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This paper explores decaying turbulence beneath surface waves that is initially isotropic and8
shear-free. We start by presenting phenomenology revealed by wave-averaged numerical9
simulations: an accumulation of angular momentum in coherent vortices perpendicular10
to the direction of wave propagation, suppression of kinetic energy dissipation, and the11
development of depth-alternating jets. We interpret these features through an analogy with12
rotating turbulence (Holm 1996), wherein the curl of the Stokes drift, ∇ × 𝒖S, takes on the13
role of the background vorticity (for example, ( 𝑓0 + 𝛽𝑦) 𝒛 on the beta plane). We pursue14
this thread further by showing that a two-equation model proposed by Bardina et al. (1985)15
for rotating turbulence reproduces the simulated evolution of volume-integrated kinetic16
energy. This success of the two-equation model — which explicitly parametrizes wave-driven17
suppression of kinetic energy dissipation — carries implications for modeling turbulent18
mixing in the ocean surface boundary layer. We conclude with a discussion about a wave-19
averaged analogue of the Rossby number appearing in the two-equation model, which we20
term the “pseudovorticity number” after the pseudovorticity ∇ × 𝒖𝑆 . The pseudovorticity21
number is related to the Langmuir number in an integral sense.22

1. Introduction23

Surface waves enhance near-surface ocean turbulent mixing, especially in summertime and24
in the tropics where boundary layers are often shallow, sunny, windy, and wavy (Sullivan &25
McWilliams 2010). Turbulence driven by surface wind stress and affected by surface waves26
is usually called “Langmuir turbulence” (McWilliams et al. 1997), implying a connection27
between wave-catalyzed turbulent coherent structures and the structure of a laminar, wave-28
catalyzed shear instability that Craik & Leibovich (1976) called “Langmuir circulation”.29

In this paper we investigate decaying turbulence beneath surface waves using numerical30
simulations of the wave-averaged Navier–Stokes equations (Craik & Leibovich 1976).31
Decaying turbulence is fundamental (Batchelor 1953) but has seen little attention beneath32
surface waves. Most work on wave-modified turbulence involves strong ambient shear and33
also invokes surface forcing by winds and buoyancy fluxes (McWilliams et al. 1997; Polton34
et al. 2005; Harcourt & D’Asaro 2008; Van Roekel et al. 2012; Large et al. 2019; Fan et al.35
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2020). We show that some of the essential phenomenology of turbulence beneath surface36
waves is revealed by focusing on the evolution of unforced, initially-shear-free turbulence.37

We interpret the results of these simulations in section 2, leveraging an analogy between38
wave-averaged and rotating dynamics first proposed by Holm (1996). Like rotation, surface39
waves catalyze a transfer of energy from smaller to larger scales (hereby referred to as40
‘inverse cascade’) within the turbulent flow beneath the waves — without exchanging energy41
with the flow — and cause angular momentum to accumulate in coherent vortices, while42
suppressing kinetic energy dissipation. This contrasts our case with the interaction between43
balanced flows and internal waves, wherein non-catalytic interactions can occur even for44
steady wave fields (Thomas 2023). Moreover, unlike in shear-driven Langmuir turbulence45
where coherent structures tend to align with the direction of the Lagrangian-mean shear46
(Sullivan & McWilliams 2010; Van Roekel et al. 2012), the coherent vortices that we47
observe forming in the absence of shear are instead oriented perpendicular to the direction48
of surface wave propagation. We also observe the development of alternating jets, as in49
beta-plane turbulence.50

In section 3 we further the analogy by adapting a phenomenological model proposed by51
Bardina et al. (1985) for decaying rotating turbulence to the wave-averaged case, showing that52
the model also describes the decay of volume-averaged kinetic energy beneath surface waves.53
This model suggests a new way to incorporate wave effects into two-equation models (for54
example, Harcourt (2015)) by explicitly representing the surface-wave-driven suppression of55
kinetic energy dissipation.56

We conclude in section 4 by proposing a new non-dimensional number to characterize the57
importance of surface waves for the evolution of turbulent flows analogous to the Rossby58
number. We show how this new number may be related to the Langmuir number for wind-59
forced cases, while also generalizing to purely convective or decaying situations.60

