we use is an isotropic ring forcing, in

which the forcing is distributed over a wide annular region

in wavenumber space around the central total wave-

number; it is denoted IRFw.

Specification of these stochastic forcing structures are

given in appendix B. Plots of the corresponding power

spectra together with instantaneous realizations both

in vorticity and streamfunction for the three types of

forcing structures are shown in Fig. 1. IRFn is peculiar in

that it primarily excites vortices of scale 1/Kf that are

evident in both the vorticity and streamfunction fields,

while IRFw produces a streamfunction field dominated

by large-scale structure similar to the fields excited by

the other broadband forcings.

5. Stability in S3T of the homogeneous
equilibrium state

The S3T system with homogeneous stochastic forc-

ing and n4 5 0 admits the homogeneous equilibrium

solution:

UE5 0, CE 5 �
N

k

k51

CE
k with CE

k 5
«

2r
Q k , (6)

which has no jets and eddy covariance proportional to

the covariance of the forcing. The linear stability of per-

turbations (dU, dC1, . . . , dCNk
) to (UE,CE) is determined

from the linearized equations:

›tdU52 �
N

k

k51

k

2
vecd[Im(D21

k dCk)]2 rdU , (7a)

›tdCk 5AE
k dCk 1 dCk(A

E
k )

y1 dAkC
E
k 1CE

k (dAk)
y ,

(7b)

withAE
k [Ak(U

E) and dAk 52ik[dU2 (dU)yyD
21
k ]. The

temporal eigenvalues s of these linear equations, which

determine the stability of the equilibrium (UE, CE),

satisfy Eqs. (C2) in appendix C. We obtain the stability

of the homogeneous equilibrium under NIF and IRFn

with r 5 0.01 as a function of the parameter «, which

corresponds to the nondimensional rate of energy in-

jection into the system (cf. appendixB). The growth rates,

FIG. 3. Bifurcation structure comparison for jet formation in

S3T, QL, and NL. Shown is the zmf index of jet equilibria for

(a) NIF and for (b) IRFn as a function of the forcing amplitude «/«c
for the NL simulation (dashed–dotted and circles), theQL simulation

(dashed–dotted), and the corresponding S3Ta simulation (solid).

The bifurcation diagram and the structure of the jet agree in theQL

and S3Ta simulation, but the bifurcation in the NL simulations oc-

curs at «(NL)
c ’ 11«c for NIF and at «(NL)

c ’ 4«c for IRFn. Agreement

betweenNL and S3T predictions is obtained if the S3T is forced with

the spectrum that reflects the modification of the equilibriumNIF or

IRFn spectrum, respectively, by eddy–eddy interactions (the results

of this S3T simulation is indicated as S3Tb; see discussion in section

7). (For IRFn, this spectrum is shown in Fig. 6c.) This figure shows

that the structural stability of jets in NL simulations is captured by

the S3T if account is taken of the nonlinear modification of the

spectrum. Parameters are b 5 10 and r 5 0.01.

1 In the limit that only wavenumber Kf is excited by IRFn, this

forcing would produce no cascade because any sum of Rossby

waves, each of which has the same total wavenumber, is a nonlinear

solution. This observation establishes that the jet formation

mechanism for IRFn is necessarily that of S3T because nonlinearity

other than the QL interaction with the jet, which is retained in S3T,

vanishes. However, in the presence of perturbations with other

wavenumbers, a cascade ensues leading eventually to an equilib-

rium spectrum under IRFn forcing. The dynamics and conse-

quences for the jet formation process of the establishment of this

spectrum are studied in section 7 (cf. Fig. 9).
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sr 5 Re(s), as a function of the meridional wavenumber

n of the zonal-mean flow perturbation and of «, obtained

using the method discussed in appendix C, are shown in

Fig. 2. For both types of forcing, instability occurs for «.
«c and over a band of n. In all cases, the s with greatest

real part has zero imaginary part implying nontranslating

jets have the largest growth rate. In the next section,

predictions of S3T stability analysis for the bifurcation

structure associated with jet formation will be compared

with the corresponding QL and NL simulations. While

QL and NL simulations reveal an apparent bifurca-

tion, they cannot provide theoretical predictions of

this bifurcation.We wish to examine the circumstances

under which the underlying bifurcation structure pre-

dicted theoretically by the S3T stability analysis is re-

flected in the QL and NL simulations.

FIG. 4. Hovm€oller diagrams of jet emergence in NL, QL, and S3T simulations with IRFn at « 5 100«c. Shown is

U(y, t) for the (a) NL, (b) QL, and (c) S3T simulations. (d) The equilibrium jets in the NL (dashed–dotted), QL

(dashed), and S3T (solid) simulations. There is very good agreement between the jet structure in the NL, QL, and

S3T simulations, despite the difference in the zmf index among them (cf. Fig. 3b). Moreover, in all three simulations,

similar jet mergers are observed, leading eventually to final equilibrium jets with smaller meridional wavenumber

than that of the initial instability. Parameters are b 5 10 and r 5 0.01.
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6. Bifurcations predicted by S3T and their
reflection in QL and NL simulations

We examine the counterpart in NL and QL simula-

tions of the S3T structural instability by comparing the

evolution of the domain averaged energy of the zonal

flow, Em(t)5 (LxLy)
21 ÐÐ dx dyU2/2. The amplitude of

the zonal flow is measured, as in Srinivasan and Young

(2012), with the zonal-mean-flow (zmf) index defined as

zmf5Em/(Em 1Ep), where Em is the time-averaged

energy of the zonal-mean flow, Em(t), and Ep is the time

average of the domain-averaged kinetic energy of the

eddies, Ep(t)5 (LxLy)
21 Ð Ð dx dy (u02 1 y02)/2.

