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Abstract We describe CATKE, a parameterization for fluxes associated with small‐scale or “microscale”
ocean turbulent mixing on scales between 1 and 100 m. CATKE uses a downgradient formulation that depends
on a prognostic turbulent kinetic energy (TKE) variable and a diagnostic mixing length scale that includes a
dynamic convective adjustment (CA) component. With its dynamic convective mixing length, CATKE predicts
not just the depth spanned by convective plumes but also the characteristic convective mixing timescale, an
important aspect of turbulent convection not captured by simpler static CA schemes. As a result, CATKE can
describe the competition between convection and other processes such as shear‐driven mixing and baroclinic
restratification. To calibrate CATKE, we use Ensemble Kalman Inversion to minimize the error between 21
large eddy simulations (LESs) and predictions of the LES data by CATKE‐parameterized single column
simulations at three different vertical resolutions. We find that CATKE makes accurate predictions of both
idealized and realistic LES compared to microscale turbulence parameterizations commonly used in climate
models.

Plain Language Summary Turbulence is everywhere in the Earth’s ocean, from ephemeral swirls no
bigger than a fingertip to gigantic eddies larger than Iceland. Ocean models used in climate studies simulate
currents by dividing the ocean into grid cells between 10 and 100 kmwide. As a result, ocean models do a decent
job simulating eddies that are significantly larger than a single grid cell. But models do far worse at
incorporating the effects of eddies that are person‐ to building‐sized, which are smaller than a grid cell and
therefore must be represented more approximately. This is a problem because these small yet mighty eddies mix
heat and carbon deep into the ocean, and thus help keep the atmosphere from getting too hot, and too rich in
CO2. In this paper, we propose a new model component called “CATKE” (pronounced kăt‐kee) that
approximately incorporates the effect of small eddies in global ocean models. CATKE stands for “Convective
Adjustment and Turbulent Kinetic Energy”, and keeps track of the energy of small‐scale turbulence—ameasure
of how vigorous it is, and thus how much it mixes the ocean—to predict ocean mixing rates.

1. Introduction
Vertical mixing by “microscale” ocean turbulence, with scales between 1 and 100 m, is an important process
affecting, for example, ocean uptake of atmospheric heat and carbon (Large et al., 1994; Omand et al., 2015; Price
et al., 1986), the structure of the ocean interior (Luyten et al., 1983; Williams, 1991), and ocean circulation on
decadal to millennial time‐scales (Melet et al., 2022; Wunsch & Ferrari, 2004). In large‐scale ocean models—
from regional models covering tens of kilometers to global ocean models—microscale turbulent vertical
fluxes are approximately modeled by parameterizations. Imperfect predictions by turbulence parameterizations
contribute to biases in tropical sea surface temperature (SST) (G. Li &Xie, 2014), Southern Ocean boundary layer
depth (DuVivier et al., 2018; Sallée et al., 2013), and water mass transformation rates (Groeskamp et al., 2019).
These errors degrade the accuracy of climate projections that depend on accurate air‐sea fluxes (sensitive to SST,
Large et al., 1994) and the effective heat capacity of the upper ocean (which scales with the boundary layer depth,
Gregory, 2000; Held et al., 2010).

This paper documents the development, calibration, and preliminary validation of a new parameterization for
vertical mixing by ocean microscale turbulence. Our goal is to use the new parameterization in a GPU‐based
climate model that is automatically calibrated to observations, reports quantified uncertainties, and has an
ocean component with O(10 km) or finer resolution that resolves ocean mesoscale turbulence. The dynamical

RESEARCH ARTICLE
10.1029/2024MS004522

Special Collection:
The CliMA Earth System Model

Key Points:
• We describe a new parameterization

called CATKE with a convective
adjustment (CA) component and
prognostic turbulent kinetic
energy (TKE)

• We make extensive use of Ensemble
Kalman Inversion calibration to 21
idealized large eddy simulations (LES)
to guide CATKE’s development

• We validate CATKE by interpreting its
free parameters and comparing to
additional idealized and realistic LES

Correspondence to:
G. L. Wagner,
wagner.greg@gmail.com

Citation:
Wagner, G. L., Hillier, A., Constantinou,
N. C., Silvestri, S., Souza, A., Burns, K. J.,
et al. (2025). Formulation and calibration
of CATKE, a one‐equation
parameterization for microscale ocean
mixing. Journal of Advances in Modeling
Earth Systems, 17, e2024MS004522.
https://doi.org/10.1029/2024MS004522

