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ABSTRACT

Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability

of the homogeneous turbulent state (zonostrophic instability), which occurs as the turbulence intensity in-

creases. This has been demonstrated using the statistical state dynamics (SSD) framework with a closure at

second order. Furthermore, it was shown that for small supercriticality the flow-forming instability follows

Ginzburg–Landau (G–L) dynamics. Here, the SSD framework is used to study the equilibration of this flow-

forming instability for small supercriticality. First, we compare the predictions of the weakly nonlinear G–L

dynamics to the fully nonlinear SSD dynamics closed at second order for a wide range of parameters. A new

branch of jet equilibria is revealed that is not contiguously connectedwith theG–L branch. This new branch at

weak supercriticalities involves jets with larger amplitude compared to the ones of the G–L branch. Fur-

thermore, this new branch continues even for subcritical values with respect to the linear flow-forming in-

stability. Thus, a new nonlinear flow-forming instability out of homogeneous turbulence is revealed. Second,

we investigate how both the linear flow-forming instability and the novel nonlinear flow-forming instability

are equilibrated. We identify the physical processes underlying the jet equilibration as well as the types of

eddies that contribute in each process. Third, we propose amodification of the diffusion coefficient of theG–L

dynamics that is able to capture the evolution of weak jets at scales other than the marginal scale (side-band

instabilities) for the linear flow-forming instability.

1. Introduction

Robust eddy-driven zonal jets are ubiquitous in

planetary atmospheres (Ingersoll 1990; Ingersoll et al.

2004; Vasavada and Showman 2005). Laboratory ex-

periments, theoretical studies, and numerical simula-

tions show that small-scale turbulence self-organizes

into large-scale coherent structures, which are predom-

inantly zonal and, furthermore, that the small-scale

turbulence supports the jets against eddy mixing (Starr

1968; Huang and Robinson 1998; Read et al. 2007; Salyk

et al. 2006). One of the simplest models, which is a test

bed for theories regarding turbulence self-organization, is

forced–dissipative barotropic turbulence on a beta plane.

An advantageous framework for understanding co-

herent zonal jet self-organization is the study of the

statistical state dynamics (SSD) of the flow. SSD refers

to the dynamics that governs the statistics of the flow

rather than the dynamics of individual flow realizations.

However, evolving the hierarchy of the flow statistics

of a nonlinear dynamics soon becomes intractable; a

turbulence closure is needed. Unlike the usual paradigm

of homogeneous isotropic turbulence, when strong co-

herent flows coexist with the incoherent turbulent field,

the SSD of the turbulent flow is well captured by a

second-order closure (Farrell and Ioannou 2003, 2007,

2009; Tobias et al. 2011; Srinivasan and Young 2012;
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Bakas and Ioannou 2013a; Tobias and Marston 2013;

Constantinou et al. 2014a,b; Thomas et al. 2014; Ait-

Chaalal et al. 2016; Constantinou et al. 2016; Farrell

et al. 2016; Farrell and Ioannou 2017; Fitzgerald and

Farrell 2018a, 2019; Frishman and Herbert 2018; Bakas

and Ioannou 2019b). Such a second-order closure comes

in the literature under two names: stochastic structural

stability theory (S3T; Farrell and Ioannou 2003) and

cumulant expansion at second order (CE2; Marston

et al. 2008).We refer to this second-order closure as S3T.

Using the S3T second-order closure it was first theo-

retically predicted that zonal jets in barotropic beta-plane

turbulence emerge spontaneously out of a background

of homogeneous turbulence through an instability of the

SSD (Farrell and Ioannou 2007; Srinivasan and Young

2012). That is, S3T predicts that jet formation is a bi-

furcation phenomenon, similar to phase transitions, that

appears as the turbulence intensity crosses a critical

threshold. This prediction comes in contrast with the

usual theories for zonal jet formation that involve an-

isotropic arrest of the inverse energy cascade at the

Rhines scale (Rhines 1975; Vallis andMaltrud 1993). Jet

emergence as a bifurcation was subsequently confirmed

by comparison of the analytic predictions of the S3T

closure with direct numerical simulations (Constantinou

et al. 2014a; Bakas and Ioannou 2014). This flow-

forming SSD instability is markedly different from hy-

drodynamic instability in which the perturbations grow

in a fixedmean flow. In the flow-forming instability, both

the coherent mean flow and the incoherent eddy field

are allowed to change. The instability manifests as fol-

lows: a weak zonal flow that is inserted in an otherwise

homogeneous turbulent field organizes the incoherent

fluctuations to coherently reinforce the zonal flow. This

instability has analytic expression only in the SSD, and

we therefore refer to this new kind of instabilities as

‘‘SSD instabilities.’’ In particular, the flow-forming

SSD instability of the homogeneous turbulent state to

zonal jet mean-flow perturbations is also referred to as

‘‘zonostrophic instability’’ (Srinivasan andYoung 2012).

Kraichnan (1976) suggested that the large-scale mean

flow is supported by small-scale eddies. Indeed, when

the large scales dominate the eddy field (i.e., when the

large-scale shear time tm is far shorter than the eddy

turnover time te), the small-scale eddies have the ten-

dency to flux momentum and support large-scale mean

flows (Shepherd 1987; Huang and Robinson 1998; Chen

et al. 2006; Holloway 2010; Frishman andHerbert 2018).

Under such circumstances, we expect the S3T second-

order closure of the SSD to be accurate. Furthermore,

Bouchet et al. (2013) showed that in the limit te/tm /‘
the SSD of large-scale jets in equilibriumwith their eddy

field are governed exactly by a second-order closure.

Recent studies revealed that the second-order closure

remains accurate even at moderate scale separation

between tm and te (e.g., Srinivasan and Young 2012;

Marston et al. 2019, 2016; Frishman et al. 2017; Frishman

and Herbert 2018). That is, the second-order closure

manages to reproduce fairly accurately the structure of

the mean flow even though there could be differences in

the eddy spectra and the concomitant eddy correlations;

see, for example, Fig. 1.

However, surprisingly, S3T remains accurate even at a

perturbative level, that is, when the mean flows/jets are

just emerging with te/tm / 0 [the exact opposite limit of

Bouchet et al. (2013)]. This perturbative-level agree-

ment is reported by Constantinou et al. (2014a) and

Bakas and Ioannou (2013a, 2014) for barotropic flows,

by Bakas and Ioannou (2019b) for baroclinic flows, by

Fitzgerald and Farrell (2018a) for vertically sheared

stratified flows, by Constantinou and Parker (2018)

for magnetized flows in astrophysical settings, and by

Farrell et al. (2017) for the formation of spanwise

varying mean flows and mean vortices (streaks–rolls) in

3D channel flows. The reason that the S3T second-order

closure works well even for very weakmean flows should

be attributed to the existence of the collective flow-

forming instability, which seems to overpower the dis-

ruptive eddy–eddy nonlinear interactions.

The dynamics that underlie the flow-forming SSD

instability of the homogeneous state is well understood;

FIG. 1. Second-order closure captures the mean-flow dynamics

despite differences in structure of eddy spectra. Shown here are the

energy spectra for (left) a fully nonlinear simulation [see (1)] and

(right) its quasilinear approximation (i.e., employing the second-

order closure). Both simulations form four jets of similar strength.

Setup as described in section 5 with b/(kf r)5 70 and «/(k2
f r

3)5
43 105. Contours are in logarithmic scale and are the same for

both panels.
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Bakas and Ioannou (2013b) and Bakas et al. (2015)

studied in detail this eddy–mean flow dynamics for

barotropic flows and Fitzgerald and Farrell (2018b) for

stratified flows. In these studies, the structures of the eddy

field that produce upgradient momentum fluxes, and thus

drive the instability, were determined in the appropriate

limit tdiss/tm / 0, with tdiss the dissipation time scale.

While the processes by which the flow-forming in-

stability manifests are well understood, we lack com-

prehensive understanding of how this instability is

equilibrated. For example, as the zonal jets grow, they

often merge or branch to larger or smaller scales

(Danilov and Gurarie 2004; Manfroi and Young 1999),

multiple turbulence–jet equilibria exist (Farrell and

Ioannou 2007; Parker and Krommes 2013; Constantinou

et al. 2014a), and, also, transitions from various turbulent

jet attractors may occur (Bouchet et al. 2019). Some out-

standing questions include the following:

(i) How is the equilibration of the flow-forming in-

stability achieved and at which amplitude for the

given parameters?

(ii) What are the eddy–mean flow dynamics involved in

the equilibration process, and which eddies support

the finite-amplitude jets?

(iii) What type of instabilities are involved in the

observed jet variability phenomenology (jet merg-

ing and branching, multiple jet equilibria, transi-

tions between various jet attractors), and what are

the eddy–mean flow dynamics involved?

To tackle these questions, Parker and Krommes

(2013) first pointed out the analogy of jet formation and

pattern formation (Hoyle 2006; Cross and Greenside

2009). Exploiting this analogy Parker and Krommes

(2014) were able to borrow tools and methods from

pattern formation theory to elucidate the equilibration

process. In particular, they demonstrated that, at small

supercriticality, that is, when the turbulence intensity is

just above the critical threshold for jet formation, the

nonlinear evolution of the zonal jets follows Ginzburg–

Landau (G–L) dynamics. In addition, Parker and

Krommes (2014) examined the quantitative accuracy of

the G–L approximation by comparison with turbulent

jet equilibria obtained from the fully nonlinear S3T dy-

namics. Having established the validity of S3T dynamics

even in the limit of very weak mean flows (as we have

discussed above), it is natural to then proceed studying

the G–L dynamics of this flow-forming instability and its

associated equilibration process. The perturbative-level

agreement of the S3T predictions with direct numerical

simulations of the full nonlinear dynamics argues that

the study of the equilibration of the flow-forming in-

stability using the G–L dynamics is well founded.

In this work, we revisit the small-supercriticality re-

gime of Parker and Krommes (2014). We thoroughly

test the validity of the G–L approximation through a

comparison with the fully nonlinear SSD closed at

second order for a wide range of parameter values

(section 5). Apart from the equilibrated flow-forming

instability of the homogeneous turbulent state, which is

governed by the G–L dynamics, we discover that an

additional branch of jet equilibria exists for large values

of b/(kf r) (b is the planetary vorticity gradient, r5 1/tdiss
is the linear dissipation rate, and 1/kf is the length scale

of the forcing). This new branch of equilibria reveals

that jets emerge as a cusp bifurcation, which implies that

for large b/(kf r) the emergent jets may result from a

nonlinear instability (see Fig. 6a).

We investigate here the eddy–mean flow dynamics

involved in the equilibration of the flow-forming in-

stabilities, as well as those involved in the secondary

side-band jet instabilities that occur (section 6). To do

this, we derive the G–L equation in a physically intuitive

way that allows for the comprehensive understanding of

the nonlinear Landau term underlying the jet equili-

bration (section 4). Using methods similar to the ones

developed by Bakas and Ioannou (2013b) and Bakas

et al. (2015) we study the contribution of the forced

eddies and their interactions in supporting the equili-

brated finite-amplitude jets (section 6). Finally, to eluci-

date the equilibration of the new branch of jet equilibria

that are not governed by the G–L dynamics, we develop

an alternative reduced dynamical system that generalizes

theG–L equation (section 6b). Using this reduced system

we study the physical processes responsible for the

equilibration of the new branch of jet equilibria.

2. Statistical state dynamics of barotropic b-plane
turbulence in the S3T second-order closure

Consider a nondivergent flowu*5 (u*, y*) on ab plane

with coordinates x*5 (x*, y*); x* is the zonal direction

and y* the meridional direction. Subscript asterisks here

denote dimensional variables. The flow is in an unbounded

domain unless otherwise indicated. The flow is derived

from a streamfunctionc* via (u*, y*)5 (2›y*
c*, ›x*

c*).