Zmf indices are shown as a function of « in Fig. 3a for

NIF forcing and in Fig. 3b for IRFn forcing, both for the

case with r 5 0.01 presented in Fig. 2. The fundamental

qualitative prediction of S3T that jets form as a bifurca-

tion in the strength of the turbulence forcing is verified

in these plots. Agreement in the critical value «c for jet

emergence is also obtained between S3T and QL while

FIG. 5. (a) Hovm€oller diagram showing details of the jet mergers for t# 350 in the S3T simulation in Fig. 4. (b) The amplitude of the jet

maxima marked in (a). Note that only the prograde jets merge. (bottom) The mean potential vorticity gradient as a function of y at the

times indicated by vertical lines in (a). These graphs show that the structure of the jets is configured at each instant to satisfy the Rayleigh–

Kuo stability criterion and that jet mergers are the mechanism in S3T for avoiding inflectional instability. Decrease in the amplitude of the

jets prior to merger indicates increased downgradient vorticity fluxes as the flow approaches hydrodynamic neutrality.

MAY 2014 CONSTANT INOU ET AL . 1825



this parameter value is substantially larger in NL. For

example, jets emerge in the NL simulations at «(NL)
c ’

11«c under NIF forcing and at «(NL)
c ’ 4«c under IRFn.

Similar behavior was noted by Srinivasan and Young

(2012). The reason for this difference will be explained in

section 7.

S3T dynamics not only predicts the emergence of

zonal jets as a bifurcation in turbulence forcing, but also

FIG. 6. (a)–(d) Equilibrium enstrophy spectrum log(hj~zk‘j2i) of NL simulations, in which eddy–eddy interactions

are included and the k 5 0 component is excluded, for various damping rates. The example is for IRFn at « 5 2«c.

Shown are spectra for (a) r5 1, (b) r5 0.1, and (c) r5 0.01. The «c value is a function of r and is obtained fromS3T for

each value of r. All spectra have been normalized. (d) The equilibrium spectrum of the S3T (identical to QL), which

shows that for strong damping, the spectrum in NL simulations is close to the S3T spectrum while for weak damping,

the equilibrium spectrum in NL differs substantially from that in S3T. In all cases, b 5 10. (e) S3T growth rates as

a function of n for the nonlinearly modified spectrum shown in (c) (r5 0.01). Shown are cases for «5 2«c, 2.8«c, and

10«c. It can be seen that S3T analysis forced by this spectrum predicts that jets should emerge at «5 2.8«c with n5 6.

S3T predictions are verified in NL as shown in the bifurcation diagram in Fig. 3b (denoted as S3Tb).
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predicts the structure of the finite amplitude jets that

result from equilibration of the initial jet formation in-

stability. These finite-amplitude jets correspond to fixed

points of the S3T dynamics. An example for IRFn

strongly forced with «5 100«c and with damping r5 0.01

is shown inFig. 4. This example demonstrates the essential

similarity among the jets in NL, QL, and S3T simulations.

Under strong turbulence forcing, the initial S3T jet

formation instability typically reaches final equilibrium

as a finite-amplitude jet at a wavenumber smaller than

that of the initial instability. An example is the case of

IRFn at «5 100«c shown in Fig. 4. In this example, the

jets emerge in S3T initially with n 5 10, which is in

agreement with the prediction of the S3T instability of

the homogeneous equilibrium, but eventually equilibrate

at n 5 3 following a series of jet mergers, as seen in the

Hovm€oller diagram. Similar dynamics are evident in the

NL and QL simulations. This behavior can be rational-

ized by noting that if the wavenumber of the jet remains

fixed, then as jet amplitude continues to increase under

strong turbulence forcing, violation of the Rayleigh–Kuo

stability criterionwould necessarily occur. By transitioning

to a lower wavenumber, the flow is able to forestall this

occurrence of inflectional instability. However, detailed

analysis of the S3T stability of the finite-amplitude equi-

libria near the point of jet merger reveals that these

mergers coincide with the inception of a structural in-

stability associated with eddy–mean flow interaction,

which precedes the occurrence of hydrodynamic in-

stability of the jet (Farrell and Ioannou 2003, 2007).2

FIG. 7. Hovm€oller diagrams ofU(y, t) comparing (a) jet emergence and equilibration in anNL simulation under IRFn

with (b) an S3T simulation under S3Tb forcing. (c) The corresponding time-mean jets, which show that the S3Tb

modification of the forcing spectrumsuffices to obtain agreementwithNL. Parameters are «5 10«c,b5 10, and r5 0.01.

2 Jet mergers occur in the Ginzburg–Landau equations that

govern the dynamics of the S3T instability of the homogeneous

equilibrium state for parameter values for which the system is close

to marginal stability (Parker and Krommes 2014). However, these

mergers in the Ginzburg–Landau equations are associated with

equilibration of the Eckhaus instability rather than equilibration of

the inflectional instability associated with violation of the Rayleigh–

Kuo criterion, as is the case for mergers of finite-amplitude jets

(cf. Fig. 5). Characteristic of this difference is that in the case of the

Ginzburg–Landau equations, both the prograde and retrograde

jets merge, while in the case of the finite-amplitude jets, only the

prograde jets merge. The same phenomenology as in the Ginzburg–

Landau equations occurs in the case of the Cahn–Hilliard equations

that govern the dynamics of marginally stable jets in the modula-

tional instability study of Manfroi and Young (1999).
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7. Influence of the turbulence spectrum on the S3T
jet formation instability

Both QL and S3T dynamics exclude interactions

among eddies and include only the nonlocal interac-

tions between jets, with k 5 0, and eddies, with k 6¼ 0.