Received 20 JUN 2024
Accepted 11 FEB 2025

© 2025 The Author(s). Journal of
Advances in Modeling Earth Systems
published by Wiley Periodicals LLC on
behalf of American Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

WAGNER ET AL. 1 of 42

https://orcid.org/0000-0001-5317-2445
https://orcid.org/0000-0003-1872-7446
https://orcid.org/0000-0002-8149-4094
https://orcid.org/0000-0001-8025-3558
https://orcid.org/0000-0003-3417-9056
https://orcid.org/0000-0001-9230-3591
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.CLIMAESM
mailto:wagner.greg@gmail.com
https://doi.org/10.1029/2024MS004522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024MS004522&domain=pdf&date_stamp=2025-04-21


core of the GPU‐based ocean component is described by Silvestri, Wagner, Constantinou, et al. (2024). In service
of this ultimate goal, the work documented in this paper prioritizes not just accurate predictions, but also effi-
ciency on Graphics Processing Units (GPUs) in high‐resolution configurations. We also invest in automated
calibration that constrains all of the parameterization’s free parameters to 21 large eddy simulations (LESs)
simultaneously, accounting for the peculiarities of our specific numerical implementation of the parameterization
in a single column model. The 21 LES we use to calibrate and the additional 14 LES we use to validate the
parameterization are described in Section 2. Uncertainty quantification, an important step for a future re‐
calibration that leverages global‐scale observations, is left for future work.

Our new parameterization, which we call “CATKE”, uses a downgradient formulation that estimates eddy dif-
fusivities in terms of a prognostic turbulent kinetic energy (TKE) variable and a diagnostic mixing length with a
novel dynamic CA component. CATKE is a “one‐equation” model (because it includes an additional equation for
TKE) that bears resemblance to a family of battle‐tested parameterizations long used in European climate models
(Blanke &Delecluse, 1993; Gaspar et al., 1990; Gutjahr et al., 2021; Jungclaus et al., 2022; Kuhlbrodt et al., 2018;
Madec et al., 2017). One‐equation downgradient parameterizations are appropriate for high‐resolution ocean
modeling and amenable to GPU performance optimization due to their spatially‐local formulation. In contrast, the
main feature of “K‐profile” schemes used in many global ocean models—accommodating hours‐long time
steps (Reichl & Hallberg, 2018) by implicitly time‐averaging mixing physics—does not benefit and may even
degrade high‐resolution simulations that resolve relatively fast mesoscale and submesoscale processes. More-
over, K‐profile schemes achieve time‐step flexibility by solving nonlinear algebraic equations for boundary layer
depth (Large et al., 1994; Reichl & Hallberg, 2018; Reichl & Li, 2019), which may require significant optimi-
zation to achieve good performance on GPU‐like systems (see by Zhang et al., 2020). As for two‐equation “k–ϵ”‐
type models (Canuto et al., 2001; Harcourt, 2015; Kantha & Clayson, 1994; Mellor & Yamada, 1982; Umlauf &
Burchard, 2003), or equations with even more than two prognostic variables (Garanaik et al., 2024; Legay
et al., 2024), CATKE is less expensive merely by having one fewer prognostic variable. CATKE therefore serves
as a high‐performance, well‐calibrated “baseline” whose accuracy must be met or surpassed to justify the use of
more expensive or more expressive parameterizations.

The downsides of downgradient parameterizations include unavoidable biases when non‐local, non‐
downgradient fluxes dominate, such as during free convection (Large et al., 1994; Legay et al., 2024). We
therefore devote special attention to free convection during CATKE’s formulation, which is described in Sec-
tion 3, to minimize this downgradient bias and assess its importance. Section 3.1.5 describes CATKE’s diagnostic
convective length scale and primary novelty, which uses dimensional analysis (Deardorff, 1970) to estimate a
dynamically evolving convective diffusivity in terms of the local TKE. This improves upon constant “convective
adjustment” diffusivities typically used with one‐equation parameterizations in ocean climate models (typically
0.1 m2 s− 1; Madec et al., 2017; Gutjahr et al., 2021; Jungclaus et al., 2022), which cannot describe how the
convective mixing rate varies with both boundary layer depth and the intensity of the destabilizing surface
buoyancy flux. As a result, CATKE might be able to represent scenarios where mixing competes with other
dynamics such as submesoscale restratification. We also implement different mixing lengths for momentum,
tracer, TKE, and the TKE dissipation rate in shear‐driven turbulence that all vary as a function of the local
gradient Richardson number. This contrasts with typical approaches that estimate the TKE diffusivity as a
constant multiple of the eddy viscosity (Blanke & Delecluse, 1993; Madec et al., 2017; Umlauf & Burch-
ard, 2003), or which allow only the tracer mixing length to vary with Richardson number (Blanke & Dele-
cluse, 1993; Madec et al., 2017).