2. Simulations of decaying turbulence beneath surface waves61

The incompressible, inviscid momentum equation in the presence of a background vortic-62
ity 𝛀,63

𝜕𝑡𝒖 + (𝒖 · ∇) 𝒖 +𝛀 × 𝒖 + ∇𝑝 = 0 , with ∇ · 𝒖 = 0 , (2.1)64

describes both rotating flows without surface waves and also wave-averaged flows beneath65
steady, horizontally-uniform surface-wave fields (see for example Craik & Leibovich 1976;66
Suzuki & Fox-Kemper 2016; Holm 1996; Wagner et al. 2021). In the wave-averaged67
case, 𝑝 and 𝒖 in (2.1) represent the Eulerian-mean kinematic pressure and Lagrangian-mean68
velocity, respectively. The Lagrangian-mean velocity is the “total” velocity responsible for69
the advection of mass, momentum, tracers, and particles, and may be decomposed into70
an Eulerian-mean component plus “Stokes drift” correction (van den Bremer & Breivik71
2018; Vanneste & Young 2022, see for example). The wave-averaged momentum equation72
may be derived by asymptotic expansion leveraging a time-scale separation between rapidly73
oscillating surface waves and the slower evolution of 𝒖 (Craik & Leibovich 1976; Leibovich74
1980; Vanneste & Young 2022). The appearance of surface waves in (2.1) as an effective75
Coriolis force is discussed by Holm (1996).76

For rotating flows, the background vorticity 𝛀 in (2.1) takes the form77

𝛀rotating = 𝑓 𝒛 , (2.2)78

where 𝑓 is the Coriolis parameter and 𝒛 is the axis of rotation. For wave-averaged flows79
beneath a uniform surface wave field propagating in the 𝑥 direction, the background80
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vorticity 𝛀 is alternatively81

𝛀waves = −∇ × 𝒖S = −𝜕𝑧𝑢S �̂� , (2.3)82

where 𝒖S = 𝑢S(𝑧) �̂� is the surface wave Stokes drift (Craik & Leibovich 1976; Suzuki &83
Fox-Kemper 2016; van den Bremer & Breivik 2018; Vanneste & Young 2022). We refer to84
∇ × 𝒖S — the curl of the surface-wave pseudomomentum 𝒖S (Andrews & McIntyre 1978)85
— as the “pseudovorticity”. In the context of equation (2.1), the main difference between86
rotating turbulence and turbulence beneath steady surface waves is the spatial structure of87
𝜕𝑧𝑢

S: in shallow water 𝜕𝑧𝑢S ∼ 𝑧 to leading-order, while 𝜕𝑧𝑢S decays exponentially for deep88
water waves.89

2.1. Coherent structures in rotating and wave-averaged turbulence90

To illustrate the similarity of rotating turbulence and turbulence beneath surface waves we91
conduct large eddy simulations of equation (2.1) with implicit grid-scale dissipation in a unit92
cube with three choices for 𝛀,93

𝛀rotating = 1
4 𝒛 , 𝛀waves = − 1

2 𝑧 �̂� , and 𝛀isotropic = 0 . (2.4)94

Above, 1
2 𝑧 is the pseudovorticity associated with a shallow water wave in 𝑧 ∈ [0, 1] with95

Stokes drift 𝒖S ≈ 1
2
(
1 + 1

2 𝑧
2) �̂�. The domain is horizontally-periodic in 𝑥, 𝑦, and we use96

free-slip boundary conditions at the top and bottom boundaries in 𝑧. Implicit dissipation of97
grid-scale kinetic energy is provided by an upwind-biased, nominally 9th-order Weighted,98
Essentially Non-Oscillatory advection scheme (Pressel et al. 2017; Shu 2020; Silvestri99
et al. 2024). Our implicit dissipation method allows us to simulate decaying turbulence100
that undergoes a transition from isotropic to nearly two-dimensional dynamics.101