Therefore, there is no enstrophy or energy cascade in

wavenumber space in either QL or S3T dynamics and

the homogeneous S3T equilibrium state [Eq. (6)] has

spectrum « ~Qk‘/(2r), which is determined by the spec-

trum of the forcing ( ~Qk‘ is the spectral power of the

forcing covariance; cf. appendix B). However, this is

not true in NL, which includes eddy–eddy interactions

producing enstrophy/energy cascades. For example, in

FIG. 8. Hovm€oller diagrams of jet emergence inNL,QL, and S3T simulations with IRFn at «5 2«c. Shown isU(y, t)

for the (a) NL, (c) QL, and (e) S3T simulations and characteristic snapshots of streamfunction fields at t 5 2000

for the (b) NL and (d)QL simulations. Notice that in (a), the color axis is scaled differently. (f) The equilibrium jets in

the NL (dashed–dotted), QL (dashed), and S3T (solid) simulation. At « 5 2«c in the NL simulation, no jets emerge

but accumulation of energy in (1, 7) nonzonal structures with k5 1 and ‘5 7 is discernible. Parameters areb5 10 and

r 5 0.01.
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NL an isotropic ring forcing is spread as time prog-

resses, becoming concentrated at lower wavenumbers

and forming the characteristic dumbbell shape seen in

beta-plane turbulence simulations (cf. Vallis andMaltrud

1993), and consequently the homogeneous turbulent

state is no longer characterized by the spectrum of the

forcing. We can take account of this modification of the

spectrum by performing S3T stability on the homoge-

neous state under the equivalent forcing covariance,

~Q
NL
k‘ 5

2r

«
hj~zk‘j2i , (8)

FIG. 9. (a)–(f) Evolution of hj~zk‘j2i forNLwith IRFn at «5 2«c. (g)Growth rates as a function of n predicted by S3T

analysis performed on the instantaneous spectrum at the times indicated in (a)–(f). The evolving spectrum renders

the NL simulation S3T unstable at t ’ 20 and stabilizes it again at t ’ 120. Parameters are b 5 10 and r 5 0.01.
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which maintains the observed NL spectrum hj~zk‘j2i in the
S3T dynamics. The NL modified eddy vorticity spec-

trum, hj~zk‘j2i, is obtained from an ensemble of NL

simulations. Plots of hj~zk‘j2i under IRFn are shown in

Figs. 6a–c for various « and r values. The departure of

the NL spectra from the spectra of the QL and S3T

equilibria is evident and this departure depends on the

amplitude of « and r.

We now demonstrate that while the fundamental

qualitative prediction of S3T that jets form as a

bifurcation in turbulence forcing and in the absence of

turbulent cascades is verified in both QL and NL, a

necessary condition for obtaining quantitative agree-

ment between NL and both S3T and QL dynamics

is that the equilibrium spectrum used in the S3T and

QL dynamics be close to the equilibrium spectrum

obtained in NL so that the stability analysis is per-

formed on similar states. In the case with IRFn and r5
0.01, formation of persistent finite-amplitude zonal jets

occurs in the NL simulations at «5 2:8«c (cf. Fig. 3b). In

agreement, S3T stability analysis on the NL modified

equilibrium IRFn spectrum (denoted S3Tb and shown

in Fig. 6c) predicts instability for «$ 2.8«c (cf. Fig. 6e).

Moreover, S3T stability analysis with the S3Tb spec-

trum predicts jet formation at n 5 6 and in agreement

with this prediction, jets emerge in NL with n 5 6.

Hovm€oller diagrams demonstrating similar jet evolu-

tion in NL under IRFn and in S3T under S3Tb forcing

are shown in Fig. 7. We also note that agreement be-

tween NL and S3T in predictions of jet amplitude at

large supercriticality is also obtained by using the S3Tb

spectrum (cf. Fig. 3).3

This influence of the eddy spectrum on jet dynamics is

revealed in the case of IRFn at «5 2«c, which is shown in

FIG. 10. The statistical equilibrium enstrophy spectrum log(hj~zk‘j2i) for NL and QL simulations under IRFn at

(a),(b) « 5 2«c and (c),(d) « 5 10«c. For « 5 2«c, the NL simulations do not support zonal jets and energy is seen to

accumulate in the nonzonal structure (jkj, j‘j)5 (1, 7) (cf. Fig. 8). At «5 10«c, persistent zonal jets emerge (cf. Fig. 7),

suppressing the power in the nonzonal structures. Parameters are b 5 10 and r 5 0.01.

3 The spectral peaks near the ‘ axis do not directly influence the

stability of the NL modified spectrum, which is determined by the

distorted and broadened ring spectrum. However, while the spec-

tral peaks do not influence the stability directly, they do influence it

indirectly by distorting the incoherent spectrum.
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Fig. 8. Although, at this energy input rate, S3T under

IRFn is structurally unstable, no jets emerge in NL. We

have shown that agreement in bifurcation structure is

obtained between NL and S3T when S3T analysis is

performed with the S3Tb spectrum. We now examine

the development of the NL spectrum toward S3Tb and

demonstrate the close control exerted by this evolving

spectrum on S3T stability. The evolving spectrum,

shown in Figs. 9a–f, is obtained using an ensemble of

NL simulations, each starting from a state of rest and

evolving under a different forcing realization. A se-

quence of S3T analyses performed on this evolving

ensemble spectrum is shown in Fig. 9g. The weak NL

ensemble spectrum at t5 1 does not support instability,

but by t 5 20, the ensemble spectrum, having assumed

the isotropic ring structure of the forcing, becomes S3T

unstable. This structural instability results in the for-

mation of an incipient n 5 6 jet structure, which is ev-

ident by t5 50 in the NL simulation shown in Fig. 8. As

the spectrum further evolves, the S3T growth rates

decrease and no jet structure is unstable for t . 120, and

decay rates continue to increase until t5 250 (cf. Fig. 9g).

This example demonstrates the tight control on S3T sta-

bility exerted by the spectrum. Furthermore, it shows the

close association between S3T instability and the emer-

gence of jet structure in NL.

