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Wall turbulence with constrained energy
extraction from the mean flow

By A. Lozano-Durán, M. Karp AND N. C. Constantinou†‡

1. Motivation and objectives

Turbulence is the primary example of a highly nonlinear phenomenon. However, there
is evidence that some processes of shear turbulence are controlled by linear dynamics, in
particular the mechanism by which energy is transferred from the mean velocity com-
ponent of the flow to the spatially and temporally evolving perturbations (e.g., Farrell
& Ioannou 1998; Kim & Lim 2000; Jiménez 2013). The goal of the present work is to
investigate the mechanism dominating the energy transfer from the mean flow to the
fluctuating field in wall-bounded turbulence.
It is agreed that the streamwise rolls and streaks are ubiquitous in wall-shear flow

(Klebanoff et al. 1962; Kline et al. 1967) and that they are involved in a quasi-periodic
regeneration cycle (Panton 2001; Adrian 2007; Smits et al. 2011; Jiménez 2012, 2018).
The space-time structure of rolls and streaks is believed to play an important role in sus-
taining and carrying shear-driven turbulence (e.g., Kim et al. 1971; Jiménez & Moin 1991;
Hamilton et al. 1995;Waleffe 1997; Schoppa & Hussain 2002; Jiménez 2012). The ultimate
cause maintaining this self-sustaining cycle, and hence turbulence, is the energy extrac-
tion from the flow mean shear. Within the fluid mechanics community, there have been
several mechanisms proposed as plausible scenarios for how this energy extraction occurs.
Conceptually, we can divide these mechanisms into three categories: (i) modal inflectional
instability of the mean cross-flow, (ii) non-modal transient growth, and (iii) non-modal
transient growth assisted by parametric instability of the time-varying mean cross-flow.
In the first mechanism, it is hypothesized that the energy is transferred from the

cross-flow mean profile U(y, z, t) (y and z are the wall-normal and spanwise directions,
respectively) to the flow fluctuations through a modal inflectional instability (Waleffe
1997) in the form of a corrugated vortex sheet (Kawahara et al. 2003) or of intense
localized patches of low-momentum fluid (Hack & Moin 2018). The second mechanism
involves the collection of fluid near the wall by streamwise vortices that is subsequently
organized into streaks via the lift-up mechanism (Landahl 1975; Butler & Farrell 1992;
Jiménez 2012). In this case, the mean flow, while modally stable, it is able to sup-
port the growth of perturbations for a transient time owing to the non-normality of
the linear operator that governs the evolution of fluctuations. This process is referred
to as non-modal transient growth (e.g., Schmid 2007). Additional studies suggest that
the generation of streaks are due to the structure-forming properties of the linearized
Navier–Stokes operator, independent of any organized vortices (Chernyshenko & Baig
2005), but the non-modal transient growth is still invoked. The transient growth sce-
nario gained even more popularity since the work by Schoppa & Hussain (2002), who
argued that transient growth may be the most relevant mechanism not only for streak
formation but also for their eventual breakdown. Schoppa & Hussain (2002) showed that
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most streaks detected in actual wall-turbulence simulations are indeed modally stable.
Instead, the loss of stability of the streaks is better explained by transient growth of
perturbations that leads to vorticity sheet formation and nonlinear saturation. Finally,
a third mechanism has been proposed in recent years by Farrell & Ioannou (2012) and
Farrell et al. (2016). Farrell and co-workers adopted the perspective of statistical state
dynamics (SSD) to develop a theory for the maintenance of wall turbulence. Through the
SSD framework, it is revealed that the perturbations are maintained by an essentially
time-dependent, parametric, non-normal interaction with the streak, rather than by the
inflectional instability of the streaky flow discussed above (see also Farrell & Ioannou
2017).

The three different mechanisms, each capable of leading to the observed turbulence
structure, are rooted in theoretical or conceptual arguments. Whether the energy trans-
fer from the mean cross-flow to fluctuations in wall-bounded turbulence occurs through
any or a combination of these mechanisms remains unclear. Most of the theories stem
from linear stability theory, which has proven very successful in providing a theoreti-
cal framework to explain the lengths and time scales observed in the flow. However, an
appropriate base flow for the linearization must be selected a-priori depending on the
flow state of interest; this introduces some degree of arbitrariness. Moreover, quantita-
tive results are known to be sensitive to the details of the base state (Vaughan & Zaki
2011). For example, there have been considerable efforts to explain and control turbulent
structure and length scales by linearizing around the turbulent mean profile obtained
by averaging in homogeneous directions and time (e.g., Högberg et al. 2003; del Álamo
& Jiménez 2006; Hwang & Cossu 2010). However, the turbulent mean profile is known
to be always modally stable, and thus mechanisms (i) and (iii) are precluded. The self-
sustained turbulent state is intimately related to the roll–streak structure (e.g., Waleffe
1997), and this suggests that the rolls–streaks should be part of the base flow, as pointed
out by the SSD theory.