The relative vorticity of the flow is z*5
def

›x*
y*2›y*

u*5

D*c*, with D*5
def

›2x*
1 ›2y*

the Laplacian. With stochastic

excitation and linear dissipation the relative vorticity

evolves according to

ð›
t*
1 u* � $*Þ(z*1b*y*)52r*z*1

ffiffiffiffiffi
«*

p
j*. (1)

Linear dissipation at the rate r* parameterizes Ekman

drag at the surface of the planet. Turbulence is supported

by the random stirring j*(x*, t*) that injects energy in
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the flow at rate «*. This random stirring models vorticity

sources such as convection and/or baroclinic growth

processes that are absent in barotropic dynamics. The

random process j* is assumed (i) to have zero mean, (ii)

to be spatially and temporally statistically homogeneous,

and (iii) to be temporally delta correlated but spatially

correlated. Thus it satisfies

hj*(x*, t*)i5 0 and

hj*(xa*, t*1)j(xb*, t*2)i5Q*(xa*2 x
b*)d(t1*2 t

2*) ,

(2)

with Q* the homogeneous spatial covariance of the

forcing. Angle brackets denote ensemble averaging

over realizations of the forcing. The forcing covariance

is constructed by specifying a nonnegative spectral

power function Q̂*(k*) as

Q*(xa*2 x
b*)5

ð
d2k*
(2p)2

Q̂*(k*)e
ik*�(xa*2xb*) . (3)

In this work, we consider isotropic forcing with spectrum

Q̂*(k*)5 4pk
f*d(k*2 k

f*), (4)

where k*5
def jk*j. The forcing in (4) excites equally all

waves with total wavenumber kf*; we refer to this

forcing as isotropic ‘‘ring’’ forcing. The forcing spectrum

is normalized so that the total energy injection is «*.
1

Equation (1) is nondimensionalized using the forcing

length-scale k21
f* and the dissipation time-scale r21

* . The

nondimensional variables are z5 z*/r*, u5 u*/(k
21
f* r*),

j5 j*/(kf*
ffiffiffiffiffi
r*

p
), «5 «*/(k

22
f* r

3

*), b5b*/(kf*r*), and

r5 1. Thus, the nondimensional version of (1) lacks all

asterisks and has r5 1. The nondimensional form of

Q̂* in (4) is obtained by dropping the asterisks and

replacing kf*1 1.

The SSD of zonal jet formation in the S3T second-

order closure comprise the dynamics of the first cumulant

of the vorticity field z(x, t) and of the second-cumulant

C(xa, xb, t)5
def

z0(xa, t)z0(xb, t).
The overbars here denote zonal average, while dashes

denote fluctuations about themean. Thus, z52›yu, and

the first cumulant of the flow can be equivalently de-

scribed with u. Also, the eddy covariance C is therefore

homogeneous in x: C(xa 2 xb, ya, yb, t). Furthermore,

the zonal average is assumed to satisfy the ergodic prop-

erty, that is, that the average of any quantity is equal to an

ensemble average over realizations of j: ( � )5 h( � )i.

After dropping terms involving the third cumulant we

can form the closed system for the evolution of the first

and second cumulants of the flow:

›
t
u5R(C)2 u , (5a)

›
t
C52LC1N (u,C)1 «Q . (5b)

The derivation of (5) has been presented many times;

the reader is referred to, for example, the work by

Farrell and Ioannou (2003), Srinivasan and Young

(2012), and Bakas et al. (2015). In (5), L is the op-

erator given in (A1) that governs the linear eddy

dynamics, and N is the nonlinear operator given in

(A2) that governs the interaction between the eddies

and the instantaneous mean flow u(y, t). The mean

flow u is driven by the ensemble mean eddy vorticity

flux y0z0, which is expressed as a linear function of the

eddy vorticity covariance C through R(C) with R
given in (A3).

The mean-flow energy density Em and the eddy en-

ergy density Ep are

E
m
5

ð
‘

d2x
1

2
u2 , (6a)

E
p
5

ð
‘

d2x
1

2
[u0(x

a
) � u0(x

b
)]

a5b

52

ð
‘

d2x
1

4
[(D21

a 1D21
b )C]

a5b
, (6b)

where
Ð
‘ 5
def

limL/‘(2L)
22Ð L

2L

Ð L
2L

, the subscripts on the

Laplacian indicate the specific variable the operator is

acting on, and subscript a 5 b implies that the function

of xa and xb, for example, inside the square brackets on

the right-hand side of (6), is transformed into a function

of a single variable by setting xa 5 xb 5 x. The total

averaged energy density relaxes over the dissipation

scale [which is ofO(1) in the nondimensional equations]

to the energy supported under stochastic forcing and

dissipation:

E(t)5
def

E
m
(t)1E

p
(t)5

h
E(0)2

«

2

i
e22t 1

«

2
. (7)

Therefore, the total energy remains bounded under S3T

dynamics (Bakas and Ioannou 2019a).

3. The flow-forming instability and the underlying
eddy–mean flow dynamics

S3T dynamics, (5), under homogeneous stochastic

forcing admit, for all parameter values, a homoge-

neous equilibrium with zero mean flow and homoge-

neous eddy covariance:

1 In numerical simulations, we approximate the delta function

in (4) as a Gaussian with narrow width—see section 5 for more

details.
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ue 5 0 , Ce(x
a
2 x

b
)5

«

2
Q(x

a
2 x

b
) . (8)

The homogeneous equilibrium state, (8), becomes un-

stable at certain parameter values and bifurcates to in-

homogeneous equilibria, a class of which are zonal jets.

The stability of the homogeneous state, (8), is addressed

by linearizing (5) around (8). Since (8) is homogeneous,

the eigenfunctions consist of a sinusoidal mean-flow

perturbation duest and a perturbation covariance dCest

with a sinusoidal inhomogeneous part:

du5 einy, dC5 ~C(h)
n (x

a
2 x

b
) ein(ya1yb)/2 , (9)

where n is a real wavenumber that indicates the length

scale of the jets. The corresponding eigenvalues s satisfy

(see appendix A)

s1 15 f (sjdu,Ce)5 «f (sjdu,Q/2), (10)

where f is the vorticity flux induced by the distortion

of the eddy equilibrium field Ce by the mean flow du;

the expression for f is given in (A9). This induced vor-

ticity flux is referred to as the vorticity flux feedback on

du. For the ring forcing considered in this study, the

fastest-growing instability for n, 1 has a real eigenvalue

s, and therefore, the emergent jets are not translating in

the y direction. The vorticity flux feedback at marginal

stability,

f
r
5
def

Re[f (s5 0jdu,Q/2)], (11)

which is positive in this case, has the tendency to

reinforce the preexisting jet perturbation du and

therefore destabilizes it. With dissipation, the critical

parameter « at which the homogeneous equilibrium

becomes unstable to a jet with wavenumber n is

«t(n)5 1/fr, and for all values of b, there is a minimum

energy input rate,

«
c
5
def

min
n

[«
t
(n)] , (12)

above which the homogeneous state is unstable and jet

formation occurs.

It is instructive to identify which wave components

(of the incoherent flow) contribute to the instability

process. For the forcing spectrum (4) we may express

the vorticity flux feedback at the stability boundary

(s5 0) as

f
r
5

ðp/2
0

F (q,n) dq , (13)

where F (q, n) is the contribution to fr from the four

wave components with wavevectors k56(cosq, sinq)

when the homogeneous equilibrium is perturbed by a jet

perturbation with wavenumber n. Angle qmeasures the

inclination of the wave phase lines with respect to the

y axis. The precise expression for F (q, n) is given in

(A12). Positive values of F indicate that waves with

phase lines inclined at angle jqj produce upgradient

vorticity fluxes that are destabilizing the jet perturbation

n. In general, destabilizing vorticity fluxes are produced

by waves with phase lines closely aligned to the y axis

(with small jkyj) as shown in Fig. 2.

Figure 3 shows the contribution F (q, n) as a function

ofq for themost unstable jet nc for the cases with b5 0:1

and b5 100. When b � 1, F (q, n) is positive for angles

satisfying 4sin2q, 11n2. This condition is derived for

b5 0 but is also quite accurate for small b, as shown in

Fig. 3a (Bakas et al. 2015). The contribution from all

angles is small (of order b2), as the positive contribution

at small angles is compensated by the negative contri-

bution at larger angles. For b � 1, only waves with

phase lines almost parallel to the y axis (jkyj’ 0) con-

tribute significantly to the vorticity fluxes (see Fig. 3).

When integrated over all angles, the resulting vorticity

flux feedback is positive and O(b22). The wave–mean

flow dynamics underlying these contributions at all values

of b can be understood by considering the evolution of

wave groups in the sinusoidal flow and were studied in

detail by Bakas and Ioannou (2013b).

4. The G–L dynamics governing the nonlinear
evolution of the flow-forming instability

In this section we discuss how the equilibration of the

zonal jet instabilities is achieved for energy input rates

just above the critical threshold «c. As it will be seen,

the weak zonal jet equilibria are established through

the equilibration of the most unstable eigenfunction with

wavenumber nc as a nonlinear feedback modulates the

eddy covariance in order to conserve energy and forms jet

structures at the second harmonic 2nc. It is through this

energy conservation feedback along with the interaction

with the 2nc jet that equilibration is achieved.

To derive the asymptotic dynamics that govern the

evolution of the jet amplitude we perform amultiple-scale

perturbation analysis of the nonlinear dynamics near the

marginal point. Before proceeding with the multiple-scale

analysis we present an intuitive argument that suggests the

appropriate slow time and slow meridional spatial scales.

a. The appropriate slow length scale and slow
time scale

For a stochastic excitation with energy input rate

«5 «c, zonal jets with wavenumber n5 nc aremarginally

stable. If the energy input rate is slightly supercritical,

MARCH 2019 BAKAS ET AL . 923



«5 «
c
(11m2) , (14)

with m � 1 a parameter that measures the super-

criticality, then zonal jets with wavenumbers jn2 ncj5
O(m) are unstable and grow at a rate of O(m2). To see

this expand the eigenvalue relation (10) near «c,

s5m2«
c
f
r
1 «

c

�
›f

›s

�
c

s1
«
c

2

�
›2f

›n2

�
c

(n2 n
c
)2

1O[s2, (n2 n
c
)3], (15)

where the subscript c denotes that the derivatives are

evaluated at the threshold point (s, m, n)5 (0, 0, nc).

Exactly at theminimum threshold, the function f has a

maximum at n5 nc [(›f /›n)c 5 0 and (›2f /›n2)c , 0] with

value «cfr 5 1, which as seen from (10) implies that

s5 0. Thus the approximate eigenvalue relation in (15)

predicts that the locus of points of marginal stability

(s5 0) on the «–n plane lie on the parabola:

(n2 n
c
)2 5

2

jf 00c j
(«/«

c
2 1)5

2m2

jf 00c j
, (16)

where jf 00c j 5
def

›2f /›n2jc.
Using (15) we can estimate the growth rate s at

supercriticality m. We find that jets with wavenumber

n5 nc 1mn grow approximately at rate

s5m2(12 c
2
n2)/c

1
, (17)

with

c
1
5
def

12 «
c

�
›f

›s

�
c

and c
2
5
def «c

2
jf 00c j . (18)

The analytic expressions for c1 and c2 are given in (B13)

and (B20). Coefficient c1 is positive for stochastic exci-

tations with spectrum (4). From (17), we deduce that for

any m only jets with

jnj, n
e
5
def

1/
ffiffiffiffiffi
c
2

p
(19)

can become unstable.

Equations (16) and (17) establish the initial assertion:

for m � 1, zonal jets with wavenumbers jn2 ncj5O(m)

grow at a rate s5O(m2).

The validity of the approximate eigenvalue relation

(17) as a function of supercriticality m is shown in

Figs. 4a and 4b. By comparing the exact growth rates as

given by (10) and the growth rates obtained from the

approximation (17), we see that the approximate ei-

genvalue dispersion may not be as accurate in three

ways: predicting the maximum growth rate, predicting

the wavenumber at which maximum growth occurs, and

predicting the asymmetry of the exact growth rates

about the maximal wavenumber. These three differ-

ences are indicated by the arrows in Figs. 4a and 4b and

are quantified in Figs. 4c–e. Figure 4c compares the ex-

act wavenumber of maximum growth nmax to the critical

wavenumber nc assumed by approximation (17). We see

that nmax is very close to nc up to m’ 1 with the error

growing as m2. This is in agreement with the error in (15)

being of O(s2). In addition, the exact growth rate s(nc)

is very close tom2/c1, as shown in Fig. 4d form up toO(1),

the growth rate being overestimated by (17) for higher

values. Finally, the parabolic approximation (17) to the

growth rates predicts that the wavenumbers 6ne are

marginally stable [s(6ne)5 0]. Figure 4e shows the ex-

act growth rates at6ne atm5 0:5; these are far from zero

for both low and high values of b. The parabolic ap-

proximation works best for intermediate b values,

that is, for b5O(1). To summarize, the approximated

maximum growth rate m2/c1 as well as the critical

FIG. 3. The contribution F to the vorticity flux feedback fr for

themost unstable jet eigenfunction from the waves with phase lines

inclined at angle q with respect to the meridional (solid curves).