FIG. 11. Hovm€oller diagrams of the nonzonal structures supported in the NL simulation in

Fig. 8. (a) Evolution of the total perturbation streamfunction, c(x, y 5 y0, t), at latitude y0 5
p/4. (b) Evolution of the dominant (jkj, j‘j)5 (1, 7) structure of c(x, y5 y0, t) at latitude y0 5
p/4. Almost half of the energy input to the system is captured and dissipated by this mode,

which is phase coherent and propagates at the Rossby wave speed indicated by the white

dashed line. (c) Evolution of the (jkj, j‘j) 5 (3, 6) structure at the same latitude. While this

structure propagates at theRossbywave speed, it is not phase coherent. Parameters are IRFn at

« 5 2«c, b 5 10, and r 5 0.01.
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8. Influence of nonzonal structures predicted by
S3T on the turbulence spectrum and on jet
dynamics

Despite S3T supercriticality, no persistent jets emerge

in NL simulations with IRFn in the interval «c , « ,
2.8«c (cf. Fig. 3b). Comparisons of NL, QL, and S3T

simulations with IRFn forcing at « 5 2«c are shown in

Fig. 8. Instead of zonal jets, in the NL simulation,

prominent nonzonal structures are seen to propagate

westward at the Rossby wave phase speed. These non-

zonal structures are also evident in the concentration of

power in the enstrophy spectrum at (jkj, j‘j)5 (1, 7) (cf.

Figs. 10a and 10b). At this forcing amplitude, these

structures are essentially linear Rossby waves that, if

stochastically forced, would be coherent only over the

dissipation time scale 1/r. Coherence on the dissipation

time scale is observed in the subdominant part of the

spectrum as seen in the case of the (3, 6) structure in

Fig. 11c. However, the dominant (1, 7) structure remains

coherent over time periods far exceeding the dissipation

time scale (cf. Hovm€oller diagram in Fig. 11b). This case

represents a regime in which the flow is dominated by

a single nonzonal structure. Both the concentration of

power in and the coherence of this structure will be ad-

dressed below.

When the forcing is increased to « 5 10«c, a (0, 6) jet

structure emerges, suppresses the nonzonal (1, 7) struc-

ture, and becomes the dominant structure. A prominent

phase-coherent nonzonal (1, 5) structure propagating

with the Rossby wave speed is also present, as shown in

Fig. 12a. A similar regime of coexisting jets and nonzonal

structures is also evident at higher supercriticalities. An

example is the case of the equilibrium state at « 5 100«c
(cf. Fig. 4) in which the energy of the flow is shared be-

tween the (0, 3) jet and the (1, 3) structure, as shown in

Fig. 12b. At this forcing level, the (1, 3) structure is not

phase coherent, but its phase speed is still given by the

Rossby wave speed. At even higher forcing, similar

nonzonal structures, referred to as zonons, have been

reported to coexist with zonal jets while propagating

phase incoherently at speeds that differ substantially

from the Rossby wave speed (Sukoriansky et al. 2008).

These cases provide examples of the regime in which

jets and nonzonal structures coexist.

To study the dynamics of nonzonal structures within

the framework of S3T, a different interpretation of the

ensemble mean in the S3T formulation is required: in-

stead of interpreting the ensemblemeans as zonal means,

interpret them rather as Reynolds averages over an in-

termediate time scale (Bernstein 2009; Bernstein and

Farrell 2010; Bakas and Ioannou 2013a, 2014). Analysis

of S3T stability of the homogeneous equilibrium state

using this broader interpretation (cf. appendix D) reveals

that when the energy input rate reaches the value «c,

which is the S3T stability threshold for the emergence of

zonal jets, the state may already be unstable to nonzonal

structures. This can be seen in the stability analysis shown

in Fig. 13, which reveals that the maximum growth rate

occurs at wavenumbers corresponding to nonzonal struc-

tures. In agreement with this stability analysis, the spec-

trum of the NL simulation shows concentration of power

in these most S3T unstable wavenumbers (cf. Fig. 10).

The dominance and persistence of the structures seen

in these NL simulations can be understood from this

stability analysis and its extension into the nonlinear

regime. Because the stochastic forcing is white in time,

the energy injection rate is fixed and state independent

and, assuming linear damping at rate r dominates the

dissipation, the total flow energy assumes the fixed and

state-independentmean valueEm1Ep5 «/(2r).At finite

amplitude, the set of S3T unstable structures equili-

brate to allocate among themselves most of this energy,

which results in the dominance of a small subset of these

structures. However, we find that in this competition,

a specific zonal jet structure has primacy so that even if

this structure is not the most linearly unstable, it emerges

as the dominant structure.

An attractive means for exploring the dynamics of the

interaction between jets and nonzonal structures is

changing the jet damping rate in Eq. (2a) from r to rm
and allowing it to assume values different from r in

Eq. (2b). In this way, we can control the relative stability

of jets and nonzonal structures, as well as the finite

FIG. 12. (a) Evolution of the mean-flow energy Em, which is

concentrated at (0, 6), the total eddy energy Ep, and the energy of

the (1, 5), (1, 6), and (1, 7) structures for the NL simulation with

IRFn at «5 10«c, shown in Fig. 7. (b) Evolution of Em, Ep, and the

energy of the (1, 3), (1, 5), and (1, 6) structures for the NL simu-

lation with IRFn at « 5 100«c, shown in Fig. 4. The mean-flow

energy is concentrated at (0, 3). In both panels, the evolution of the

energies is shown after statistical steady state has been reached.
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equilibrium amplitude reached by the jet. This asym-

metric damping may be regarded as a model for ap-

proximating jet dynamics in a baroclinic flow in which

the upper-level jet is lightly damped, while the active

baroclinic turbulence generating scales are strongly

Ekman damped. This asymmetry in the damping be-

tween upper and lower levels contributes to making jets

in baroclinic turbulence generally stronger than jets in

barotropic turbulence (Farrell and Ioannou 2007, 2008).