Another criticism of linear studies is that turbulence is a highly nonlinear phenomenon,
and a full self-sustained cycle cannot be uncovered from a single set of linearized equa-
tions. For example, in turbulent channel flows, the classic linearization around the mean
velocity profile does not account for the redistribution of energy from the streamwise
velocity component to the cross-flow, which is the prevailing energy transfer on average
(Mansour et al. 1988). In order to capture different energy transfer mechanisms, the base
state for linearization should be selected accordingly. In this regard, eigenmodes or op-
timal solutions should not be taken as representative of the actual flow and, if they are
considered valid, the time and length scales for which linearization remains meaningful
become relevant issues that are barely discussed in the literature.

Here, we attempt to assess the relative importance of the three proposed mechanisms
for energy extraction from the mean flow in wall turbulence. For now, we mainly focus on
whether we can obtain a self-sustained turbulent-like flow when a particular mechanism
is inhibited. First, we present some diagnostics from direct numerical simulations of wall
turbulence. Second, we designed three numerical experiments each of which is dominated
by the energy extraction from modal instability, non-modal transient growth, or transient
growth with parametric instability. The proposed experiments are fully nonlinear systems
to close the feedback loop between mean cross-flow and perturbations, enabling in this
manner the possibility of sustained turbulence. The experiments are accompanied by
some preliminary results.

The Brief is organized as follows: Section 2 contains the numerical details of the sim-
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ulations and the stability analysis of the mean cross-flow. The results are presented in
Section 3, which is further subdivided into three subsections describing the details of the
flow set-up and the corresponding results. Finally, conclusions and future directions are
offered in Section 4.

2. Numerical experiments of turbulent channel flow

2.1. Numerical setup

The baseline case is a plane turbulent channel flow at Reτ = 184, with streamwise,
wall-normal, and spanwise domain sizes equal to L+

x ≈ 337, L+
y ≈ 368, and L+

z ≈ 168,
respectively, where + denotes wall units defined in terms of the kinematic viscosity ν and
friction velocity at the wall uτ . The channel half-height is denoted by h. Jiménez & Moin
(1991) showed that simulations in this domain constitute an elemental structural unit
containing a single streamwise streak and a pair of staggered quasi-streamwise vortices,
which reproduce fairly well the statistics of the flow in larger domains. We refer to this
case as CH180.
We consider three additional numerical set-ups by solving

∂ui

∂t
= −∂uiuj

∂xj
− ∂p

∂xi
+ ν

∂2ui

∂xk∂xk
+ fi,

∂ui

∂xi
= 0, (2.1)

where repeated indices imply summation, (u1, u2, u3) = (u, v, w) are streamwise, wall-
normal, and spanwise velocities with respective coordinates (x1, x2, x3) = (x, y, z), p is
the pressure, and fi = fi(x, y, z, t) is a forcing term aiming to prevent one or several of
the proposed energy injection mechanisms. The functional form of fi is discussed below
for each particular case.
The simulations are performed with a staggered, second-order, finite differences scheme

(Orlandi 2000) and a fractional-step method (Kim & Moin 1985) with a third-order
Runge-Kutta time-advancing scheme (Wray 1990). The solution is advanced in time using
a constant time step such that the Courant–Friedrichs–Lewy condition is below 0.5. The
streamwise and spanwise resolutions are ∆x+ ≈ 6.5 and ∆z+ ≈ 3.3, respectively, and
the minimum and maximum wall-normal resolutions are ∆y+min ≈ 0.2 and ∆y+max ≈ 6.1.
All the simulations were run for at least 100h/uτ after transients. The code has been
validated in previous studies in turbulent channel flows (Lozano-Durán & Bae 2016; Bae
et al. 2018a,b), and flat-plate boundary layers (Lozano-Durán et al. 2018).
We introduce the averaging operators 〈 · 〉x, 〈 · 〉xz, and 〈 · 〉xzt which denote averaging

in x direction, x and z directions, and x, z and t, respectively. The mean velocity profile
is defined as 〈u〉xzt, the mean cross-flow velocity profile as U = 〈u〉x, and the fluctuating
velocities (or perturbations) as u′

1 = u1 − U , u′
2 = u2, and u′

3 = u3.