Following previous isotropic homogeneous turbulence studies (e.g., Orszag & Patterson102
(1972)), we produce an initial condition for the three simulations by conducting a preliminary103
simulation initialized with kinetic energy spectrum104

1
2 |�̂� |

2 ∼ |𝑲 |2 exp
{
−2 ( |𝑲 |/𝐾𝑖)2} , (2.5)105

where �̂� is the Fourier transform of 𝒖, 𝑲 is the Fourier wavenumber vector, and 𝐾𝑖 = 32×2𝜋106
is the 32nd wavenumber in the domain. The amplitude of the preliminary initial condition is107
scaled to produce an initial root-mean-square vorticity108 √︄∫

|𝝎|2 d𝑉 def
= 𝜔rms(𝑡 = −𝑡0) = 1000 , where 𝝎

def
= ∇ × 𝒖 = 𝜉 �̂� + 𝜂 �̂� + 𝜁 𝒛 . (2.6)109

The initial simulation is run for a duration 𝑡0 until 𝑡 = 0, defined as the time when the110
mean-square vorticity has decayed to 𝜔rms(𝑡 = 0) = 10. The velocity field is then saved111
to disk to be used as an initial condition in subsequent runs starting from 𝑡 = 0. The112
simulations are conducted with Oceananigans (Ramadhan et al. 2020; Wagner et al. 2025),113
which discretizes (2.1) with a finite volume method. Scripts that reproduce simulations in114
this paper are stored on GitHub; see the Data availability statement.115

We focus first on the evolution of the relative vorticity 𝝎 defined in equation (2.6).116
Figure 1 shows vorticity components for the three cases after 𝑡 = 1000 time units: figure 1(a)117
shows vertical vorticity 𝜁 , while while figures 1(b) and (c) show the horizontal vorticity 𝜂.118
Figure 1(a) and (b) for rotating and wave-affected turbulence, respectively, both exhibit the119
formation of coherent structures and relatively greater vorticity levels than the unorganized,120
small amplitude isotropic vorticity in figure 1(c). Figure 2 is similar, except that figure 2(a)121
shows 𝜁 in rotating turbulence in the 𝑥𝑦-plane, while figures 2(b) and 2(c) show 𝜂 in the 𝑥𝑧122
plane for wave-averaged and isotropic turbulence, respectively.123
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Figure 1: Vorticity in simulations decaying turbulence with 5123 finite volume cells in a
unit cube after 1000 time units. (a) Vertical relative vorticity 𝜁 = 𝒛 · (∇ × 𝒖) in rotating

turbulence with Coriolis parameter 𝑓 = 1/4, (b) Horizontal relative vorticity
𝜂 = �̂� · (∇ × 𝒖) in turbulence beneath surface waves with Stokes shear 𝜕𝑧𝑢S = −𝑧/2, and

(c) 𝜂 in isotropic turbulence.

Figure 2: As figure 1 but showing (a) 𝜁 for rotating turbulence in the 𝑥𝑦-plane; (b) 𝜂 for
turbulence beneath surface waves in the 𝑥𝑧-plane, (c) 𝜂 for isotropic turbulence in the

𝑥𝑧-plane.

2.2. Zonation and the analogy of wave-averaged turbulence with beta-plane turbulence124

Note that turbulence beneath shallow water waves is homeomorphic to 𝛽-plane turbulence125
Rhines (1975) — with 𝛀𝛽-plane = 𝛽𝑦 𝒛 — modulo on the 𝑥𝑧 plane instead of on the 𝑥𝑦 plane126
and with the Stokes drift curvature 𝜕2

𝑧𝑢
S playing the role of 𝛽. One of the most striking results127

of this similarity is the propensity for turbulence beneath surface waves to develop “zonal jets”128
— coherent, alternating jets in the direction of surface wave propagation (and perpendicular129
to the pseudovorticity direction). This similarity allows us, therefore, to borrow intuition on130
structure formation in 𝛽-plane turbulence (for example, Huang & Robinson (1998); Farrell131
& Ioannou (2007); Srinivasan & Young (2012); Constantinou et al. (2014); for an overview132
see Constantinou (2015); Farrell & Ioannou (2019); Marston & Tobias (2023).)133