By appropriate choice of r and rm, a regime can be ob-

tained in which the zonal jet instability appears first as «

increases. Because once jets are unstable they dominate

nonzonal structures, in this regime zonal jets are the

dominant coherent structure and S3T analysis based on

the zonal interpretation of the ensemble mean produces

very good agreement with NL. For example, a compar-

ison of bifurcation structures among S3T, QL, and NL

under NIF and IRFn using the asymmetric damping r5
0.1 and rm 5 0.01 demonstrates that jets emerge at the

same critical value in S3T, QL, and NL (cf. Figs. 14a and

14b). This agreement, which has been obtained by

asymmetric damping, induced suppression of the non-

zonal instability up to «c, implies that in the simulations

with symmetric damping the difference between the S3T

prediction for « required for the first emergence of jets

and the value of « obtained for first jet appearance in NL

(cf. Fig. 3) can be attributed to modification of the

background spectrum by the prior emergence of the

nonzonal structures predicted by S3T. Once unstable,

zonal structures immediately dominate nonzonal struc-

tures, which explains why S3T dynamics based on the

zonal-mean interpretation of the ensemble mean pro-

duces accurate results for parameter values for which

zonal jets are the first instability to occur.

A comparison of the development of jets in S3T, QL,

and NL with this asymmetric damping and NIF forcing,

shown in Fig. 15, demonstrates the accuracy of the S3T

predictions. S3T analysis predicts that in this case with

NIF forcing maximum instability occurs at n5 6. When

these maximally growing eigenfunctions are introduced

FIG. 13. Growth rate of the S3T nonzonal eigenfunction ei(mx1ny) as a function of zonal

wavenumberm andmeridional wavenumber n for IRFn at (a) «5 0.75«c and (b) «5 2«c. Here,

«c is the critical energy input rate for the emergence of jets. The values at the axis (0, n) give the

growth rate of the corresponding jet perturbation. For «5 0.75«c, them5 0 jet eigenfunctions

are stable, but the nonzonal perturbations are unstable, with maximum instability occurring at

(m, n) 5 (2, 8). For « 5 2«c, the m 5 0 perturbations are unstable but the nonzonal pertur-

bations are more strongly unstable, withmaximum growth at (m, n)5 (2, 8) and (m, n)5 (1, 7).

An NL simulation at « 5 2«c accumulated energy at (jkj, j‘j) 5 (1, 7) (cf. Fig. 10) while the

vorticity field showed some accumulation at (jkj, j‘j)5 (2, 8) (cf. Fig. 9f). The stability boundary

(sr 5 0) is marked with a thick solid line. For both panels, b 5 10 and r 5 0.01.
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in the S3T system, the jets grow exponentially at first at

the predicted rate and then equilibrate. Corresponding

simulations with the QL and NL dynamics reveal nearly

identical jet growth followed by finite-amplitude equil-

ibration (shown in Fig. 15). Similar results are obtained

with IRFn. This demonstrates that the S3T dynamics

comprises both the jet instability mechanism and the

mechanism of finite-amplitude equilibration.

Although no theoretical prediction of this bifurcation

behavior can bemade directly fromNL orQL, they both

reveal the bifurcation structure obtained from the S3T

analysis. By suppressing the peripheral complexity of

nonzonal structure formation by nonzonal S3T in-

stabilities, these simulations allow construction of a sim-

plemodel example that provides compelling evidence for

identifying jet formation and equilibration inNLwith the

S3T theoretical framework.Moreover, agreement among

the NL, QL, and S3T bifurcation diagrams shown in Figs.

14a and 14b provides convincing evidence that turbulent

cascades, which are absent in S3T orQL, are not required

for jet formation.

While under NIF agreement between NL and S3T,

equilibrium jet amplitudes extends to all values of «, under

IRFn, the NL and S3T equilibrium amplitudes diverge at

larger values of « (cf. Figs. 14a and 14b). This difference

betweenNLandQL-S3T at large « cannot be attributed to

nonlinear modification of the spectrum, which is ac-

counted for by use of the S3Tb spectrum (cf. S3Tb re-

sponse in Fig. 14b). Rather, this difference is primarily due

to nonlinear eddy–eddy interactions retained in NL that

disrupt the upgradient momentum transfer. This disrup-

tion is accentuated by the peculiar efficiency with which

IRFn gives rise to vortices, as can be seen in Figs. 1d–f. The

more physical distributed forcing structures do not share

this property (cf. Fig. 1).We verify that IRFn is responsible

for depressing NL equilibrium jet strength at high super-

criticality by broadening the forcing distribution to assume

the form IRFw (cf. appendix B, as well as Fig. 1 for IRFn–

IRFw comparison). Using IRFw while retaining other

parameters as in Fig. 14b, we obtain agreement between

S3T, QL, and NL simulations, as is shown in Fig. 14c.

9. Identification of intermittent jets with stable S3T
zonal eigenfunctions

For subcritical forcing, S3T predicts a stable homoge-

neous statistical equilibrium and a set of eigenfunctions

that govern the decay of perturbations to this equilib-

rium. We wish to show that these eigenfunctions are ex-

cited in NL by fluctuations in the turbulence and that this

excitation gives rise in NL simulations to the formation of

intermittent jets with the form of these eigenfunctions.

FIG. 14. Bifurcation structure comparison for jet formation in

S3T, QL, and NL with asymmetric damping. Shown is the zmf in-

dex of jet equilibria for (a) NIF, (b) IRFn, and (c) IRFw as

a function of the forcing amplitude «/«c for the NL simulation

(dashed–dotted and circles), the QL simulation (dashed–dotted),

and the corresponding S3Ta simulation (solid and diamonds). Also

shown in (b) is the zmf index that is obtained from S3T simulations

forced with the nonlinearly modified S3Tb spectrum (calculated

from ensemble NL simulations at «5 20«c). Parameters are b5 10,

r 5 0.1, and rm 5 0.01.
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As an example, consider the simulation with asym-

metric damping and IRFn subcritical forcing shown in

Fig. 16. For these parameters, the least damped eigen-

functions are zonal jets, and confirmation that the in-

termittent jets inNL, shown in Fig. 16a, are consistent with

turbulence fluctuations exciting the S3T damped modes

is given in Fig. 16c, where the intermittent jets re-

sulting from stochastic forcing of the S3T modes them-

selves are shown. This diagram was obtained by plotting

U(y, t)5 Re[�N
n51an(t)e

iny], with an independent red

noise processes, associated with the damping rates

js(n)j of the first N 5 15 least damped S3T modes.