2.2. Linear stability of the mean cross-flow for case CH180

We investigate the stability of A(U) that governs the linear evolution of the fluctuating
velocity u′ = (u′, v′, w′), i.e.,

∂u′

∂t
= A(U)u′. (2.2)

The analysis is performed for different times t0 by assuming a constant-in-time mean
cross-flow U(y, z, t0). Occasionally, we refer to the stability of operator A(U) simply as
the stability of U . The details of the analysis are provided in the Appendix.
Figure 1(a) shows the time evolution of the maximum growth rate of A denoted by
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Figure 1. (a) The evolution of the maximum growth rate of the mean cross-flow
U(y, z, t). (b) The auto-correlation of the cross-flow 〈U(y, z, t)〉z. The different lines are for
y/h = 0.01, 0.04, 0.10, 0.22, 0.45, 0.80. The arrow indicates increasing y/h.

σmax (largest real part of the eigenvalues of A). The flow is modally unstable 90% of the
time (σmax > 0). Since we have assumed that U does not evolve in time, it is pertinent
to discuss the validity of such an assumption. The time auto-correlation of U is plotted
in Figure 1(b), which reveals that 50% and 100% de-correlation times are attained about
h/uτ and 4h/uτ , respectively. Rigorously, only growth rates with characteristic times
1/σmax much shorter than the characteristic de-correlation time of the mean cross-flow
should be taken as representative of the linear stability of U . The results in Figure 1
show that the flow is modally unstable 80% of the time history if we account for growth
rates larger than uτ/(4h), and 40% of the time for growth rates larger than uτ/h. A
complementary metric to assess the validity of frozen-in-time U is the characteristic
growth rate of U defined as σU = (dEU/dt)/(2EU ) with EU = 〈U2/2〉yz. The ratio
σmax/σU was found to be on average ≈ 10, i.e., the rate of change of U is on average
ten times slower than the maximum growth rate predicted by linear stability analysis. A
tentative conclusion is that the stability analysis of U may not be quantitatively valid,
but the observed stability trends are probably correct and, hence, U supports exponential
growth of disturbances for a non-negligible fraction of the flow history.

3. Experiments for discerning energy transfer mechanisms and preliminary
results

3.1. Primary energy injection by modal instability

The effect of modal instability is assessed by freezing in time the mean cross-flow for
case CH180 at time t0 when U(y, z, t) is modally unstable. At each time step, f1 is
computed such that U(y, z, t) = U(y, z, t0) with f2 = f3 = 0. Additionally, 〈u〉xzt is
set to the same value as in case CH180. The lack of time evolution in U eliminates
the ability of energy extraction through parametric instability. The cross-flow can still
support transient growth, but the algebraic growth of perturbations is expected to be
overcome by the faster exponential growth provided by the modal instability of U . A total
number of 100 uncorrelated flow fields with modally unstable U(y, z, t0) were selected to
run simulations. Note that as the base flow is frozen in time, the assumption of constant
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(a) (b)

Figure 2. Experiment with fixed, unstable U : (a) Instantaneous velocity field in a z − y plane
at x = 0h. (b) Instantaneous streamwise velocity in a x− z plane at y = 0.1h. Colors represent
streamwise velocity and arrows are cross-flow velocities. Velocities are scaled in wall units of the
baseline case.

Figure 3. Experiment with fixed, unstable U : (a) Root-mean-squared fluctuating velocities for
case CH180 (lines) and channel with frozen-in-time modally unstable mean cross-flow (symbols).
Lines and symbols are: dashed and squares, streamwise; dash-dotted and circles, wall-normal;
dotted and triangles, spanwise velocity fluctuations. (b) Time evolution of the energy associated
with streamwise Fourier modes, ûikû

∗
ik, for i = 1, 2, 3 and k = 0, 1, 2 at y = 0.1h, where ∗

denotes complex conjugation. The mean cross-flow is frozen at tuτ/h = 10 (dashed black line).

U invoked for the stability analysis is rigorously satisfied. As an example, Figure 2 shows
the instantaneous velocity field for one case after transients.