Focus on Fluids articles must not exceed this page length
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Figure 3: The evolution of cross-wave momentum 𝑣 in the 𝑥𝑧-plane (6 panels on the left)
and horizontally-averaged along-wave-momentum 𝑢 (2 panels on the right) at 𝑡 = 40, 400
and for three wave fields: “deep” (left panel, red lines), “medium” (middle panel, orange
lines), and “weak” (right panel, blue lines). Dashed lines in the top right plot show the

Stokes drift profile (normalized) for each case. The “medium” waves case uses the
background vorticity 𝛀waves in (2.4). Both the 𝑢 profiles and the light gray “zero lines” are

spaced apart by the scale 𝛿𝑢 = 10−2. The 𝑢-profiles at right show the development of
depth-alternating jets, including a counter-wave surface jet for all cases. The 𝑣-slices are
similar between the three cases at early times, but at later times exhibit strong, localized
wave-impacts in their respective regions of significant Stokes shear. Note that 𝑣 plays the
role that vertical velocity plays in rotating turbulence. Note that the Rhines scale may be
estimated as ℓ𝑅 = 2𝜋

√︃
𝑈/

��𝜕2
𝑧 𝑢

S
��. With

��𝜕2
𝑧 𝑢

S�� = 1
2 and𝑈 ≈ 10−2 for the medium waves

case, for example, we estimate ℓ𝑅 ≈ 0.8, consistent with the jet spacing apparent on the
right panels.

To illustrate this, we consider two additional cases with background vorticity134

𝛀deep = − 1
4 e8(𝑧−1) �̂� . and 𝛀weak = − 1

8 𝑧 �̂� . (2.7)135

These and subsequent simulations use 3843 finite volume cells to reduce their computational136
expense for the purpose of performing longer simulations to 𝑡 = 104.137

Figure 3 shows time-series of the 𝑦-momentum 𝑣, which plays the role that vertical138
velocity plays in rotating turbulence. The right side of figure 3 shows vertical profiles of the139
horizontally-averaged 𝑥-momentum,140

𝑈 (𝑧, 𝑡) def
=

∫
𝑢 d𝑥 d𝑦 . (2.8)141

These 𝑈-profiles exhibit the development of depth-alternating jets, which are most promi-142
nently exhibited by the zig-zagging structure in the medium waves case on the right side143
of figure 3. To our knowledge, depth-alternating jets have not been observed in shear-free144
wave-modified turbulence. Comparing the slices of 𝑣 for medium and weak waves reveals145
how the medium-strong waves induce a strong inverse cascade, more coherent vortices, and146
fewer small-scale motions than the weak waves.147
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3. Phenomenological model for the evolution of kinetic energy148

We turn to the evolution of the domain-averaged kinetic energy,149

𝑘 (𝑡) def
=

∫
1
2

(
𝑢2 + 𝑣2 + 𝑤2

)
d𝑉 . (3.1)150

Figure 4 plots time-series of the normalized kinetic energy 𝑘 (𝑡)/𝑘 (𝑡 = 0) for the three151
cases presented in figure 1, as well as three additional cases that use 𝛀 = 𝑆𝑧 �̂� with 𝑆 =152
(1/2, 1/8, 1/16). Figure 4 illustrates another common feature to rotating turbulence and153
turbulence beneath surface waves: a suppression of the kinetic energy dissipation rate,154
such that at long times the kinetic energy levels off. We theorize that the suppression of155
dissipation is linked to the formation of coherent structures: rather than cascading to the grid156
scale, where dissipation can occur, kinetic energy accumulates in much larger-scale coherent157
structures. Similar to the dynamics of two-dimensional turbulence McWilliams (1984), the158
concentration of kinetic energy in coherent structures suppresses the forward cascade of159
kinetic energy.160

Inspired by Bardina et al. (1985), we model the kinetic energy 𝑘 (𝑡) with the phenomeno-161
logical two-equation system162

d
d𝑡
𝑘 = −𝜖 , (3.2)163

d
d𝑡
𝜖 = −𝑎 𝜖

2

𝑘
− 𝑏Ω𝜖 , (3.3)164

where 𝜖 (𝑡) describes the dissipation rate of 𝑘 , Ω is a characteristic scale for 𝛀, and 𝑎 and 𝑏165
are𝑂 (1) free parameters. Equation (3.2) follows directly from