These an are obtained from the Langevin equation,

dan/dt 5 s(n)an 1 j(t), where j(t) is a d-correlated

complex valued random variable.

The fluctuation-free S3T simulations reveal a persis-

tent jet structure only coincident with the inception of

the S3T instability, which occurs only for supercritical

FIG. 15. Hovm€oller diagrams of jet emergence in the NL, QL, and S3T simulations for NIF at « 5 1.5«c with

asymmetric damping. Shown is U(y, t) for the (a) NL, (c) QL, and (e) S3T simulations and also characteristic

snapshots of the vorticity fields at t5 2000 for (b) NL and (d) QL simulations. (f) Also shown are the equilibrium jets

in the NL (dashed–dotted), QL (dashed), and S3T (solid) simulation. This figure shows that S3T predicts the

structure, growth, and equilibration of weakly forced jets in both the QL and NL simulations. Parameters are b5 10,

r 5 0.1, and rm 5 0.01.
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forcing. However, in QL and NL simulations, fluctua-

tions excite the damped manifold of modes predicted by

the S3T analysis to exist at subcritical forcing amplitudes.

This observation confirms the reality of the manifold of

S3T stable modes.

In NL and QL simulations, these stable modes pre-

dicted by S3T are increasingly excited as the critical

bifurcation point in parameter space is approached,

because their damping rate vanishes at the bifurcation.

The associated increase in zonal-mean-flow energy on

approach to the bifurcation point obscures the exact

location of the bifurcation point in NL and QL simula-

tions compared to the fluctuation-free S3T simulations

for which the bifurcation is exactly coincident with the

inception of the S3T instability (i.e., Fig. 14).

10. Verification in NL of the multiple jet equilibria
predicted by S3T

As is commonly found in nonlinear systems, the finite-

amplitude equilibria predicted by S3T are not necessarily

unique and multiple equilibria can occur for the same

parameters. S3T provides a theoretical framework for

studying these multiple equilibria, their stability, and bi-

furcation structure. An example of two such S3T equi-

libria is shown inFig. 17 togetherwith their associatedNL

simulations. As the parameters change, these equilibria

may cease to exist or become S3T unstable. Similar

multiple equilibria have been found in S3T studies of

barotropic beta-plane turbulence (Farrell and Ioannou

2003, 2007; Parker and Krommes 2014) and in S3T

studies of baroclinic turbulence (Farrell and Ioannou

2008, 2009c), and the hypothesis has been advanced

that the existence of such multiple jet equilibria may

underlie the abrupt transitions found in the record of

Earth’s climate (Farrell and Ioannou 2003; Wunsch

2003).

11. Conclusions

In this work, predictions of S3T for jet formation and

equilibration in barotropic beta-plane turbulence were

critically compared with results obtained using QL and

NL simulations. The qualitative bifurcation structure

predicted by S3T for emergence of zonal jets from a ho-

mogeneous turbulent state was confirmed by both the

QL and NL simulations. Moreover, the finite-amplitude

equilibrium jets in NL andQL simulations were found to

be as predicted by the fixed-point solutions of S3T. Dif-

ferences in jet formation bifurcation parameter values

between NL and QL–S3T were reconciled by taking ac-

count of the fact that the spectrum of turbulence is sub-

stantially modified in NL. Remarkably, the modification

of the spectrum in NL could be traced in large part to the

emergence of nonzonal structures through S3T insta-

bility. When account is taken of the modification of the

turbulent spectrum resulting substantially from these

nonzonal structures, S3T also provides quantitative

agreement with the threshold values for the emergence

of jets in NL. The influence of the background eddy

spectrum on the S3T dynamics was found to be im-

mediate, in the sense that in spinup simulations, jets

emerge in accordance with the instability calculated on

the temporally developing spectrum. The fact that jets

are prominent in observations is consistent with the

robust result that when a jet structure emerges, it has

primacy over the nonzonal structures, so that even if

the jet eigenfunction is not the most linearly S3T un-

stable eigenfunction, the jet still emerges at finite am-

plitude as the dominant structure.

These results confirm that jet emergence and equili-

bration in barotropic beta-plane turbulence results from

the cooperative quasi-linear mean flow–eddy instability

that is predicted by S3T. These results also establish that

FIG. 16. Hovm€oller diagrams of intermittent jet structure in NL

and QL simulations at subcritical forcing « 5 0.8«c. Shown are

U(y, t) for (a) NL and (b) QL simulations, and (c) the U(y, t) that

results from random excitation of the S3T damped modes. These

plots were obtained using IRFn with r 5 0.1 and rm 5 0.01. This

figure shows that the manifold of S3T damped modes are revealed

by being excited in the fluctuating NL and QL simulations. Plan-

etary vorticity gradient is b 5 10.
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turbulent cascades are not required for the formation

of zonal jets in beta-plane turbulence. Moreover, the

physical reality of the manifold of stable modes arising

from cooperative interaction between incoherent tur-

bulence and coherent jets, which is predicted by S3T,

was verified in this work by relating observations of in-

termittent jets in NL and QL to stochastic excitation by

the turbulence of this manifold of stable S3T modes.