(a) The case with b5 0:1; (b) b5 100. In (a), the angle q5
arcsin[(1/2)(11n2)1/2] that separates the waves with positive (de-

stabilizing) and negative (stabilizing) contribution to the vorticity

flux feedback for b5 0 is indicated with the filled circle. Also,

dashed curves show the contribution F NL to the nonlinear Landau

coefficient c3 for the most unstable jet eigenfunction as a function

of the wave angle q (see section 6).

FIG. 2. (a) Waves with small jkyj produce upgradient vorticity

fluxes that destabilize any mean-flow perturbation superimposed

on the homogeneous turbulent equilibrium; (b) waves with large

jkyj produce downgradient vorticity fluxes that tend to diminish

mean-flow perturbations.
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wavenumber nc that achieves this maximum growth

are both good approximations for supercriticalities up

to m5O(1); the parabolic dependence of growth rate

for wavenumbers away from nc is a good approxima-

tion at m. 0:1 only for intermediate values of b. As it

will be seen, this has implications on the validity of the

weakly nonlinear dynamics derived next.

b. G–L dynamics for weakly supercritical zonal jets

Since the excess energy available for flow formation

is of order m2«c, we expect intuitively the mean-flow

amplitude to be of order m. Therefore, to obtain the

dynamics that govern weakly supercritical zonal flows,

we expand the mean flow u and the covariance C of the

S3T equations, (5), as

u5mu
1
(y,Y,T)1m2u

2
(y,Y,T)1O(m3) , (20a)

C5Ce(x
a
2 x

b
)1mC

1
(x

a
, x

b
,Y

a
,Y

b
,T)

1m2C
2
(x

a
, x

b
,Y

a
,Y

b
,T)1O(m3) , (20b)

Guided by (16) and (17), we have assumed that the zonal

jet and its associated covariance evolve from the mar-

ginal values at the slow time scale T 5
def

m2t while being

modulated at the long meridional scale Y 5
def

my.

Details of the perturbation analysis are given

in appendix B; here we present the backbone. We

introduce (20) in (5) and gather terms with the same

power of m. At leading-order m0, we recover the ho-

mogeneous equilibrium (8). At order m1, the emergent

zonal jet and the covariance are the modulated S3T

eigenfunction:

u
1
5A(Y,T) eincy 1 c.c., (21a)

C
1
5 [A(Y

a
,T)G1(0jx

a
2 x

b
)

2A(Y
b
,T)G2(0jx

a
2 x

b
)]einc(ya1yb)/2 1 c.c., (21b)

with G6
c defined in (A8) and evaluated at n5 nc.

Having determined C1 we proceed to determine the

orderm2 correction of the covarianceC2. This step of the

calculation is facilitated if we disregard the dependence

on the slow spatial scale Y in the amplitudeA, as well as

that in C1 and C2. Parker and Krommes (2014) showed

that the nonlinear term of the asymptotic dynamics re-

sponsible for the equilibration of the amplitude A can

be obtained using this simplification, while the contri-

bution to the asymptotic dynamics from the slow varying

latitude Y is the addition of a diffusion term with the

diffusion coefficient c2 in (18). At order m2 a zonal jet

with wavenumber 2nc emerges:

u
2
5a

2
A(T)2e2incy 1 c.c., (22a)

FIG. 4. Validity of the approximate eigenvalue relation, (17). (a) Comparison of the growth rates for jet perturbations with wavenumber

n as predicted by the exact eigenvalue relation (10) (solid curve) and by the parabolic approximation, (17) (dashed curve), for super-

criticality m5 0:5 and b5 1. Circles mark the maximum growth rate: for (10) this is at wavenumber nmax, while for (17) it is at nc. (b) As in

(a), but for b5 100. (c) The difference between the exact wavenumber of maximum growth nmax and the approximate wavenumber of

maximum growth nc as a function of the supercriticality m. (d) The relative difference between the exact growth rate s for a jet at

wavenumber nc and the approximate growth rate m2/c1 as a function of supercriticality m. (e) The exact growth rate of jet perturbations

with wavenumbers ne and2ne as a function of b for supercriticality m5 0:5. The parabolic approximation predicts zero growth for these

marginal wavenumbers.
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where a2 is given in (B7) and for the forcing considered is

negative (a2 , 0). The associated covariance at order m2,

C
2
5Ce(x

a
2 x

b
)1C

20
(x

a
2 x

b
)

1C
22
(x

a
2 x

b
)e2inc(ya1yb)/2 1 c.c., (22b)

consists of the homogeneous part, Ce 1C20, and also an

inhomogeneous contribution at wavenumber 2nc. (Note

that, as implied by (14), the forcing covariance Q ap-

pears both at order m0 and at order m2.)

The homogeneous covariance contribution, Ce 1C20,

is required at order m2 so that the energy conservation,

(7), is satisfied. To show this, note that, as the insta-

bility develops on a slow time scale, the total energy

density has already assumed (over an order-one time

scale) its steady state value «/2 [see (7)], and therefore, the

mean-flow energy growth must be accompanied by a de-

crease in the eddy energy. This decrease is facilitated by

a concomitant change of the eddy covariance at order m2.

Specifically, by introducing the perturbation expansion,

(20), in (7) at steady state, we obtain at leading order m0

the trivial balance:

2

ð
‘

d2x
1

4
[(D21

a 1D21
b )Ce]

a5b
5

«
c

2
. (23)

At order m1 the eddy covariance does not contribute

to the energy since C1 is harmonic in y and integrates

to zero: ð
‘

d2x
1

4
[(D21

a 1D21
b )C

1
]
a5b

5 0: (24)

At order m2 we use (i) (23) and (ii) the fact that the

inhomogeneous component C22e
2inc(ya1yb)/2 is harmonic

and integrates to zero to obtainð
‘

d2x
1

4
[(D21

a 1D21
b )C

20
]
a5b

5

ð
‘

d2x
1

2
u2
1 . (25)

Thus the homogeneous deviation from the equilibrium

covariance must produce a perturbation energy defect

to counterbalance the energy growth of the mean flow.

We refer to C20 as the eddy energy correction term.

However, we note that the correction to the homoge-

neous part of the covariance does not only change the

mean eddy energy but also other eddy characteristics,

such as the mean eddy anisotropy, that also might play a

role in the equilibration process.

At order m3 secular terms appear that, if suppressed,

yield an asymptotic perturbation expansion up to time

O(1/m2). Suppression of these secular terms requires

that the amplitude A of the most unstable jet with

wavenumber nc satisfies

c
1
›
T
A5 A2 c

3
AjAj2 . (26)

If we now allow the amplitude to also evolve with the

slow-scale Y and add the diffusion term c2›
2
YA on

the right-hand side of (26), we obtain the celebrated real

G–L equation:

c
1
›
T
A5 A1 c

2
›2YA2 c

3
AjAj2 . (27)

For forcing with spectrum (4) all three coefficients c1, c2,

and c3 are real and positive. The coefficients c1 and c2 are

the coefficients in the Taylor expansion, (15), and are

given in (18).

The G–L equation, (27), has a steady solution A5 0.

This solution is linearly unstable to modal perturbations

einY1sT , with growth rate m2(12 n2c2)/c1; the most un-

stable mode occurs at n5 0. This is the flow-forming

SSD instability of the homogeneous equilibrium state in

the G–L framework [cf. (17)]. The G–L equation has

also the nonlinear harmonic equilibria:

A(Y)5R
0
(n) ei(nY1f) with

R
0
(n)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 n2c

2
)/c

3

q
, (28)

and u an undetermined phase that reflects the trans-

lational invariance of the system in y. These equilibria

are the possible finite-amplitude jets that emerge at

low supercriticality. However, as will be shown in the

next section, some of these equilibria are susceptible

to a secondary SSD instability and evolve through jet

merging or jet branching to the subset of the stable

attracting states.

The n5 0 jet is the state with the largest amplitude,

R
0
(0)5 1/

ffiffiffiffiffi
c
3

p
. (29)

5. Comparison of the predictions of G–L dynamics
with S3T dynamics for the equilibrated jets

In this section we test the validity of the weakly

nonlinear G–L dynamics by comparing its predictions

for the amplitude of the equilibrated jets with fully

nonlinear S3T dynamics. We consider the S3T dy-

namical system, (5), in a doubly periodic domain

2pL*3 2pL* with a 1282 grid resolution and L*5 1, as

well as the G–L dynamics with periodic boundary

conditions for the amplitude of the jet A on the same

domain. We approximate the delta function in the ring

forcing, (4), as

d(k*2k
f*)1

e
2(k*2k

f*)
2/(2d2

f*
)ffiffiffiffiffiffi

2p
p

d
f*

, (30)
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with kx*L* and ky*L* assuming integer values. [The

asterisks denote dimensional values, as in, e.g., (1).]

Forcing (30) injects energy in a narrow ring inwavenumber

space with radius kf*L*5 10 and width df*L*5 1:5. We

note that even though (30) is a good approximation of the

delta-ring forcing, (4), small quantitative differences are to

be expected. For example, the critical energy input rates

for jet emergence obtained from the discrete finite-ring

excitation differ by as much as 4% from the corresponding

values obtained from the delta-ring forcing, (4). Since the

equilibrated jet amplitudes are of order m � 1, we use the

exact values for the critical energy input rates obtained for

the discrete finite-ring excitation.

We also consider r*5 0:1 and vary b* as well as the

energy input rate «*, that is, the bifurcation parameter.

The eigenvalue relation for the flow-forming instability

is obtained by substituting the integrals in (10) with sums

over the allowed wavenumbers. However, the compar-

ison with the predictions of the G–L dynamics with pe-

riodic boundary conditions in the meridional is trickier.

Because of the periodic boundary conditions in the jet

amplitude, a harmonic mean flow A(Y, T)5 einY with

wavenumber n is realizable within our domain only if

its dimensional wavenumber n*5 (mn1 nc)kf* is an

integer. Therefore, we carefully pick b* so that the mar-

ginal wavenumber nckf* always assumes an integer value;

for kf*5 10/L* this leaves uswith nine possible values for

b* covering the range 33 1021 ,b*, 23 103. The low-

est and highest marginal b* values yield marginal jets at

the lowest- and highest-allowed wavenumber possible

within our domain; 1/L* and kf*2 1/L*, respectively. We

excluded these values for b*, since they do not allow us to

study the finite-amplitude stability of side-band jets (i.e.,

jets at larger or smaller scale compared to the scale of nc*).

Therefore, in our comparisons, we use only the remaining

seven allowed values of b*, which are shown in Table 1.

We calculate the finite-amplitude equilibrated jets

of the nonlinear S3T dynamical system, (5), using

Newton’s method with the initial guess provided by

(29).2 All jet equilibria we compute in this section are

hydrodynamically stable. At small supercriticalities, the

jet amplitude is small, and the linear operator is domi-

nated by dissipation. Thus, all instabilities we discuss

here are SSD instabilities (see paragraph 3 in section 1).

a. Equilibration of the most unstable jet nc

Consider first the most unstable jet perturbation with

wavenumber nc. Figure 5 shows the Fourier amplitude

of the equilibrated jet dominated by wavenumber nc for

four values of b. We see that, for b,
’
12, the amplitude

is given, to a very good approximation, by (29) for su-

percriticality up to m’ 0:2 (see Figs. 5a,b). For larger

supercriticality, the amplitude of the equilibrated jet is

not well captured by (29); the jet amplitude is over-

estimated for b,
’

12 while it is underestimated for

b.
’

12. We note here that S3T equilibria with dominant

wavenumber nc (as predicted by the G–L dynamics)

exist at even larger supercriticalities, but these were

found to be S3T unstable.

Surprisingly, for b.
’
20, there exist multiple equilibria

for the same supercriticality m (see Figs. 5c,d). Specifically,

there exists a branch of stable equilibria apart from the

jets connected to the homogeneous equilibrium (cf. tri-

angles in Figs. 5c,d vs the circles). Form.
’

0:2, the lower-

branch equilibria, predicted by the G–L dynamics, cease

to exist; an infinitesimal harmonic jet perturbation with

wavenumber nc ends up in the upper branch. Equally

interesting is the fact that the upper branch extends to

subcritical values of the energy input rate with respect to

the flow-forming instability of the homogeneous state,

that is, for «, «c. This is shown in Fig. 6a for b58; similar

subcritical jet equilibria were found for b24 and b192 (not

shown). Thus, apart from the linear instability forming

jets that has been extensively studied in the literature,

there is a nonlinear instability for jet formation, the

details of which will be discussed in section 6b. Since

both the upper and the lower branches exist for a limited

range of energy input rates, there is a hysteresis loop

shown in Fig. 6a, with the dynamics landing on the upper

or the lower branch of jet equilibria as « is varied. The

two stable branches are connected with a branch of

unstable equilibria (open circles) that were also found

using Newton’s method.