∫
𝒖 · (2.1) d𝑉 after accounting166

for the effect of the implicit numerical dissipation in our simulations. (Alternative models167
that include surface-wave-associated source terms for turbulent kinetic energy, such as the168
one proposed by Axell (2002), are inconsistent with (2.1).) The catalytic nature of rotation169
or surface waves may also be deduced from the fact that 𝛀 does not appear in equation (3.2).170
The first term in (3.3) models the destruction of 𝜖 on the turbulent time-scale 𝜏 = 𝑘/𝜖 , since171
d𝜖/d𝑡 ∼ −𝜖/𝜏 when Ω𝜖 ≪ 𝜖/𝜏.172

The second term in (3.3) models the suppression of kinetic energy dissipation — or173
alternatively, the growth of the correlation length due to the coalescence of coherent structures174
— by the background vorticity Ω. The relative importance of “intrinsic” destruction of 𝜖 and175
background-vorticity-induced destruction of 𝜖 is measured by the non-dimensional number176
Ω𝜏 = Ω𝑘/𝜖 , whose significance is revisited in section 4. We note that (3.2) is exact —177
and unchanged whether or not the system is rotating or modulated by surface waves. The178
modulation of turbulence by surface waves is therefore fundamentally “catalytic”, and can179
only affect 𝑘 indirectly by changing (3.3).180

The free parameter 𝑎 may be constrained by considering isotropic turbulence with Ω = 0.181
In this case we expect the turbulent kinetic energy to decay according to 𝑘 ∼ 𝑡−6/5 (Saffman182
1967), which implies d

d𝑡 𝑘 = − 6
5
𝑘
𝑡
, and thus in turn, via (3.2), leads to183

𝜖 =
6
5
𝑘

𝑡
, so that

d
d𝑡
𝜖 = −66

25
𝑘

𝑡2
. (3.4)184

Inserting (3.4) into (3.3) yields 𝑎 = 11/6.185
From (3.2)–(3.3) we deduce that the rate of change of the combination log 𝜖 − 𝑎 log 𝑘 is186

proportional to 𝑏, that is,187

d
d𝑡

(log 𝜖 − 𝑎 log 𝑘) = −𝑏Ω . (3.5)188
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Integrating (3.5) produces189

𝜖

𝜖0
=

(
𝑘

𝑘0

)𝑎
e−𝑏Ω𝑡 , (3.6)190

where 𝜖0 and 𝑘0 are the dissipation and kinetic energy at 𝑡 = 0 respectively. If we insert the191
expression for the dissipation 𝜖 (𝑡) from (3.6) into (3.2) and integrate in time, we obtain192

𝑘

𝑘0
=

[
1 + 1

𝑛𝑏Ω

𝜖0
𝑘0

(
1 − e−𝑏Ω𝑡

)]−𝑛
, (3.7)193

where 𝑛 = 1/(𝑎 − 1) = 6/5. (See also equation (10) in Bardina et al. (1985).) Taking the194
limit Ω → 0 (or 𝑡 → 0 with finite Ω), we obtain the corresponding solution for isotropic195
turbulence,196

𝑘 isotropic(𝑡) = 𝑘0

(
1 + 1

𝑛

𝜖0
𝑘0
𝑡

)−𝑛
, (3.8)197

which yields the expected power law 𝑘 ∼ 𝑡−𝑛 when 𝜖0𝑡/𝑛𝑘0 ≫ 1.198
At long times the isotropic and vortical solutions diverge: 𝑘 isotropic → 0 as 𝑡 → ∞, while199

in the vortical case 𝑘/𝑘∞ limits to the constant200

𝑘∞
𝑘0

=

(
1 + 𝜖0

𝑛𝑏Ω𝑘0

)−𝑛
, (3.9)201

where 𝑘∞ = lim𝑡→∞ 𝑘 (𝑡). Equation (3.9) yields a formula for 𝑏 in terms of 𝑘∞,202