S3T provides an autonomous, deterministic nonlinear

closure of turbulence dynamics at second order that

provides an attractive vehicle for further investigation of

the dynamics of turbulent flows.
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APPENDIX A

Numerical Details and Parameters

Both the nonlinear (NL) simulations of Eq. (1) and

the quasi-linear (QL) simulations of Eqs. (3) were

carried out with a pseudospectral Fourier code. The

maximum resolved wavenumbers were kmax 5 Nx/2

and ‘max 5 Ny/2 and the maximum resolved total

wavenumber was Kmax 5 (k2max 1 ‘2max)
1/2. For the time

integration, a fourth-order Runge–Kutta method (RK4)

was used together with a Godunov step for integrating

FIG. 17. Realizations in NL simulations of multiple equilibria predicted by S3T. Shown are Hovm€oller diagrams of

NL simulations representing the equilibrium with (a) four jets and (c) five jets. (b),(d) Also shown is comparison of

the S3T equilibrium jets (solid), with the average jets obtained from the NL simulation (dashed) for the two equi-

libria. Parameters are NIF forcing at « 5 10«c, r 5 0.1, rm 5 0.01, and b 5 10.
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the stochastic forcing. In all calculations, hyperviscos-

ity was added for numerical stability with coefficient

n4 5 0:5/(K4
maxdt), where dt is the time step. In all cal-

culations, dt 5 2.5 3 1023 and Nx 5 Ny 5 256, which

imply n4 5 1.86 3 1027.

APPENDIX B

The Stochastic Forcing Structure and Its Associated
Power Spectrum

The stochastic forcing at point (xi, yj) is

F(xi, yj, t)5Re

2
4 �

N
k

k51
�
N

y

p51

(Fk)jpjkp(t)e
ikx

i

3
5 , (B1)

in which jkp values are temporally d correlated and in-

dependent and satisfy hjkp(t)i 5 0, hjkp(t)jmn
* (t0)i5

dkmdpnd(t2 t0). The stochastic forcing is correlated in y

by the columns of the matrix Fk. For the nonisotropic

forcing (NIF), this meridional structure, in a periodic

domain with period 2p in y, is specified by

[Fk]jp5 ckfexp[2(yj2 yp)
2/(2s2)]

1 exp[2(yj2 2p2 yp)
2/(2s2)]

1 exp[2(yj1 2p2 yp)
2/(2s2)]g . (B2)

We choose s5 0:2/
ffiffiffi
2

p
and force zonal components k 5

1, . . . , 14 . Because the stochastic forcing is d correlated

in time, the energy input rate, given by

E52

ð
dx

Lx

dy

Ly

c0F5 �
N

k

k51

2
1

4Ny

Tr(D21
k FkF

y
k) , (B3)

does not depend on the state of the system and can be

independently specified. The normalization constant ck
in Eq. (B2) is chosen so that each k is excited equally and

one unit of energy is injected in total. It follows that the

total energy input rate in theNL,QL, or S3T simulations

is given by «.

The isotropic ring forcing is specified by

[Fk]jp 5 cwkp(K)ei‘(p)yj , (B4)

with ‘(p) 5 (p 2 1) 2 Ny/2 and K5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 ‘2

p
. Meridi-

onal wavenumber ‘ extends from 2Ny/2 to Ny/2 2 1

because only these wavenumbers are resolved when Ny

points in the meridional direction are retained (for

Ny even). For IRFn, wkp 5 1 for jK 2 Kf j # dkf and

wkp 5 0 otherwise, with Kf 5 14 and dkf 5 1. For

IRFw, wkp 5 c exp[2(K2Kf )
2/(2dk2f )] with Kf 5 14

and dkf 5 8/
ffiffiffi
2

p
. The normalization constant c is chosen

for both cases so that the total energy input rate is

unity. IRFn and IRFw are both spatially homoge-

neous and nearly isotropic in a finite doubly periodic

domain. They approach exact isotropy as the domain

size increases.

The spatial covariance of the forcing,Q(xa, xb, ya, yb)5
hF(xa, ya, t) F(xb, yb, t)i, being homogeneous in both x

and y, depends only on xa 2 xb and ya 2 yb and has

Fourier expansion

Q(xa2 xb, ya2 yb)5Re

0
@ �

N
k

k51
�

N
y
/221

‘52N
y
/2

Q̂k‘ expfi[k(xa2 xb)1 ‘(ya2 yb)]g
1
A . (B5)

The Q̂k‘ values are the spatial power spectrum of

the stochastic forcing. Fourier coefficients of the

forcing covariance for only positive values of zonal

wavenumbers k [cf. Eq. (B5)], can be related to

Fourier expansions in both positive and negative zonal

wavenumbers,

Q(xa2 xb, ya2 yb)5 �
N

k

k52Nk
k 6¼0

�
N

y
/221

‘52N
y
/2

~Qk‘ expfi[k(xa 2 xb)1 ‘(ya2 yb)]g , (B6)

through ~Qk,‘ 5 Q̂k,‘/2 and ~Q2k,‘ 5 Q̂k,2‘/2 for k . 0. In

the derivation of these relations, the symmetry of the

forcing covariance under exchange of the two points is

used.
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APPENDIX C

Determining the S3T Stability of the Homogeneous
State

Equation (7) determines the S3T stability of the

equilibrium state. Because of the presence of the imag-

inary part in Eq. (7a), in order to proceed with eigen-

analysis of this system, we need to treat the real and

imaginary parts of the covariances as independent var-

iables. Writing the covariances as dCk 5 dCk,R 1 idCk,I

and CE
k 5CE

k,R 1 iCE
k,I , and the operators as dAk 5

2ik[dU2 (dU)yyD
21
k ]5 idAk,I and AE

k 5AE
k,R 1 iAE

k,I , we

obtain the real coefficient system:

›tdU5 �
N

k

k51

1

2
vecd(2kD21

k dCk,I)2 rmdU , (C1a)

›tdCR5AE
RdCR 1 dCR(A

E
R)

T 2AE
I dCI

1 dCI(A
E
I )

T 2 dAIC
E
I 1CE

I dA
T
I , (C1b)

›tdCI 5AE
I dCR 2 dCR(A

E
I )

T 1AE
RdCI

1 dCI(A
E
R)