The jets on the lower and the upper stable branches

are qualitatively different. Figures 6b–e compare the jet

structure and spectra of two such equilibria in the case of

b58 and m5 0:05. While the lower-branch jet consists

mainly of nc and its double-harmonic 2nc with a much

TABLE 1. Exact values of nondimensional planetary vorticity

gradient b5
def

b*/(kf*r*) used in the S3T simulations of section 5

and their corresponding values of the dimensional critical wave-

number nc*.

Notation b nc*

b1 1.1915 8

b3 3.0235 7

b6 6.2761 6

b12 12.136 5

b24 24.576 4

b58 58.137 3

b192 192.62 2

2 For details regarding Newton’s root-finding algorithm for system

(5), the reader is referred to appendix I in the thesis of Constantinou

(2015).
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weaker Fourier amplitude in qualitative agreement

with the G–L prediction of u2 ’O(m2A2) [cf. (22a) and

Fig. 6d], the upper-branch jet is stronger by two orders

of magnitude, it contains more harmonics, and the

Fourier amplitude of the double-harmonic 2nc is about

half the amplitude of the leading harmonic nc. As will

be elaborated in section 6b, it is the interaction of

the two Fourier components with wavenumbers nc and

2nc that supports the upper-branch equilibria.

b. Equilibration of the side-band jets nc 6 1/(kf*L*)

We now consider the jet equilibria that emerge from

the equilibration of jet perturbations with wavenumbers

close to nc. While for an infinite domain there is a dense

set of unstable jet perturbations with wavenumbers mn

close to nc [cf. (19)], for the doubly periodic box the

first side-band jet instabilities have dimensional wave-

numbers n6
* 5nckf*6 1/L* or n6 561/(kf*L*m). In-

troducing n6 in (19), we obtain that the parabolic

approximation predicts that the homogeneous equilib-

rium becomes unstable to jet perturbations with wave-

number n6 whenmGL .
ffiffiffiffiffi
c2

p
/(kf*L*). However, as shown

in Fig. 4d, the parabolic approximation is not accurate,

especially at low and large values of b. For example, for

b1, mGL 5 0:4293, while the exact dispersion relation

predicts that jets with n1 and n2 are rendered neutral at

mex1 5 0:2140 and mex2 5 0:7953, respectively. We there-

fore expect significant deviations from (28) for the am-

plitude of the equilibrated jets.

Figure 7 shows the equilibrated amplitude of the

side-band jet perturbations with n6 as a function of su-

percriticality for four values of b. While the functional

dependence of the equilibrated amplitude on m is quali-

tatively captured by (28) (dashed lines), there are sig-

nificant quantitative differences, especially for b1 and

b192. Since these quantitative differences are due to the

failure of the parabolic approximation, a way to rectify

them is to use in (28) an equivalent

cex62 5
def

(k
f*L*mex6

)2 , (31)

based on the supercriticality m6
ex obtained from the exact

dispersion relation, (10). The solid curves in Fig. 7 show

the predicted amplitude using cex62 . We observe that, for

FIG. 5. The amplitude mA of the equilibrated most unstable jet with wavenumber nc as a function of super-

criticalitym for four values of b. TheG–L branch is shownwith circles; the upper branch (which appears for b.
’
20)

is shown with triangles. Solid lines show the jet amplitude as predicted by the G–L [cf. (29)].
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all values of b, the amplitude of the jets close to the

bifurcation point is accurately predicted, and for the

intermediate value of b6, for which the exact dispersion

is the closest to the parabolic profile, the agreement

holds away from the bifurcation point as well. Finally,

note that for large b shown in Fig. 7c the additional

upper branch of equilibria is found and this branch

has the same characteristics as the upper branch of nc

equilibria. That is, the equilibrated jets have a larger

amplitude, and the Fourier amplitude of the double

harmonic [in this case, it is the 2(nc 1 1/mkf*L*) har-

monic] is much larger compared to that for the equilibria

in the G–L branch.

Finally, we stress that the results in this section re-

garding the existence of the upper-branch equilibria

as well as the accuracy of the G–L dynamics for the

lower-branch equilibria are not quirks of the particular

isotropic-forcing structure in (4). Similar qualitative

behavior is found for forcing with anisotropic spectrum.

Discussion regarding the effects of the structure of the

forcing is found in appendix C.

6. The physical processes underlying the
equilibration of the SSD instability of the
homogeneous state

One of the main objectives of this paper is to study the

processes that control the halting of the flow-forming

instability both for the low-branch equilibria, which are

governed by the G–L dynamics, and for the upper-

branch equilibria (cf. Figs. 5 and 6).

a. Equilibration processes for the lower branch

For G–L dynamics, the equilibration of the instability

for the most unstable jet perturbation with wavenumber

nc as well as for side-band jets (i.e., jets with scales close

to nc) is controlled by coefficient c3 in the G–L equation,

(27). We start with a discussion on how c3, and conse-

quently of the equilibration amplitude R0(0), depends

on b; Fig. 8a shows the amplitude of the most unstable

jet, R0(0), as a function of b. For b � 1 the emerging

jets have large scales (nc � 1) and equilibrate at an

amplitude that increases as R0 ;b1/3. For b � 1, the

emerging jets have small scales (nc ’ 1), and their am-

plitude scales as R0 ;b2/3. The scaling of R0 for b � 1 is

found to be robust, that is, independent of the spectral

properties of the forcing (cf. Fig. 8 and Fig. C1). On the

other hand forb � 1 the amplitudeR0 depends crucially

on the forcing structure; see appendix C. However, the

regime b � 1 is uninteresting anyway since the anisot-

ropy in the dynamics in (1) becomes vanishingly small

and no zonal jets emerge.

The dependence of the amplitude R0(0) on b can be

understood by considering the contribution of the vari-

ous wave components to c3 in a similar manner as we did

for fr in (13). Thus, we write

FIG. 6. The bifurcation diagram for b58 (case shown in Fig. 5c). (a) The amplitude mA of the equilibrated most unstable jet with

wavenumber nc as a function of the energy input rate. Squares denote the homogeneous equilibrium, circles the lower branch predicted by

the G–L dynamics, and the triangles the upper branch of equilibria. Open symbols denote unstable jet equilibria with respect to S3T

dynamics; filled symbols denote stable jet equilibria. Multiple stable equilibria exist for 0:89# «/«c # 1:068. (b)–(d) A comparison of the

jet equilibrium structure and the jet spectra for «5 1:0025 (which corresponds to m5 0:05) is shown. (b),(d) The lower G–L branch jet;

(c),(e) the upper-branch jet. In (d), the amplitude prediction for nc by (29) and for 2nc by (22a) is also shown (open circles).
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c
3
5

ðp/2
0

F
NL

(q) dq , (32)

where F NL is the contribution to c3 from the four waves

with wavevectors k56(cosq, sinq). Figure 3 shows the

contributions F NL(q) for two values of b.

For b � 1, all wave orientations contribute positively

to c3. As a result, the upgradient contributions to the

vorticity flux feedback F at small q are counteracted by

F NL, while the downgradient contributions toF at higher

q are enhanced byF NL. This leads to a rapid quenching of

the instability and thus to a weak finite-amplitude jet.

For large b, F NL has roughly the same dipole struc-

ture centered about an angle q0 as the vorticity flux

feedback F . Therefore, only waves with angles close

to q0 contribute appreciably to c3. Waves with angles

jqj,q0 give positive contributions to c3, while waves

with angles jqj.q0 give negative contributions to c3.

As a result, both the upgradient and the downgradient

contributions to F are almost equally reduced, and

the instability is only slowly hindered and thus al-

lowed to drive jets to a much larger amplitude com-

pared to b � 1. To understand the power-law increase

ofR(0) with b, note that, as b increases, (i) the heights of

the dipole peaks grow linearly with b, (ii) the widths

of the dipole peaks decrease as b22/3, and (iii) the

structure of the dipole becomes more symmetric about

q0. Figure 9a demonstrates points i–iii. Thus, each of

the positive and the negative contribution to c3 scales

as b3b22/3 5b1/3, and their difference scales with the

derivative, that is, as db1/3/db}b22/3, leading to the in-

crease of R(0) with b as b1/3.

Next we investigate how each of the forced waves

contribute in sustaining the equilibrated state of the

most unstable jet (n5 0) with amplitude R0(0) by de-

composing the portion of the vorticity flux exceeding

dissipation, which is the sum of fr and 2c3R0(0)
2, into

contributions from various wave angles:

f
r
2 c

3
R

0
(0)2 5

ðp/2
0

�
F (q)2R2

0F NL
(q)
�
dq . (33)

Figure 9b shows these contributions for three values of

b. For small values of b, waves with angles jqj,p/4 that

drive the instability through their upgradient contribu-

tion also support the equilibrated jet. However, for

b � 1, this picture is reversed. The instability is driven

by waves with jqj,q0 (mainly from waves with jqj’ 0)

FIG. 7. The amplitude mA of the equilibrated unstable jets with wavenumbers nc 2 1/(mkf*L*) (diamonds) and nc 1 1/(mkf*L*)

(squares) as a function of supercriticality m for four values of b. The dashed lines show the amplitude predicted by the G–L dynamics [cf.

(29)], while the solid lines show the amplitude predicted by the G–L dynamics with cex62 as described in the text. Stable (unstable)

equilibria are denoted with filled (empty) symbols, and the vertical dotted lines show the stability boundary, (58), obtained from the G–L

dynamics (see section 7).

FIG. 8. (a) The amplitudeR0(0)5 1/
ffiffiffiffiffi
c3

p
of the equilibrated most

unstable jet with wavenumber nc as a function of b. Dashed lines

show the b1/3 and b2/3 slopes for reference. (b) The coefficient c3
and its decomposition into the contributions cec3 and c1,23 as a

function ofb. Coefficient c1,23 is negative for 4:9,
’
b,
’
79. However,

for these values, c1,23 are at least an order of magnitude less than cec3
and, therefore, are negligible.
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and is hindered by waves with angles jqj.q0, while the

equilibrated jet is supported through the upgradient

fluxes of waves with angles jqj.q0. The reason is that

the amplitude R0(0) is so large that the sign of the in-

tegrand in (33) is reversed. Further investigation of the

eddy–mean flow interactions leading to this peculiar

feedback is out of the scope of the current work and will

be reported in a future study.

Further insight into the equilibration dynamics is

gained by noting that the coefficient c3 can be written as

the sum of two separate contributions:

c
3
5 cec3 1 c1,23 , (34)

which represent different physical processes (details on

the decomposition can be found in appendix B). These

contributions correspond to the two O(m3) possible in-

teractions between the perturbed components of the

mean flow mu1 and m2u2 with the covariance corrections

mC1, m
2C20, and m2C22.

Coefficient

cec3 }2f (0j u
1
,C

20
), (35)

is proportional to the mean vorticity flux feedback from

the interaction of mu1 with the homogeneous covariance

correction m2C20 to the equilibrium Ce. It measures the

compensation in the vorticity flux as eddies lose energy

to the mean flow.

Coefficient

c1,23 }2f (0ju
1
,C

22
e2inc(ya1yb)/2 1 c.c.)2 f (0j u

2
,C

1
), (36)

measures the mean vorticity flux feedbacks from the

interaction of mu1 and m2u2 with the inhomogeneous

covariance corrections mC1 and m2C22e
2inc(ya1yb)/2 to the

equilibrium Ce. The exact form of the coefficients is

given in (B16) and (B18), respectively.