𝑏Ω =
𝜖0
𝑛𝑘0

1(
𝑘∞
𝑘0

)1/𝑛
− 1

, (3.10)203

which we use to diagnose 𝑏 from our numerical simulations.204
The dashed curves in figure 4 show solutions to the two-equation system in (3.2)–(3.3)205

that correspond to the solid-line simulated results. Figure 4 shows that a single value of206
𝑏 = 0.036 qualitatively describes the evolution of kinetic energy beneath surface waves for207
a wide range of background vorticity magnitudes Ω, where we estimate Ω via the 𝑧-average208
of 𝜕𝑧𝑢S, that is Ω ≈

∫
𝜕𝑧𝑢

S d𝑧. For the rotating case, we use 𝑏 = 0.033 and Ω = 1/4. While209
qualitatively excellent considering that 𝑏 ≈ 0.036 describes a wide range of conditions,210
we also find that the phenomenological model overestimates the dissipation rate — and211
therefore underestimates the kinetic energy 𝑘 — during the transition between isotropic and212
background-vorticity-dominated regimes.213

4. Discussion214

In this paper we point out the similarity between rotating turbulence on the beta-plane and215
turbulence beneath surface waves. In particular, turbulence beneath surface waves exhibits216
the formation of coherent structures perpendicular to the direction of wave propagation, the217
development of zonal jets, and the suppression of kinetic energy dissipation. These features218
are consistent with known properties of turbulence beneath surface waves, but the connection219
with rotating turbulence is obscured in studies that also involve surface wind stress, ambient220
Lagrangian-mean shear, and surface forcing. In particular, we hypothesize that some of the221
generic features of Langmuir turbulence — such as the formation of coherent structures,222
a suppression of kinetic energy dissipation, and an increase in mixing — are driven by223
similar dynamics as the phenomenon observed in our decaying situations. At the same time,224
however, the presence of Lagrangian-mean shear produces additional and distinctly different225
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Figure 4: The decay of kinetic energy 𝑘 (𝑡) in isotropic, rotating, and
surface-wave-modulated turbulence. Solid lines show kinetic energy normalized by it’s

initial value, 𝑘/𝑘0, computed from large eddy simulations. Dashed lines show 𝑘/𝑘0 given
by (3.7), which solves the phenomenological two-equation system in (3.2)–(3.3). The

initial dissipation rate 𝜖0 in (3.7) is estimated from the numerical solution; specifically we
evaluate (3.8) at Δ𝑡, substitute 𝑘 (𝑡 = Δ𝑡) from the numerical solution, and solve for 𝜖0. We
use 𝑎 = 11/6 and estimate 𝑏 from (3.10). For the rotating case, Ω = 1/4 yields 𝑏 = 0.033.

For the four surface-wave-modulated cases we use 𝑏 = 0.036, where
Ω

def
=

∫
𝜕𝑧𝑢

S d𝑧 = (1/4, 1/8, 1/16, 1/32). Note that using 𝑎 = 1.75 along with
commensurate adjustments to 𝑏 matches the simulation data even more closely.

phenomenon, most clearly in the alignment of coherent vortices with the Lagrangian-mean226
shear, rather than perpendicular to the direction of wave propagation.227

We exploit the connection to rotating turbulence by adapting a phenomenological two-228
equation model proposed by Bardina et al. (1985). In this two-equation model, the evolution229
of dissipation is affected by two terms: one “classical” term producing power-law decay of230
kinetic energy, and a second term that describes the suppression of kinetic energy dissipation231
by the presence of surface waves, which in turn effectively enhances kinetic energy levels232
and turbulent mixing relative to pure isotropic turbulence.233

This phenomenological model hints at a new way to understand how surface waves enhance234
turbulent mixing. In the paradigm proposed by McWilliams et al. (1997), the effect of surface235
waves on turbulence is associated with the “Stokes contribution” to shear production in the236
turbulent kinetic energy budget. However, our results show that this interpretation must be237
incomplete, because surface waves also control the evolution of initially shear-free flows.238