The resulting root-mean-squared (rms) fluctuating velocities for the statistical steady
state are shown in Figure 3(a), together with those from CH180. Unsurprisingly, tur-
bulent channel flows with persistent modally unstable mean cross-flow are capable of
sustaining turbulence. The new flow reaches statistical equilibrium at a higher level of
turbulence intensities owing to the additional mean tangential stress introduced by f1,
but the trends observed in Figure 3(a) are consistent with CH180 in terms of relative
magnitude and wall-normal behavior. The transition to the new steady state is evidenced
by Figure 3(b), which shows the time evolution of a selection of streamwise Fourier com-
ponents before and after freezing the mean cross-flow. The adaptation time of turbulence
upon imposition of constant U is roughly h/uτ , consistent with the lifespan of large eddies
in the flow (Lozano-Durán & Jiménez 2014).

The results reported above correspond to one particular U(y, z, t0), but the conclusions
are found to be robust for all mean cross-flows examined. Finally, it is important to
highlight that while maintaining mean cross-flow in a modally unstable state does lead
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to sustained turbulence, whether this new state is similar in nature to unforced wall
turbulence is an important question that is not investigated here and should be carefully
addressed in future studies.

3.2. Energy injection by transient growth

The effect of non-modal transient growth as a main cause for energy injection is assessed
by following a similar approach to that in Section 3.1. In this case, the cross-flow U
from CH180 is frozen at the instant t0, when the flow is modally stable. The mean flow
〈u〉xzt is set to the same value as in case CH180. The set-up disposes of energy transfers
that are due to both modal and parametric instabilities, while maintaining the transient
growth of perturbations. The expected scenario consistent with sustained turbulence
(e.g., Schoppa & Hussain 2002) is the non-modal amplification of perturbations until
saturation followed by nonlinear scattering and generation of new disturbances. However,
plain visual inspection of the velocity field in Figure 4 reveals that this is not the case,
and turbulence is distinctly lessened.
The rms fluctuating velocities for one experiment are shown in Figure 5(a). Turbulence

reaches a quasi-laminar state with residual cross-flow turbulence intensities and non-
negligible streamwise fluctuations required to support the prescribed U(y, z, t0). The
exponential decay of Fourier modes after freezing the mean cross-flow is clearly seen in
Figure 5(b). The simulation was repeated for 20 different modally stable mean cross-flows
U(y, z, t0) and all cases decayed similarly to the example discussed above.

3.3. Energy injection by transient growth with parametric instability

The maintenance of turbulence exclusively by transient growth with parametric insta-
bility is analyzed by a time-dependent mean cross-flow that is altered to be free of
modal instabilities. To that end, we introduce the linear damping f1 = −µ(U − 〈u〉xz),
f2 = f3 = 0, where the parameter µ is a coefficient to be determined such that U is
modally stable for all times. The goal is to investigate the existence of self-sustained wall
turbulence without any energy extraction from the mean cross-flow via modal instabili-
ties.
Ideally, if ∂u′/∂t = A(µ)u′ is the linear equation governing the fluctuating velocities,

the drag coefficient µ should be adjusted at each time step to bring the most unstable
eigenvalue of A to neutrality. In the present preliminary version of the work, we adopted
a simplified approach where the value of µ is set constant in time. Then, a campaign of
channel flow simulations driven by a constant streamwise mass flux was performed for
values of µ ranging from 0 up to µc ≈ 1.3uτ/h, above which the flow laminarizes.
The mean and rms velocity profiles for µ = 1.4uτ/h > µc are shown in Figures 6(a,b).

The flow is laminar with zero velocity fluctuations. Figure 6(c) shows the time history
of the most unstable growth rate of A, which is constant and negative after transients.
Figures 6(d,e,f) are equivalent to Figures 6(a,b,c) but for µ = 1.2uτ/h < µc, which is the
maximum value of µ that allows for sustained turbulence in a statistical steady state. The
rms velocities are weaker with respect to case CH180, but they still resemble qualitatively
those encountered in real turbulence. Although not shown, the de-correlation times for U
are similar to those for case CH180. Figure 6(f) shows that U(z, y, t) is modally unstable
∼60% of the time based on σmax > uτ/h/4. The percentage is below the value obtained
for case CH180 (∼80%), which suggests that not all the modal instabilities are necessary
to maintain turbulence with realistic one-point statistics.
Finally, a different numerical experiment is performed by including a linear damping

into the equation for the fluctuating velocities, i.e., fi = −µ′u′
i, i = 1, 2, 3. In this new
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(a) (b)

Figure 4. Experiment with fixed, stable U : (a) Instantaneous velocity field in a z − y plane at
x = 0h. (b) Instantaneous streamwise velocity in a x − z plane at y = 0.1h. Colors represent
streamwise velocity and arrows are cross-flow velocities. Velocities are scaled in wall units of the
baseline case. Arrows in panel (a) are amplified by a factor of 10.