Figure 8b shows the contribution of the two processes

in c3 as a function of b. We observe that the main con-

tribution to the coefficient c3 comes from cec3 for most

values of b. Only for b � 1 is there a contribution from

c1,23 at the same order.3 The same results also hold for the

case of the anisotropic forcing (see Fig. C1). Therefore,

we conclude that, for most values of b, the mean flow

is stabilized by the change in the homogeneous part

of the covariance because of conservation of the total

energy that leads to a concomitant reduction of the

upgradient fluxes. For b � 1 there is no change in the

eddy–mean flow dynamical processes involved, while for

b � 1 the equilibrated flow is supported by the upgra-

dient fluxes of the eddies that were initially hindering its

formation.

b. Equilibration processes for the upper-branch jets

We have seen in the discussion surrounding Fig. 6 that

the 2nc components of the upper-branch equilibria are

much stronger than the corresponding 2nc components

of the lower-branch jets. Therefore, we expect the in-

teraction between the jet components with wave-

numbers nc and 2nc to play an important role in the

equilibration of the upper-branch jets. This is not at all

the case for the lower-branch G–L equilibria for which

this interaction quantified by c1,23 is subdominant com-

pared to the energy correction term cec3 .

To investigate the interaction between the jet compo-

nents with wavenumbers nc and 2nc, we impose a mean

flow with power only at those Fourier components:

u5 bu
1
eincy 2bu

2
e2incy 1 c.c. (37)

At low supercriticality there is a phase difference of 1808
between the two components [see (22a) and the fact that

a2 , 0]. Therefore, we built in this phase difference in

(37). We then compute the vorticity fluxes that are in-

duced by the mean flow, (37), by employing the adia-

batic approximation, that is, by assuming that the mean

flow evolves slow enough that it remains in equilibrium

with the eddy covariance, and thus, ›tC’ 0. Such an

FIG. 9. (a) The contribution F NL to the coefficient c3 fromwaves

at angle jqj in the limit of b � 1. F NL assumes a dipole pattern.

The amplitude of each of the dipole peaks scale with b, and

the widths of the dipole structure scale with b22/3. For b � 1 the

structure of F NL is independent of the type of forcing used. (b) The

contribution from waves at angle jqj to the finite-amplitude equi-

librium jet, as given by F 2R2
0F NL for three values of b.

3 Further analysis on the relative contributions of the forced

eddies for the two distinct processes can be found in appendix B.
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adiabatic approximation is exact for the fixed points

of the S3T dynamics, but it has also been proven ade-

quate in qualitatively illuminating the eddy–mean flow

dynamics away from the homogeneous or inhomoge-

neous equilibria (Farrell and Ioannou 2003, 2007;

Bakas and Ioannou 2013b; Bakas et al. 2015). With the

adiabatic approximation, the eddy covariance equation,

(5b), simplifies to

2LC1N (bu
1
eincy 2 bu

2
e2incy 1 c.c.,C)1 «Q5 0: (38)

We solve (38) for C, compute the vorticity fluxes, and

decompose them into their Fourier components:

y0z0|{z}
5R(C)

5�
m

f̂
mnc

(bu
1
,bu

2
)eimncy 1 c.c., (39)

with m positive integer. Then, from the mean flow

equation, (5a), we obtain that the mean-flow compo-

nents satisfy

dbu
1

dt
5 f̂

nc
(bu

1
, bu

2
)2bu

1
, (40a)

dbu
2

dt
5 f̂

2nc
(bu

1
,bu

2
)2 bu

2
. (40b)

Figure 10 shows the mean-flow growth rates [e.g.,

(1/bu1)dbu1/dt] as a function of the components bu1 andbu2 of the imposed mean flow. We see that for an in-

finitesimal mean flow (lower-left corner of the two

panes; noted as region G–L), the growth of bu1 resulting

from the linear instability and the growth of bu2 resulting

from the second-order self-interaction of the unstable

mode [cf. (22a)] lead to an increase of both bu1 and bu2.

The flow, thus, equilibrates at the point of intersection of

the zero contours for both mean-flow tendencies (thick

black solid and dashed curves). This is the lower-branch

G–L equilibrium that is shown by the open circle and

was discussed in the previous section.

There exist, however, two additional points of inter-

section, both of which are accessible to the flow through

paths in the bu1–bu2 parameter space. If we start with a

strong bu1 * 0:14 component from point A in the figure,

the large positive growth rate (1/bu2)dbu2/dt leads to a

rapid increase of bu2, while the slightly negative tendency

(1/bu1)dbu1/dt gradually weakens bu1 so that bu2 and bu1

move toward the right point of intersection.We perform

an integration of the S3Tdynamical system (5)with initial

conditions starting from point A. The path that the

dynamical system follows in the bu1–bu2 parameter space is

shown by the dotted line and confirms the qualitative

picture obtained via the mean-flow growth rates with

the rapid increase of bu2 and the eventual equilibration

at the right point of intersection shown by the filled

triangle. Similarly, if we start with a strong bu2 * 0:2

component from point B, the strong growth (1/bu1)dbu1/dt

and the weak negative tendency (1/bu2)dbu2/dt lead

again to the equilibration of the flow through the path

shown in Fig. 10. The growth rates close to the other

point of intersection shown by the open circle reveals

that this corresponds to an unstable equilibrium, and

this is also confirmed through integrations of the S3T

system, (5). These two points therefore correspond to

the stable and unstable equilibria of the upper branch

that are shown in Fig. 6.

The qualitative agreement between the approximate

dynamics of the reduced dynamical system (40) and the

nonlinear S3T dynamics reveal that it could be a useful

tool for exploring the phase space of the S3T system. For

example, the bifurcation structure of Fig. 6 could be

obtained by plotting the growth rates obtained using the

adiabatic approximation. Figure 11 shows the curves of

zero tendencies for various values of the supercriticality.

For low subcritical values «/«c , 0:89 (Fig. 11a), there is

no point of intersection; therefore, only the homoge-

neous equilibrium exists. For 0:89# «/«c , 1 (Fig. 11b),

there are two points of intersection revealing the exis-

tence of the stable and the unstable upper-branch equi-

libria, while for 1# «/«c (Fig. 11c), there is the additional

lower-branch point. Finally, for highly supercritical

values (Fig. 11d), there is only one point of intersec-

tion revealing the existence of the stable upper-branch

equilibrium.

To shed light into the dynamics underlying these new

equilibration paths that lead to the upper-branch equi-

libria, we decompose the eddy covariance as a Fourier

sum over the inhomogeneous components:

C5 �
4

m50

bC
m
(x

a
2 x

b
) eimnc(ya1yb)/2 . (41)

The sum is over five components. The reason is that

the flux feedback on bu1 and bu2 is generated by the

nc and 2nc components of the covariance. Inspection

of the nonlinear term in (38) reveals that only the

homogeneous component bC0 as well as the covari-

ance components at nc, 2nc, 3nc, and 4nc can interact

with the mean flow via (37) to yield these two co-

variance components. We then decompose the vor-

ticity fluxes as

f̂
nc
(bu

1
, bu

2
)5 f

1,0
1 f

1,2
1 f

2,3
, (42a)

f̂
2nc
(bu

1
, bu

2
)5 f

2,0
1 f

1,1
1 f

1,3
1 f

2,4
. (42b)
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Each of the terms on the right-hand sides of (42) rep-

resents the different interactions among the mean-flow

components bu1 and bu2 with the covariance compo-

nents bC0,
bC1,

bC2,
bC3, and

bC4. The first term in (42a)
is proportional to the vorticity flux feedback from
the interaction of bu1 with the homogeneous covariance
component bC0:

f
1,0

} f (0j bu
1
eincy, bC

0
). (43)

For low supercriticality,

f
1,0

2 bu
1
’A(12 cec3 jAj2) . (44)

This means that f1,0 contains both the destabilizing

feedback that drives the linear instability and the sta-

bilizing feedback at finite amplitude that results from

the energy correction. The terms f1,2 and f2,3 in (42a)

describe the feedback of the nonlinear interaction be-

tween bu1 and bu2 on bu1:

f
1,2

} f (0j bu
1
*e2incy, bC

2
e2inc(ya1yb)/2)

1 f (0j bu
2
e2incy, bC

1
*e2inc(ya1yb)/2), (45)

f
2,3

} f (0jbu
2
*e22incy, bC

3
e3inc(ya1yb)/2). (46)

For low supercriticality,

f
1,2

’2c1,23 AjAj2 , (47)

while f2,3 is of higher order in m. Similarly, the second

term on the right-hand side of (42b) is proportional to

FIG. 10. (left) Themean-flow growth rates (a) (1/bu1)dbu1/dt and (b) (1/bu2)dbu2/dt obtained under an adiabatic approximation (›tC5 0) for

a mean flow u5bu1e
incy 2bu2e

2incy as a function of bu1 and bu2. The thick curves are the zero-tendency contours (solid curve for the dbu1/dt5 0

and dashed for dbu2/dt5 0). Infinitesimal jet perturbations start in the region in the bu1–bu2 phase space denoted as G–L and end up in the

lower-branch equilibrium shown by the filled circle. The arrows denote paths in the bu1–bu2 phase space that connect a finite-amplitude jet

perturbation starting from points A and B and ending up to the upper-branch equilibrium, denoted by the filled triangle. [The paths were

obtained by time stepping the S3T system, (5).] (top right) The breakdown of the flux feedback f̂ nck
f*
/bu1 into the components (c) f1,0/bu1,

(d) f1,2/bu1, and (e) f2,3/bu1. (bottom right) The breakdown of f̂ 2nckf*
/bu2 into the components (f) f2,0/bu2, (g) f1,1/bu2, (h) f1,3/bu2, and (i) f2,4/bu2.

Parameters used are b58 and supercriticality m5 0:1.
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the vorticity flux feedback from the interaction of bu2

with the homogeneous covariance bC0:

f
2,0

} f (0jbu
2
e2incy, bC

0
). (48)

For low supercriticality, the flux feedback above is

positive but does not overcome dissipation; that is,

0, f2,0 , bu2. Therefore, the homogeneous equilibrium is

linearly stable with respect to jet perturbations with

wavenumber 2nc (as expected). The terms f1,1, f1,3, and

f2,4 in (42b) describe the feedback of the nonlinear in-

teraction between bu1 and bu2 on bu2:

f
1,1

} f (0j bu
1
eincy, bC

1
einc(ya1yb)/2), (49)

f
1,3

} f (0j bu
1
*e2incy, bC

3
e3inc(ya1yb)/2), (50)

f
2,4

} f (0j bu
1
*e22incy, bC

4
e4inc(ya1yb)/2). (51)

For low supercriticality, f1,1 drives the bu2 component

of the flow with an amplitude proportional to bu2

1, and

therefore, bu2 equilibrates at amplitude (22a), while

f1,3 and f2,4 are of higher order. Figures 10c–i show the

contribution of the various terms to the flux feedbacks

f̂ nc and f̂ 2nc, respectively. In the G–L region the fluxes

are determined by f0,1, f0,2, and f1,1. However, the

‘‘tongue’’ of positive tendency (1/bu1)dbu1/dt in Fig. 10a

for large values of bu2, as well as the region of very large

positive tendency (1/bu1)dbu1/dt in Fig. 10b, is determined

by the other terms. As a result, the equilibration of the

flow in the upper-layer branch is due to the nonlinear

interaction of the two mean-flow components bu1 and bu2

rather than the energy correction that underlies the

equilibration of the flow in the lower branch.

7. Eckhaus instability of the side-band jets

In this section we study the stability of the side-band

jet equilibria. As noted by Parker and Krommes (2014),

these harmonic jet equilibria are susceptible to Eckhaus

instability, a well-known result for harmonic equilibria

of the G–L equation (Hoyle 2006). Here, we present the

main results of the Eckhaus instability and compare

them with fully nonlinear S3T dynamics.

a. An intuitive view of the Eckhaus instability

To obtain intuition for the eddy–mean flow dynamics

underlying the Eckhaus instability, note first that the

G–L dynamics are given by the balance between the

vorticity flux feedback fr(n)5 fr(0)2 c2n
2, which pro-

vides a diffusive correction to the original upgradient

fluxes fr(0). 0 at nc and the stabilizing nonlinear term

c3jAj2. Let us assume an equilibrium jet with n. 0, that

is, with a scale smaller than that of the most unstable jet

at nc, and also assume a sinusoidal phase perturbation:

A(Y)5R
0
ei[nY1h sin(qY)] with h � 1: (52)

Figure 12 shows how the perturbed jet, (52), is com-

pressed for half the wavelength of the phase perturba-

tion p/q (unshaded region) and dilated for the other

half (shaded region). In the compressed region the jet

appears with an enhanced wavenumber n1 dn, while

in the dilated region, the jet appears with a reduced

wavenumber n2 dn. As a result, the vorticity flux

feedback fr(n) is larger in the dilated (shaded) region

implying a tendency to enhance the jet; the opposite

occurs in the compressed region (nonshaded). Figure 12

shows a qualitative sketch of the mean vorticity fluxes

y0z0 that demonstrates this process. If the nonlinear

FIG. 11. The locus of zero mean-flow tendencies in bu1–bu2 space for various supercriticalities for the case with b58. Jet equilibria exist at

the intersection of the two loci, when dbu1/dt5 dbu2/dt5 0. (a) «/«c 5 0:84; there is no intersection as only the homogeneous equilibrium is

stable for «/«c , 0:89 (see Fig. 6a). (b) «/«c 5 0:99; there are two points of intersection that correspond to the stable and unstable upper-

branch equilibria that exist for 0:89, «/«c , 1. (c) «/«c 5 1:01; there are three equilibria: two upper-branch equilibria (a stable and an

unstable) and the lower-branch G–L equilibrium. (d) «/«c 5 1:25; only one upper-branch equilibrium exists as the G–L branch and the

unstable upper branch terminate at «/«c 5 1:068.
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term does not counteract this mismatch, the dilated part

of the jet will grow and take over the whole domain,

thus producing a jet with lower n. (Similarly, for an

equilibrium jet with n, 0 there is a tendency for the

compressed part of the jet to take over the whole do-

main producing a jet with larger n.)