T 1 dAIC
E
R 2CE

RdA
T
I , (C1c)

in which the subscript k in all the variables in Eqs. (C1b)

and (C1c) has been omitted. In Eqs. (C1), the coefficient

of linear damping of the mean flow rm may differ from

the coefficient of linear damping of the nonzonal per-

turbations r (cf. section 8). The asymptotic stability of

Eqs. (C1) is determined by assuming solutions of the

form (dÛ, dĈk,R, dĈk,I)e
st for k5 1, . . . ,Nk, with dAk,I 5

dÂk,Ie
st and by determining the eigenvalues s and the

eigenfunctions of the system:

sdÛ5 �
N

k

k51

1

2
vecd(2kD21

k dĈk,I)2 rmdÛ , (C2a)

sdĈR 5AE
RdĈR1 dĈR(A

E
R)

T 2AE
I dĈI

1 dĈI(A
E
I )

T 2 dÂIC
E
I 1CE

I dÂ
T
I , (C2b)

sdĈI 5AE
I dĈR2 dĈR(A

E
I )

T 1AE
RdĈI

1 dĈI(A
E
R)

T 1 dÂIC
E
R 2CE

RdÂ
T
I . (C2c)

In most cases, direct eigenanalysis of this system is com-

putationally prohibitive because it involves eigenanalysis

of matrices of dimension (2NkN
2
y 1Ny)3 (2NkN

2
y 1Ny)

if Ny grid points are used to approximate the functions

andNk zonal wavenumbers are forced. In this section, we

describe an efficient iterative method that can produce

solutions to this stability problem for large Ny. The

method is a generalization of the adiabatic approximation

used in earlier studies (Farrell and Ioannou 2003, 2007;

Bakas and Ioannou 2011).

When Eqs. (C2) have eigenvalues with Re(s). 0, the

equilibrium is S3T unstable. When s is complex the

eigenfunctions dÛ, dĈk,R, dĈk,I , and dÂk,I will be com-

plex. Realizable, Hermitian solutions can then be formed

by superposing the complex conjugate eigenfunction.

Note that the covariances are required to be Hermitian

but need not be positive definite [for a discussion of ei-

genvalue problems involving covariances, cf. Farrell and

Ioannou (2002)].

Because of the periodic boundary conditions, the

mean-flow eigenfunctions dÛ are, in general, a super-

position of harmonics. However, here we are treating

the stability of the homogeneous equilibrium and the

eigenfunctions can be shown to be single harmonics,

dÛn 5 einy, and Eq. (C2a) becomes

seiny 5 �
N

k

k51

1

2
vecd(2kD21

k dĈk,I)2 rme
iny . (C3)

The number of unstable jets, if the equilibrium is un-

stable, is n. Equation (C3) can be regarded as an equation

for s given that dĈk,I satisfies the coupled Eqs. (C2b) and

(C2c) and is therefore a function of s and n. Having

transformedEq. (C3) into an equation for s for a given n,

the eigenvalues can be determined by iteration.

It is advantageous to solveEqs. (C2b) and (C2c) for the

variables d¡̂k,P 5 dĈk,R 1 idĈk,I , d¡̂k,M 5 dĈk,R 2 idĈk,I ,

which satisfy the decoupled Sylvester equations:

05 (AE 2sI)d¡̂k,P 1 d¡̂k,P(A
E)y

1 (idÂn,I)C
E1CE(2idÂ

n,I
T ), (C4a)

05 [(AE)*2sI]d¡̂k,M 1 d¡̂k,M[(AE)*]y

1 (2idÂn,I)(C
E)*1 (CE)*(idÂ

n,I
T ). (C4b)

(Note that if the eigenvectors dĈk,R and dĈk,I are com-

plex, despite the notation, then Re(d¡̂k,P) 6¼ dĈk,R and

Im(d¡̂k,P) 6¼ dĈk,I .)

APPENDIX D

Determining the S3T Stability of the Homogeneous
State to Nonzonal Perturbations

The S3T stability of a homogeneous background state

to nonzonal perturbations of the form estei(mx1ny), in

which m is the zonal wavenumber of the perturbations

and n is the meridional wavenumber of perturbations,

is determined by the eigenvalues s that solve for each

(m, n) the equation
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s1 rmdm01 r(12 dm0)2 imb/N2 5 �
k
�
‘

2(nk2m‘)[mn(k21 2 ‘21)2 (m22 n2)k1‘1](K
2/N22 1)

(s1 2r)K4K2
s 1 2ibk1(k1m1 ‘1n)K

22 imbK2(K21K2
s )/2

« ~Qk‘

2r
.

(D1)

In the above equation, N2 5 m2 1 n2, K2 5 k2 1 ‘2,

K2
s 5 (k1m)2 1 (‘1 n)2, k15 k1m/2, ‘15 ‘1 n/2, dij

is Kronecker’s delta, and ~Qk‘ values are the Fourier

coefficients of the forcing covariance as defined in Eq.

(B6). This form of the equation is appropriate for

a square domain of length 2p and the summations are

over the integer wavenumbers k and ‘. The derivation of

the above equation can be found in Bakas and Ioannou

(2014). For a specified forcing with spectrum ~Qk‘, the

growth rates are obtained using Newton’s method.

At high supercriticality (i.e., as « / ‘), the maximal

growth rate sr of the (m, n) large-scale structure as-

ymptotically approaches

s2
r 5

«

r
F(m,n, ~Q) , (D2)

with

F(m,n, ~Q)5 �
k
�
‘

(nk2m‘)[mn(k21 2 ‘21)

2 (m22 n2)k1‘1](K
2/N2 2 1)

~Qk‘

K4K2
s

,

(D3)

and the frequency of this eigenstructure assumes as-

ymptotically the Rossby wave frequency, si 5 Im(s) 5
mb/(m21 n2). This asymptotic expression for the growth

rate and phase speed of the large-scale structure is useful

for tracing the maximal growth rates as a function of su-

percriticality using Newton’s iterations.

The asymptotic growth rates depend only on the

forcing distribution. The growth rates for the NIF and

IRFn used in this paper are shown in Fig. D1. It can be

shown that the asymptotic growth rate vanishes for ex-

actly isotropic forcing. Asymptotically, the growth rates

do not depend on the damping rate of the mean flow rm.

NIF favors at least initially jet formation, while IRFn

favors formation of nonzonal structures.
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