Figure 5. Experiment with fixed, stable U : (a) Root-mean-squared fluctuating velocities for
case CH180 (lines) and channel with frozen-in-time modally stable mean cross-flow (symbols).
Lines and symbols are: dashed and squares, streamwise; dash-dotted and circles, wall-normal;
dotted and triangles, spanwise velocity fluctuations. (b) Time evolution of the energy associated
to streamwise Fourier modes, ûikû

∗
ik, for i = 1, 2, 3 and k = 0, 1, 2 at y = 0.1h, where ∗ denotes

complex conjugate. The mean cross-flow is frozen in time at tuτ/h = 29 (dashed black line).

set-up, we directly target the eigenvalues of A, whose real parts are reduced exactly by
µ′ compared to the eigenvalues of A for CH180. The maximum value of µ′ that allows
for sustained turbulence is found to be µ′

c ≈ 1uτ/h. The resulting flow statistics for µ′

that is marginally above and marginally below µ′
c (Figure 7) yield similar conclusions as

those reported above: turbulence only survives when A is modally unstable (based on
σmax > uτ/h/4) for a substantial fraction of the time simulated, in this case for ∼50%
of the time when µ′ = 0.9h/uτ < µ′

c.

4. Conclusions

We have studied the mechanism of energy injection from the mean flow to the fluctuat-
ing velocity necessary to maintain wall turbulence. This process is believed to be correctly
represented by the linearized Navier–Stokes equations, and three potential linear mecha-
nisms have been considered, namely, modal instability of the streamwise mean cross-flow
U(y, z, t), non-modal transient growth, and non-modal transient growth supported by
parametric instability.
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Figure 6. Experiment with linear drag on U : (a,d) Mean velocity profile for case CH180
(black dashed line) and channel with linear damping −µ(U − 〈u〉xz) (solid red line). (b,e)
Root-mean-squared fluctuating velocities for case CH180 (lines) and channel with −µ(U−〈u〉xz)
(symbols). Lines and symbols are: dashed and squares, streamwise; dashed-dotted and circles,
wall-normal; dotted and triangles, spanwise velocity fluctuations. (c,g) Time evolution of the
maximum growth rate of A for channel flow with linear damping −µ(U − 〈u〉xz). (a,b,c) are for
µ = 1.4uτ/h > µc and (d,e,f) are for µ = 1.2uτ/h < µc.

We have designed three numerical experiments of plane turbulent channel flow with ad-
ditional forcing terms aiming to neutralize one or various linear mechanisms for energy
extraction. To assess the effect of modal instabilities and non-modal transient growth
of U(y, z, t), we have computed turbulent channel flows with prescribed modally sta-
ble/unstable mean cross-flows frozen in time. In addition, transient growth with para-
metric instability was evaluated by adding a linear damping to the momentum equation
of the mean cross-flow or to the fluctuation equations. This additional linear damping
was chosen accordingly to render any modal instabilities stable and thus preclude energy
transfer to the fluctuations from modal instabilities.
From our preliminary experiments, only cases with mean cross-flows capable of sup-

porting modal instabilities were found to sustain turbulence. However, the question
whether such a new turbulence complies with the same physical mechanisms as those
occurring in actual (unforced) turbulence remains unanswered. On the other hand, cases
exclusively supported by transient growth decayed until laminarization. For this prelim-
inary study, this outcome should not be taken as a demonstration that transient growth
alone aided or not by parametric instability is unable to maintain turbulence in actual
flows, but just as an indication that we could not find a self-sustained turbulent system
without the contribution of modal instabilities.
Future work will be devoted to the careful design of modified turbulent channel flows

providing clear causal inference and quantification of the energy injection mechanisms
in wall turbulence. Moreover, if indeed modal instability (or other) is the dominant
mechanism responsible for transferring energy from the mean flow to the fluctuations,
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Figure 7. Experiment with linear drag on u′: (a,d) Mean velocity profile for case CH180 (black
dashed line) and channel with linear damping −µ′u′

i (solid red line). (b,e) Root-mean-squared
fluctuating velocities for case CH180 (dashed lines) and channel with −µ′u′

i (symbols). Lines
and symbols are: dashed and squares, streamwise; dashed-dotted and circles, wall-normal; dotted
and triangles, spanwise velocity fluctuations. (c,g) Time evolution of the maximum growth rate
of A for channel flow with linear damping −µ′u′

i. (a,b,c) are for µ′ = 1.1uτ /h > µ′
c and (d,e,f)

are for µ′ = 0.9uτ/h < µ′
c.