To summarize, because of the diffusive nature of the

vorticity flux feedback, there is a tendency to go toward

n5 0 jets if not counteracted by the nonlinear eddy–

mean flow feedback.

b. A formal view of the Eckhaus instability

To address quantitatively the stability of the harmonic

jet equilibria, (28), let us reformulate the G–L equation

by rewriting the jet amplitude A in polar form as

A(Y,T)5R(Y,T)eiQ(Y,T), (53)

where R is the amplitude and Q is the phase of the jet.

The equilibrium jets have a constant amplitude R0(n)

given by (28) and a linearly varying phase Q5 nY.

From (19), such equilibria exist only for jnj, ne 5
ffiffiffiffiffiffiffiffi
1/c2

p
.

Consider now small perturbations about this equilib-

rium jet:

R5R
0
(n)1 r̂eiqY1lT , Q5 nY1 f̂eiqY1lT. (54)

As shown in appendix D, the perturbations grow expo-

nentially if

q2 1 2(n2e 2 3n2), 0: (55)

For an infinite domain, the gravest mode has q5 0, and

therefore, the jets with amplitude (53) are Eckhaus un-

stable when jnj. ne/
ffiffiffi
3

p
. Maximum instability occurs for

jqj
max

5 n
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(n/n

e
)4 1 2(n/n

e
)2 2 1

q
2(n/n

e
)

, (56)

and therefore, the Eckhaus instability will form a jet

of wavenumber nc 1m(n6 jqjmax). Figure 13a shows the

wavenumber jqjmax as a function of the equilibrium jet

wavenumber n. Note that the equilibria with wave-

numbers n’ ne/
ffiffiffi
3

p
are unstable to jets with neighbor-

ing wavenumbers as jqjmax � 1, while equilibria with

wavenumbers n’ ne are unstable to the jet with wave-

number nc as jqjmax ’ 1.

The growth rate for the most unstable structure with

jqjmax is

l
max

5
(3n2 2 n2e)

2

4c
1
n2en

2
. (57)

and is shown in Fig. 13b.

c. Comparison with S3T dynamics

We first compare the stability analysis for the har-

monic jets derived in the weakly nonlinear limit of G–L

dynamics to nonlinear dynamics in the S3T system. Note

that the growth rate of the Eckhaus instability is much

less than the corresponding growth rate of the flow-

forming instability of the homogeneous state of a jet

for almost all wavenumbers n. Figure 13b compares

the growth rate lmax for the perturbation with jqjmax

that will eventually form a jet with wavenumber

nc 1m(n6 jqjmax) to the growth rate of the flow-

forming instability of the homogeneous equilibrium

that will form a jet with the same wavenumber (shown

with dashed line). As a result, the weak Eckhaus in-

stability manifests only in carefully contrived S3T

FIG. 12. Solid curve shows a sinusoidal equilibrium jet ue 5
R0 cos[(nc 1mn)y] with smaller scale (n5nc) compared to the scale

of the most unstable jet (we take m5 1 so that the wavenumber

differences with the most unstable jet are exaggerated for il-

lustration purposes). Dashed curve shows the resulting jet

when the phase of the equilibrium jet ue is perturbed: u5
R0 cos[(nc 1mn)y1h sin(qy)], with q5 n and h5 1/2 (for illus-

tration purposes). This perturbation dilates the jet in the shaded

region and compresses the jet in the unshaded region. Dash–dotted

curve is a qualitative depiction of the expected vorticity flux feed-

back y0z0 for the perturbed jet based on the dependence of fr on the

wavenumber n.
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simulations; any simulation of the S3T system, (5),

starting from a random initial perturbation at low su-

percriticalitywill evolve into the most unstable jet with

wavenumber nc.

Second, in contrast with the infinite domain, for the

doubly periodic box, the first side-band jets appear when

n$ n6, while the gravest wavenumber q is qmin 5
def

1/(mkf*L*). Therefore, the instability criterion, (55), is

satisfied for

m#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(32 1/2)c

2

p
k
f*L*

. (58)

We compare here the stability boundary, (58), with the

stability analysis based on the nonlinear S3T dynamics.

The stability of the inhomogeneous jet–turbulence

S3T equilibria shown in Fig. 7 is studied using the nu-

merical methods developed by Constantinou (2015)

and Constantinou et al. (2016); for the stability bound-

ary, (58), we use the effective values cex62 for the side-

band jet equilibria with n6. Unstable (stable) equilibria

are shown in Fig. 7 with open (filled) symbols, while

the stability boundaries for n6 are shown with the ver-

tical dotted lines. For b6, the parabolic profile of the

eigenvalue relation, on which the Eckhaus instability

calculations are based, remains accurate for larger su-

percriticalities, and therefore, the stability boundary,

(58), consists of a good approximation. For larger and

smaller values of b, the parabolic profile is not so ac-

curate, and therefore, the criterion developed fails. For

example, for both b1 and b192, all the n1 jet equilibria

are unstable.

Last, we compare the development of the Eckhaus

instability as predicted by the G–L dynamics (27) and as

predicted by the S3T dynamics. Figure 14 shows the

evolution of the slightly perturbed n*5 5 (n2) and n*5
7 (n1) equilibria for b6 and supercriticality m5 0:3 ob-

tained from integrations of the S3T system (5). In both

cases, the equilibria are unstable to q5 qmin perturba-

tions. As the instability develops the bu(ky*5 6) com-

ponent of the flow grows exponentially (Figs. 14c,d),

and the flow moves into the stable n*5 6 (nc) equilib-

rium jet by branching or merging (Figs. 14a,b). We

compute the growth rate of the Eckhaus instability from

(D4) by substituting n5 q5 1/(mkf*L*) and using the

effective values cex62 :

l6 5m2
211

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(mex6/m)2 2 1]2 1 4(mex6/m)4

q
c
1

. (59)

Figures 14c and 14d demonstrate that the growth rate

obtained by (59) is in excellent agreement with the

growth rate of the Eckhaus instability in the nonlinear

simulations. Furthermore, the equilibrium jet amplitude

is accurately predicted by (29).

Figure 15 shows the comparison of the growth rates

for the other unstable side-band jet equilibria illustrated

in Fig. 7. We see once more that for b6, for which the

parabolic approximation of the eigenvalue relation used

to obtain theG–L dynamics is accurate, the growth rates

agree for almost all the unstable range. For b1 and b192,

for which the parabolic profile is not accurate, there is in

general disagreement.

8. Conclusions

We examined the dynamics that underlies the for-

mation and support of zonal jets at finite amplitude in

forced–dissipative barotropic beta-plane turbulence us-

ing the statistical state dynamics of the turbulent flow

closed at second order. Within this framework, jet

formation is shown to arise as a flow-forming insta-

bility (or zonostrophic instability) of the homoge-

neous statistical equilibrium turbulent state when the

FIG. 13. (a) The most unstable wavenumber for the Eckhaus

instability jqjmax/ne as a function of the jet equilibriumwavenumber

n/ne. Instability occurs in the shaded region for n/ne . 1/
ffiffiffi
3

p
. (b) The

growth rate for the most Eckhaus unstable jet with q5qmax, (57),

as a function of the jet equilibriumwavenumber n (solid line). Also

shown with a dashed line is the corresponding growth rate for the

flow-forming instability of the jet with wavenumber n6qmax that

will eventually be formed by the Eckhaus instability and is given by

[12 (n6 qmax)
2/n2e ]/c1, according to the G–L equation, (27).
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nondimensional parameter «5 «*/(k
22
f* r

3

*) crosses a

certain critical threshold «c. In this work, we studied

the dynamics that govern the equilibration of the flow-

forming instability in the limit of small supercriticality

m5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«/«c 2 1

p
.

When supercriticality m � 1, the growth rate of the

unstable modes as a function of the mean-flow wave-

number is to a good approximation a parabola. This

allows a two-time, two-scale approximation of the

nonlinear dynamics resulting in the weakly nonlinear

Ginzburg–Landau dynamics for the evolution of zonal

jets. The equilibration of the flow-forming instability

was extensively investigated using the G–L dynamics.

Also, the predictions of the weakly nonlinear G–L

dynamics regarding (i) the amplitude of the equilibrated

jets and (ii) their stability were compared to the fully

nonlinear S3T dynamics for a wide range of values for

the nondimensional parameter b5b*/(kf*r*).

According to G–L dynamics, the harmonic unstable

modes of the homogeneous equilibrium state equili-

brate at finite amplitude. The predicted amplitude of the

jet that results from the equilibration of the most un-

stable mode with wavenumber nc was compared to the

amplitude of the jet equilibria of the nonlinear S3T dy-

namics. For b,
’
20, the jet amplitude was found to be

accurately predicted by the G–L dynamics for up to

m’ 0:2. For b.
’

20, a new branch of jets with much

larger amplitudes was discovered that was distinctly

FIG. 14. The equilibration of the Eckhaus instability under S3T dynamics. (a) The evolution of the mean flow

u*(y, t) for the slightly perturbed n*5 5 (n2) equilibrium. (c) The evolution of the n*5 6 Fourier component of the

flow (solid). (b) The growth rate predicted by (59) (dashed) and the amplitude of the n*5 6 jet as predicted by (29)

(dash–dotted). (b),(d) As in (a) and (c), respectively, but for the slightly perturbed n*5 7 (n1) equilibrium. The

planetary vorticity gradient is b6, and the supercriticality is m5 0:3.

FIG. 15. Growth rate for the Eckhaus instability of the finite-amplitude jets. Shown is the growth rate as a function of supercriticality

m for (a) b1, (b) b6, and (c) b192, obtained from the stability analysis for the equilibrium jets with wavenumbers nc 2 1/(mkf*L*) (di-

amonds) and nc 1 1/(mkf*L*) (squares) using the fully nonlinear system, (5). Dashed curves show the growth rate as predicted from the

G–L dynamics; solid curves show the growth rate, (59), as predicted from theG–L dynamics using themodified values for c2, while dashed

curves show the unmodified growth rate, (D4).
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different from the G–L branch of jet equilibria. The

bifurcation diagram (e.g., Fig. 6) exhibits a classic cusp

bifurcation with hysteretic loops. The new branch of

jet equilibria exists even at subcritical values of the

flow-forming instability of the homogeneous state

(i.e., for «, «c). This has two consequences: First,

continuation methods for finding equilibria converge

only for small supercriticalities, as the jet equilibria

transition discontinuously to the upper branch (see,

e.g., Fig. 6a). This explains the failure to converge to

equilibria reported by Parker and Krommes (2014).

Second, the cusp bifurcation allows the emergence of

jets at subcritical parameter values through a non-

linear flow-forming instability.

The amplitudes of the jets that emerge from the side-

band jet instabilities of the most unstable mode of the

flow-forming instability (i.e., the jets that emerge at

scales nc*6 1/L*) were also compared. The amplitude

predicted by the G–L equation is partially based on the

parabolic approximation to the dispersion relation and,

more specifically, on the curvature of the function of

the growth rate at criticality. This approximation was

found to be valid away from criticality only for non-

dimensional b’ 5, and as a result, the predicted ampli-

tude fails outside this range. We proposed a way to

remedy this discrepancy (at least to some extend) by

using the exact values for the curvature of the growth

rate function for larger supercriticalities instead of the

curvature given by the parabolic approximation (see,

e.g., Fig. 14). With this modification, the side-band jet

amplitudes can be predicted by the G–L dynamics close

to their onset for b,
’
1 and for a wide range of super-

criticalities for b’ 5. For b.
’

20, apart from the G–L

branch, the additional branch of higher-amplitude side-

band jets was also found.