We therefore propose an alternative theory which supposes that the impact of surface waves239
may be instead linked to their tendency to catalyze, without exchanging energy, an increase240
in the correlation times and length scales of turbulent motions. A benefit to our alternative241
interpretation is that turbulent shear production can be interpreted in the standard way: as a242
transfer of kinetic energy from the horizontally-averaged, Lagrangian-mean velocity, whose243
energy is otherwise conserved. In other words, our descriptive analysis leads to an alternative244
paradigm for wave-modified turbulence wherein shear production is “unchanged” relative245
to wave-free turbulence (as in rotating turbulence). Instead of modifying shear production246
directly, then, waves impact both mixing and kinetic energy by inducing an inverse cascade,247
increasing the turbulent mixing length, and suppressing kinetic energy dissipation.248
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4.1. The “pseudovorticity” number249

The analogy with rotating turbulence inspires the definition of a new non-dimensional250
number for characterizing surface wave effects on turbulence. In rotating turbulence, the251
Rossby number measures the relative magnitude of the relative vorticity ∇ × 𝒖 and the252
background vorticity, 𝑓 𝒛, such that253

Ro def
=

|∇ × 𝒖 |
𝑓

∼ 𝑈

𝑓 𝐿
, (4.1)254

where 𝑈 is a characteristic horizontal velocity scale and 𝐿 is a characteristic turbulent255
horizontal scale. We propose the analogous “pseudovorticity number” for boundary layer256
turbulence,257

Ps def
=

|∇ × 𝒖 |
|𝜕𝑧𝒖S |

∼ 𝑊

Ω𝐻
, (4.2)258

where 𝑊 is a turbulence velocity scale, Ω is the magnitude of the Stokes drift shear, and 𝐻259
is a turbulence length scale. In boundary layer turbulence, for example, 𝑊 and 𝐻 are most260
straightforwardly measured by the magnitude of the vertical velocity and the boundary layer261
depth.262

The pseudovorticity number Ps measures the average role of surface waves with Stokes263
shear magnitude Ω on turbulent motions with turbulent velocity scale𝑊 and turbulent length264
scale 𝐻. In the two-equation model in (3.2)–(3.3), Ps ∼ 𝜖/𝑘Ω. In our decaying scenarios, Ps265
eventually vanishes at 𝑡 → ∞ and dissipation is completely suppressed.266

4.2. Connection with the Langmuir number267

The pseudovorticity number is connected between the Langmuir number — the usual268
non-dimensional quantity used to characterize the effect of waves on turbulence — when269
considering an estimate of Ps integrated over deep boundary layers. One definition of the270
Langmuir number is (McWilliams et al. 1997),271

La def
=

√︂
𝑢★

𝑢S(𝑧 = 0)
, (4.3)272

where 𝑢★ is the friction velocity, which is the square root of the kinematic wind stress. At273
face value, La does not apply to decaying cases, but we can amend this by interpreting 𝑢★274
more generally as a turbulent velocity scale.275

To connect La and Ps, we consider a “bulk” estimate of Ps over a wind-forced boundary276
layer of depth 𝐻, where the turbulent velocity scale is𝑊 = 𝑢★ and the turbulent length scale277
is 𝐻. If 𝑢S(𝑧 = −𝐻) is negligible, then estimating the pseudovorticity scale Ω as the average278
value over the boundary layer yields279

Ω ∼ 1
𝐻

∫ 0

−𝐻
𝜕𝑧𝑢

S d𝑧 ∼ 𝑢S(𝑧 = 0)
𝐻

, (4.4)280

such that281

bulk Ps =
𝑊

Ω𝐻
∼ 𝑢★

𝑢S(𝑧 = 0)
∼ La2 . (4.5)282

We thus find that La2 may be regarded as a bulk estimate of the more locally-applicable Ps,283
computed over the depth of the boundary layer, 𝐻. The difference between the bulk284
estimate La and the more specific estimate Ps resolves a paradox associated with La in285
that it depends on 𝑢S, despite that only 𝜕𝑧𝑢S appears in (2.1).286
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