it should be detectable from unforced wall-turbulence simulation (e.g., CH180), and
additional efforts will be carried on to analyze DNS data using non-intrusive techniques.
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Appendix: Stability analysis

This appendix describes the linear stability analysis of a base mean cross-flow, which
is inhomogeneous in two spatial directions. We assume the following velocity field

u = (U(y, z), 0, 0) + εud, (A 1)

where the base flow U is assumed parallel, steady, and streamwise independent, and ud

is the disturbance. Substituting the velocity field into the incompressible Navier–Stokes
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equations and neglecting the nonlinear terms, we obtain

∂ud

∂x
+

∂vd
∂y

+
∂wd

∂z
= 0, (A 2a)

∂ud

∂t
+ U

∂ud

∂x
+ vd

∂U

∂y
+ wd

∂U

∂z
= −∂pd

∂x
+ ν∇2ud, (A 2b)

∂vd
∂t

+ U
∂vd
∂x

= −∂pd
∂y

+ ν∇2vd, (A 2c)

∂wd

∂t
+ U

∂wd

∂x
= −∂pd

∂z
+ ν∇2wd, (A 2d)

where pd is the disturbance pressure. The boundary conditions are no slip and imper-
meability on the channel walls. In the current study, the stability analysis has been
performed only on a half-channel. Therefore, no slip and impermeability were imposed
on the channel center, as we are interested only in the instabilities close to the wall.
The base flow is periodic along the spanwise direction, and it is often useful to describe

it in terms of a truncated Fourier expansion. In such cases, a Floquet analysis is performed
with respect to the span (see, e.g., Karp & Cohen 2014). Nevertheless, for an arbitrary
base flow, such as the one considered here, it is not beneficial to invoke Floquet theory.
Therefore, we assume the following form for the disturbance,

qd = q̂d(y, z)e
λt+iαx, (A 3)

where qd = (ud, vd, wd, pd)
T, α is the streamwise wavenumber, and λ is the temporal

complex eigenvalue. The eigenvalue can be written as λ = σ+ iω, where σ is the growth
rate and ω is the frequency. The linearized equations above are discretized along both
inhomogeneous directions using spectral methods. Along the wall-normal direction, a
Chebyshev grid is used for y ∈ [0, h], and along the spanwise direction a Fourier grid is
used for z ∈ [0, Lz].
Substituting the disturbance into the linearized equations, they can be rearranged as

a generalized eigenvalue problem for the calculation of λ,



Dx Dy Dz O
C Uy Uz Dx

O C O Dy

O O C Dz







ũd

ṽd
w̃d

p̃d


 = λ




O O O O
−I O O O
O −I O O
O O −I O







ũd

ṽd
w̃d

p̃d


 . (A 4)

Here, I is the identity matrix, O is a zero matrix, ũd (and similarly ṽd, w̃d, p̃d) is a
one-dimensional representation of a two-dimensional vector

ũd =
(
ûd(y, z1), ûd(y, z2), . . . , ûd(y, zNz)

)T
, (A 5)

and the matrices C , Uy , Uz , Dx , Dy , and Dz are given by

C = iα diag (U)− ν
(̄
Iz ⊗ D̄2

y + D̄2
z ⊗ Īy − α2 Īz ⊗ Īy

)
, (A 6a)

Uy = diag
{(̄

Iz ⊗ D̄y

)
U
}
, (A 6b)

Uz = diag
{(

D̄z ⊗ Īy
)
U
}
, (A 6c)

Dx = iα Īz ⊗ Īy , (A 6d)

Dy = Īz ⊗ D̄y , (A 6e)

Dz = D̄z ⊗ Īy , (A 6f )
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where ⊗ is the Kronecker product and U is a one-dimensional representation of U (sim-
ilarly to ũd). The matrices Īy and Īz are identity matrices of dimensions Ny × Ny and
Nz×Nz, respectively, and D̄y and D̄z are matrices that represent derivation with respect
to the y and z coordinates, respectively. The eigenvalue problem is solved numerically
using the software Matlab, with Ny = 101 and Nz = 32. All the calculations were
conducted for α = 2π/Lx.
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