The physical and dynamical processes underlying

the equilibration of the flow-forming instability were

then examined using three methods. The first was the

decomposition of the nonlinear term in the G–L equa-

tion governing the equilibration of the instability in two

terms. One involves the change in the homogeneous

part of the eddy covariance that is required by total

energy conservation. The other involves the vorticity

flux feedback resulting from the interaction of the most

unstable jet with wavenumber nc and the jet with the

double harmonic 2nc that is inevitably generated by the

nonlinear interactions. The second was the method of

Bakas et al. (2015) for separating the contributions of

the various eddies in the induced vorticity fluxes: both

for the linear term in the G–L equation that drives the

instability and also for the nonlinear term that stabilizes

the flow. In this way, the eddies yielding upgradient

fluxes and the eddies yielding downgradient fluxes were

identified along with the change in the upgradient or

downgradient character of the fluxes that occurs as

the jets grow. The third method was the development

of a reduced dynamical system that retains the fully

nonlinear interactions in contrast to the G–L equation.

This reduced system is based on an adiabatic assumption

for the covariance changes and on a Galerkin truncation

of the dynamics retaining only the nc and 2nc compo-

nents of the mean flow that play important roles in the

equilibration of the zonostrophic instability.

For the G–L branch, the central physical process re-

sponsible for the equilibration is the reduction in the

upgradient vorticity flux that occurs through the change

in the homogeneous part of the eddy covariance. For

low values of b, the instability is quickly quenched,

and the jets equilibrate at low amplitude. The reason is

that the contribution of the eddies that induce upgra-

dient fluxes and drive the instability is weakened as the

jets emerge, while simultaneously, the contribution of

the eddies that induce downgradient fluxes is increased.

As a result, the jets equilibrate at a small amplitude

and are supported by the same eddies that drive the

instability.

For large values of b, both the upgradient and the

downgradient contributions are almost equally weak-

ened, thus leading to a slow decay of the growth rate and

to an equilibrated jet with a much larger amplitude.

Because the equilibrium amplitude is large, the stabi-

lizing fluxes that are multiplied by the square of the jet

amplitude in the G–L equation are dominant, and

therefore, at equilibrium, the jet is supported by the

eddies that were initially hindering its growth (these

eddies have phase lines that form small angles with the

meridional but different than zero).

For the new branch of jet equilibria the main physical

process responsible for the equilibration is the interac-

tion of the nc and 2nc components of the emerging flow.

Starting from a finite-amplitude jet with either strong

nc or 2nc components, this nonlinear interaction leads

to rapid growth of the jet and to equilibration of the flow

at amplitudes much larger than the G–L branch and

with a much stronger 2nc component.

Finally, the stability of the equilibrated side-band

unstable jet perturbations was examined. For an infin-

ite domain, zonal jets with scales close to the scale nc of

the most unstable mode of the flow-forming instability

are stable; jets with scales much larger or much smaller

are unstable. The incipient Eckhaus instability of the

harmonic equilibria of the G–L equation is well studied

within the literature of pattern formation, but here,

it was interpreted in a physically intuitive way. The

equilibrated jets have a low amplitude (proportional to

the supercriticality) and therefore do not significantly
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change the structure of the turbulence. As a result, a

mean-flow perturbation on the turbulent flow induces

approximately the same vorticity flux feedback as in

the absence of any jet with the vorticity flux feedback

having a maximum at the most unstable wavenumber.

Therefore, when a dilation–compression phase pertur-

bation is inserted in the equilibrated jet that has a dif-

ferent wavenumber than nc, the vorticity flux feedback

for the dilated or the compressed part of the jet will be

larger, and this part of the jet tends to grow and take

over the whole domain.

The predictions for the stability boundary and the

growth rate of the Eckhaus instability were then com-

pared to the stability analysis of the jet equilibria using

the fully nonlinear S3T system and the methods de-

veloped in Constantinou (2015). For b’ 5, using the

exact values for the curvature of the growth rate func-

tion yields accurate predictions for both the stability

boundary and the growth rate. As the instability de-

velops the unstable side-band jets with smaller (larger)

scale than the jet with wavenumber nc branch (merge)

into the stable nc jet. For low or high values of b,

large quantitative discrepancies occur with a few ex-

ceptions, but the qualitative picture of the dynamics with

branching (merging) into the stable jet equilibrium

remains.

We note that the comparison of the G–L dynamics

with nonlinear S3T integrations, as well as investigation

of the equilibration process with an anisotropic ring

forcing, showed that the results in this study are not

sensitive to the forcing structure.

A question that rises naturally is whether the results

discussed here are relevant for strong turbulent jets.

Strong turbulent jets also undergo bifurcations as the

turbulence intensity increases. There are, however,

qualitative differences compared to weak jets: strong

jets always merge to larger scales, while weak jets can

eithermerge or branch to reach a scale close to nc. Based

on the relevant dynamics in pattern formation, we ex-

pect that the antidiffusive phase dynamics that are in-

volved in the Eckhaus instability will play a significant

role in the secondary instabilities of large-amplitude jets

as well. Moreover, the generalization of the Ginzburg–

Landau dynamics that we have put forward in this study

[i.e., (40)] is able to describe the slow evolution of a

jet that consists of more than just one harmonic. This

generalization of the Ginzburg–Landau dynamics, we

hope, will provide a vehicle for understanding the dy-

namics involving bifurcations of strong turbulent jets.
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APPENDIX A

S3T Formulation and Eigenvalue Relation of
the Flow-Forming Instability

In this appendix we derive the eigenvalue relation

of the flow-forming instability. The eigenvalue relation

was first derived by Srinivasan and Young (2012). Here,

we repeat the derivation mainly to introduce some no-

tation and terminology that will prove to be helpful in

understanding the nonlinear equilibration of the flow-

forming instability.

Consider the S3T system, (5), where

L 5
def

bð›
xa
D21

a 1 ›
xb
D21
b Þ1 2 (A1)

is the operator governing the linear eddy dynamics,

N (u,C)5
def ½2u

a
›
xa
1ð›2yaua

Þ›
xa
D21
a

2 u
b
›
xb
1ð›2ybub

Þ›
xb
D21
b �C, (A2)

is the nonlinear operator governing the eddy–mean flow

interaction, and

R(C)5
def 1

2
½ð›

xa
D21
a 1 ›

xb
D21
b ÞC�a5b

, (A3)

is the eddy vorticity flux driving the mean flow.

The eigenvalue relation is obtained by linearizing the

S3T system, (5), about the homogeneous equilibrium,

(8). Then, introducing the ansatz (9) in the linearized

S3T equations, we obtain

(s1 1)du5R(dC) , (A4a)

ðs1L ÞdC5N (du,Ce). (A4b)

The quantity

f (sjdu,C)5defR
h
ðs1L Þ21N (du,C)

i
(A5)

is the vorticity flux induced by the distortion of the in-

coherent homogeneous eddy equilibrium field with co-

variance C by the mean flow du.

The inversion of the operators and the algebra are

simplified by taking the Fourier decomposition of ~C(h)
n :
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~C(h)
n (x

a
2 x

b
)5

ð
d2k

(2p)2
Ĉ(k)eik�(xa2xb) . (A6)

By inserting (A6) and (8) into (A4b), we obtain

dC5 «ein(ya1yb)/2[G1(sjx
a
2 x

b
)2G2(sjx

a
2 x

b
)] ,

(A7)

where we defined

G6(sjx)5def
ð
d2k

(2p)2
ik

x
k2
7 (k2

6 2 n2)

(s1 2)k2
1k

2
2 1 2ibnk

x
k
y

Q̂(k
6
)

2
eik�x ,

(A8)

with k6 5 k1 n/2, n5 (0, n), and k6 5 jk6j. Inserting
(A7) in (A4a), we obtain (10), in which

f 5

ð
d2k

(2p)2

nk2
x(ky

1 n/2)(12 n2/k2)

(s1 2)k2k2
s 1 2ibnk

x
(k

y
1 n/2)

Q̂(k) , (A9)

with ks 5
def jk1 nj. After substituting the ring forcing

power spectrum, (4), expressing the integrand in polar

coordinates (kx, ky)5 (k cosq, k sinq), and integrating

over k, (A9) becomes

f 5

ð2p
0

N
f
du

(s1 2)D
f
1 ibD

b

, (A10)

with Nf (u)5 n cos2u(sinq1 n/2)(12 n2)/p, Df (q)5
cos2q1 (sinq1 n)2, and Db(q)5 2n cosq(sinq1n/2).

At criticality (s5 0), using the mirror symmetry prop-

erty of the forcing, that is, Q̂(2kx, ky)5 Q̂(kx, ky), the

vorticity flux feedback is rewritten as

f
r
5

ðp/2
0

F (q,n) dq, (A11)

where

F (q,n)5
N

f
(q)D

f
(q)

4D2
f (q)1b2D2

b(q)

1
N

f
(q1p)D

f
(q1p)

4D2
f (q1p)1b2D2

b(q1p)
(A12)

is the contribution to the feedback from the waves

with wavevectors (kx, ky) and (2kx, 2ky), and their

mirror symmetric wavevectors (2kx, ky) and (kx, 2ky),

respectively.

APPENDIX B

Ginzburg–Landau Equation for the Weakly
Nonlinear Evolution of a Zonal Jet Perturbation

about the Homogeneous State

To obtain the G–L equation governing the non-

linear S3T dynamics near the onset of the instability,

we assume that the energy input rate is slightly su-

percritical «5 «c(11m2), where m � 1 measures the

supercriticality. As discussed in section 4, the emerg-

ing jet grows slowly at a rateO(m2) and contains a band

of wavenumbers of O(m) around nc, where nc is the

wavenumber of the jet that achieves neutrality at «c.

Therefore, we assume that the dynamics evolve on a

slow time scale T5m2t and are modulated at a long

meridional scale Y5my. The leading-order jet is u1 5
A(Y, T)eincy. We then expand the velocity and the co-

variance as a series in m:

u5mu
1
(y,Y,T)1m2u

2
(y,Y,T)1O(m3) , (B1a)

C5Ce(x
a
2 x

b
)1mC

1
(x

a
2 x

b
,Y

a
,Y

b
,T)

1m2C
2
(x

a
2 x

b
,Y

a
,Y

b
,T)1O(m3) , (B1b)

along with the linear and nonlinear operators L and

N that depend on the fast and slow meridional coor-

dinates, y and Y, respectively.

We substitute (B1) in (5) and collect terms with

equal powers of m. As discussed in section 4, we

further assume that the amplitude A, as well as C1

and C2, are independent of the slow coordinate Y.

This way, operators L and N also become inde-

pendent of Y. In this case, the order-m0 terms yield

the homogeneous equilibrium. Terms of order m1

yield the balance

A
�
u
1

C
1

�
5
def

 
u
1
2R(C

1
)

LC
1
2N (u

1
,Ce)

!
5 0, (B2)

which can also be compactly written as

u
1
5 «

c
f (0ju

1
,Q/2), (B3)

where f (sju1, Q/2) is the vorticity flux feedback on

the mean flow u1 as defined in (A5). The solution of

(B2) is the eigenfunction of operator A with zero

eigenvalue:

�
u
1

C
1

�
5A(T)

�
eincy

«
c
einc(ya1yb)/2[G1

c (0jxa 2 x
b
)2G2

c (0jxa 2 x
b
)]

�
1 c.c. (B4)
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In (B4) the subscript c on terms G6 denotes that they

are evaluated at n5 nc. At order m2 the balance is

A
�
u
2

C
2

�
5

�
0

N (u
1
,C

1
)1 «

c
Q

�
. (B5)

Equation (B5) has a homogeneous solution that is

proportional to [u1,C1]
T and can be incorporated in

it, and a particular solution. The nonlinear term

N (u1, C1) generates both a double- and a zero-

harmonic mean flow (and covariance). As a result, the

particular solution is

 
u
2

C
2

!
5

 
0

«
c
Q(x

a
2 x

b
)/21C

20
(x

a
2 x

b
,T)

!

1

0@ a
2
A(T)2e2incy

C
22
(x

a
2 x

b
,T)e2inc(ya1yb)/2

1A1 c.c., (B6)

where C20 and C22 are the zero- and double-harmonic

coefficients of the covariance and

a
2
5
def

«
c

2

ð
d2k

(2p)2
in

c
k3
x(k

2 2 n2
c)

k2k2
2 1 ibn

c
k
x
k
y,1

24 k
y,2
(k2

2 2 n2
c)

k2k2
4 1 2ibn

c
k
x
k
y,2

2
k
y
k2
2(k

2 2 n2
c)

k2(k2
22k

2
2 1 2ibn

c
k
x
k
y
)

35Q̂(k)

«
c

ð
d2k

(2p)2

n
c
k2
xky,2

(k2 2 4n2
c)

k2(k2k2
4 1 2ibn

c
k
x
k
y,2
)
Q̂(k)2 1

, (B7)

with ky,j 5
def

ky 1 jnc/2 and k2
j 5
def

k2
x 1 k2

y,j for any integer j.

At order m3 the balance is

A

 
u
3

C
3

!
5

 
2›

T
u
1

2›
T
C

1
1N (u

2
,C

1
)1N (u

1
,C

2
)

!
. (B8)

If the right-hand side of (B8) is an eigenvector of operator

A with zero eigenvalue, then secular terms appear that

produce amean flow and an associated covariance which

diverge at jyj/‘. This occurs when

2›
T
u
1
1R

�
L21

�
2›

T
C

1
1N (u

2
,C

1
)1N (u

1
,C

2
)
��

(B9)

has a nonzero eincy component. The secular terms vanish if

›
T
u
1
1R

	
L21›

T
C

1



5 f (0 j u

1
,Ce)1 f (0j u

1
,C

20
)

1P
1
[ f (0ju

1
,C

22
e2inc(ya1yb)/2

1 c.c. )1 f (0ju
2
,C

1
)], (B10)

where P 1 is the operator that projects onto the har-

monic nc:

P
1
g(y)5

def
ð
‘

g(s)einc(y2s) ds . (B11)

Equation (B10) determines the equilibration of the

most unstable jet. The terms on the right-hand side of

(B10) are nonlinear in u and C, and they are respon-

sible for the equilibration of the flow-forming SSD

instability.

Let us take a closer look into each term of (B10). The

second term on the left-hand side of (B10) is

R
	
L 21›

T
C

1



5 (›

T
A)(c

1
2 1)eincy , (B12)

where

c
1
5 11

«
c

4

ð
d2k

(2p)2

n
c
k2
xky,1

k2
2(k

2 2 n2
c)

(k2k2
2 1 ibn

c
k
x
k
y,1
)
2
Q̂(k). (B13)

The first term on the right-hand side of (B10) is the

vorticity flux feedback on u1 at criticality,

f (0ju
1
,Ce)5Aeincy . (B14)

The second term on the right-hand side of (B10) is

the vorticity flux feedback between the order m1

mean jet u1 and the order m2 homogeneous eddy

covariance C20:

f (0ju
1
,C

20
)52cec3 AjAj2eincy , (B15)

with

cec3 5
def «c

4

ð
d2k

(2p)2
n
c
k4
xk

2
2(k

2
2 2 n2

c)(k
2 2 n2

c)
2

jk2k2
2 1 ibn

c
k
x
k
y,1
j2

3

 
2k

y,1

k2k2
2 1 ibn

c
k
x
k
y,1

2
k
y,21

k2k2
22 1 ibn

c
k
x
k
y,21

2
k
y,3

k2
2k

2
4 1 ibn

c
k
x
k
y,3

!
Q̂(k) . (B16)
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The third term on the right-hand side of (B10) is the

eincy component of the vorticity flux feedback between

the mean jet u1 with wavenumber nc and the mean jet

u2 with wavenumber 2nc with the inhomogeneous eddy

covariance C22 and C1, respectively:

P
1
[f (0ju

1
,C

22
e2inc(ya1yb)/2 1 c.c. )1 f (0ju

2
,C

1
)]

52c1,23 AjAj2eincy , (B17)

with

c1,23 5
def «c

8

ð
d2k

(2p)2

8<: n
c
k4
xk

2(k2 2 n2
c)(k

2
2 2 n2

c)

(k2k2
4 1 2ibn

c
k
x
k
y,2
)(k2k2

2 1 ibn
c
k
x
k
y,1
)

24 k
y,1
(k2

4 2 n2
c)

k2k2
2 1 ibn

c
k
x
k
y,1

2
k
y,3
k2
4(k

2 2 n2
c)

k2(k2
2k

2
4 1 ibn

c
k
x
k
y,3
)

35

1
n
c
k4
xky,1

k2
2(k

2
22 2 n2

c)(k
2 2 n2

c)
2
(k2

22k
2
2 1 ibn

c
k
x
k
y
)

(k2k2
2 1 ibn

c
k
x
k
y,1
)
2
(k2k2

22 1 ibn
c
k
x
k
y,21

)(k2
22k

2
2 1 2ibn

c
k
x
k
y
)

9>=>;Q̂(k)

1 ia
2

«
c

4

ð
d2k

(2p)2

8<: k2 2 4n2
c

k2k2
4 1 2ibn

c
k
x
k
y,2

24 k
y,1
(k2

4 2 n2
c)

k2k2
2 1 ibn

c
k
x
k
y,1

2
k
y,3
k2
4(k

2 2 n2
c)

k2(k2
2k

2
4 1 ibn

c
k
x
k
y,3
)

35
1

k2 2 n2
c

k2k2
2 2 ibn

c
k
x
k
y,1

24 k
y,21

(k2
2 2 4n2

c)

k2k2
22 1 ibn

c
k
x
k
y,21

2
k
y,3
k2
2(k

2 2 4n2
c)

k2(k2
2k

2
4 1 ibn

c
k
x
k
y,3
)

359=;n
c
k3
xQ̂(k) . (B18)

Therefore, using (B12), (B14), (B15), and (B17), we can

reduce (B10) to

c
1
›
T
A5A2 c

3
AjAj2 , (B19)

where c3 5
def

cec3 1 c1,23 .

Finally, we arrive at the G–L equation, (27), by

adding the diffusion term c2›
2
YA on the right-hand side

of (B19), with

c
2
5
def

2
«
c

2

�
›2f

›n2

�
nc ,s50

5
«
c

2

ð
d2k

(2p)2

264k2
xk

2
y,2k

2(k2 2 n2
c)(2k

2 1 ibk
x
)

(k2k2
2 1 ibn

c
k
x
k
y,1
)
3

2
k2
xk

2(k2 2 4n
c
k
y
2 5n2

c)

2(k2k2
2 1 ibn

c
k
x
k
y,1
)
2
1

n
c
k2
xky,1

k2(k2k2
2 1 ibn

c
k
x
k
y,1
)

375Q̂(k) . (B20)

The coefficients c1, c2, and c3 are all functions of b,

nc, and the forcing covariance spectrum Q̂. For the

ring forcing, (4), considered here, they are all real and

positive.

To study the contribution to each of the components

of c3 from the forced waves with phase lines forming an

angle q with the y axis, we substitute the ring forcing

power spectrum, (4). After expressing the integrand in

polar coordinates (kx, ky)5 (k cosq, k sinq) and inte-

grating over k, we obtain

[cec3 , c
1,2
3 , c

3
]5 «

c

ðp/2
0

h
F

ec
,F

1,2
,F

NL

i
dq, (B21)

where F ec, F 1,2, and F NL is the contribution of the

waves with (kx, ky) and (2kx, 2ky) and their mirror

symmetric (2kx, ky) and (kx, 2ky) to the feedbacks, and

F NL 5F ec 1F 1,2. Figure B1 shows these contributions

as a function of wave angle. For b � 1, forced eddies at

all angles contribute positively to both F ec and F 1,2.

The eddies tend to reduce the positive destabilizing

contribution F . 0 at small angles mainly through F 1,2,

while they enhance the negative stabilizing contribution

F , 0 at large angles mainly through F ec. For b � 1,

the dominant contribution comes from F ec, and it fol-

lows roughly the same pattern as F . That is, because of

the reduction in their energy, the eddies tend to reduce

both the upgradient vorticity fluxes of waves with angles

jqj,
’

q0 and the downgradient fluxes of waves with

phase lines at angles jqj.
’
q0, with the latter reduction

being larger. As a result, the nonlinear feedback of

eddies with phase lines at angles jqj.
’

q0 is to enhance

the jet, and as discussed in section 4, these are the eddies

that support the equilibrated jet.
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APPENDIX C

Nonisotropic Ring Forcing

Here we briefly discuss the effect of the forcing an-

isotropy on the obtained results. Consider the general-

ization of forcing (4) with spectrum

Q̂*(k*)5 4pk
f*d(k*2 k

f*)[11 g cos(2q)] , (C1)

where q5
def

arctan(ky*/kx*) and jgj# 1 so that Q̂*$ 0.

Parameter g determines the degree of anisotropy of the

forcing. The isotropic case of (4) is recovered for g5 0. For

example, for g5 1, we get an anisotropic forcing that fa-

vors structures with small jky*j (i.e., favoring structures

like that in Fig. 2a compared to structures like that in

Fig. 2b), as if the vorticity injection was due to baroclinic

growthprocesses.All three coefficients c1, c2, and c3 in (27)

are real and positive for forcing (C1).

We first note that we obtain similar results to the

isotropic-forcing case regarding the comparison of the

G–L predictions to the fully nonlinear dynamics (not

shown). That is, both the existence of the upper-branch

equilibria and the relative quantitative success of the

G–L dynamics (after the proposed modifications) in

predicting the amplitude and instability of the equili-

brated jets are insensitive to forcing structure.

Regarding the physical processes underlying the

equilibration of the jets, we show in Fig. C1a the am-

plitude R0 for the equilibrated most unstable jet as a

function of b. For b � 1, the amplitude has the same

power law as in the isotropic-forcing case shown in

Fig. 8a. However, the amplitude shows different de-

pendence with b for b � 1; however, this regime is of no

interest since, as b/ 0, no zonal jets emerge in (1) any-

way. The relative contribution of the eddy-correction term

and the interaction of nc with the double-harmonic jet in c3
is shown in Fig. C1b. Similarly to the isotropic-forcing

case, for most values of b, the equilibration is dominated

by the interaction of the most unstable jet with the ho-

mogeneous covariance correction.

Last, we note that for anisotropic forcing, a similar

qualitative decomposition of c3 from various forced

waves (as in Fig. 9) also occurs (not shown).

APPENDIX D

Eckhaus Stability of G–L Dynamics

To address the Eckhaus instability of the harmonic jet

equilibria, we rewrite the jet amplitude A in polar form,

(53); we then substitute into (27) and separate real and

imaginary parts to obtain

c
1
›
T
R5 [11 c

2
›2Y 2 c

2
(›

Y
Q)2]R2 c

3
R3 , (D1a)

c
1
R›

T
Q5 2c

2
(›

Y
R)(›

Y
Q)1 c

2
R›2YQ . (D1b)

Assume now an equilibrium jet with constant ampli-

tudeR0(n) and a linearly varying phaseQ5 nY. Consider

small perturbations about this equilibrium jet:

R5R
0
(n)1 r and Q5 nY1f , (D2)

FIG. B1. The contribution of the two feedbacks F ec (solid) and

F 1,2 (dashed) to the nonlinear coefficient F NL for the cases with

(a) b5 0:1 and (b) b5 100.

FIG. C1. As in Fig. 8, but for anisotropic forcing (C1) with g5 1.

(a) The amplitude R0(0)5 1/
ffiffiffiffiffi
c3

p
of the equilibrated most unstable

jet withwavenumber nc as a function ofb. Dashed line shows theb1/3

slope for reference. (b) The coefficient c3 and its decomposition into

the contributions cec3 and c1,23 as a function of b.
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and linearize (D1) to obtain

c
1
›
T
r5 [11 c

2
(›2Y 2 n2)2 3c

3
R2

0]r2 2c
2
R

0
n›

Y
f ,

(D3a)

c
1
R

0
›
T
f5 2c

2
n›

Y
r1 c

2
R

0
›2Yf . (D3b)

Using the ansatz [r, f]5 [r̂, f̂]eiqY1lT , we find that the

eigenvalues l are

l5
n2 2 n2e 2 q2 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2 2 n2e)

2 1 4q2n2
q
c
1
n2e

. (D4)

Instability occurs when l. 0, that is, when

q2 1 2(n2e 2 3n2), 0: (D5)
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