CATKE’s formulation could not be realized without an effective method for constraining CATKE’s free pa-
rameters against observational or LES data. Section 4 describes how we use automatic, a posteriori calibration
(Duraisamy, 2021; Frezat et al., 2022) to estimate CATKE’s free parameters by minimizing the error between 21
variously‐forced LES and the predictions of the LES data made by forward CATKE‐parameterized single column
simulations. Because a posteriori calibration computes errors based on simulated time‐series, it can incorporate
numerical errors that accumulate during time stepping and can leverage even indirect observational data if it can
be computed from model output. For example, we leverage a posteriori calibration to specifically minimize
CATKE’s dependence on vertical resolution. We solve the calibration problem using Ensemble Kalman Inversion
(EKI; see Iglesias et al., 2013), which does not require gradients of the error with respect to free parameters. We
argue that automatic, EKI‐based, a posteriori calibration is crucial not only for CATKE’s development, but for
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any parameterization development effort that seeks the simplest possible model that can adequately simulate
available data. Without automatic calibration, we cannot generally tell whether bias has to do with structural error
—which can only be addressed by formulation changes, possibly increasing model complexity—or because of
poorly chosen parameters, which does not justify increasing model complexity.

We validate CATKE in various ways in Section 5. We first diagnose quantities with known physical in-
terpretations such as CATKE’s steady‐state Richardson number and “similarity layer constant” (analogous to the
von Kármán constant) in terms of CATKE’s calibrated free parameters, and assess their consistency with values
reported in the literature. Second, we compare CATKE’s predictions versus idealized LES, both including those
used in calibration and additional LES that are more strongly and more weakly forced than the calibration cases.
In this way we test whether CATKE can reproduce the training data as well as CATKE’s capacity for extrap-
olation. Third, we compare CATKE predictions to LES of a long 34‐day deep cycle turbulence case, which is
forced by realistic winds, heat fluxes, salinity fluxes, solar insolation, and lateral flux divergences derived from a
regional ocean model (Whitt et al., 2022). This case illustrates CATKE’s ability to extrapolate to cases with time‐
dependent forcing. Fourth, we evaluate the sensitivity of CATKE’s predictions to vertical resolution and time‐
step size. After finding that CATKE can be sensitive to time steps longer than 1 min if the forcing is very
strong and the vertical resolution is 1 m or finer, we describe a split‐explicit substepping scheme for TKE that
nearly eliminates time step sensitivity while preserving the ability to step forward momentum and tracers with a
relatively long time step.

We also compare CATKE to the K‐profile parameterization (KPP; Large et al., 1994) and a second‐moment
closure for Langmuir turbulence (Langmuir turbulence second moment closure (SMC‐LT), or “SMC‐LT”;
Harcourt, 2015), which are implemented in the General Ocean Turbulence Model (GOTM; see Umlauf &
Burchard, 2005; Q. Li et al., 2019). CATKE outperforms both in almost all cases—though the results must be
taken with a grain of salt, because both KPP and SMC‐LT have been calibrated to different data. Despite this
caveat, the comparison contributes context to CATKE’s small but finite biases versus constant forcing LES.

In Section 6, we conclude with a discussion about future efforts to calibrate CATKE against more comprehensive
data sets, and model development efforts to capture physics not considered in this work, such as the effect of
surface wave fields that vary independently from winds and the modulation of turbulence by lateral density fronts.
The most important piece of future work is the construction of a global calibration context to further refine
CATKE’s free parameters using satellite and in‐situ ocean observations.

2. Large Eddy Simulations of Turbulent Mixing Beneath Surface Waves
We begin by defining the parameterization problem that drives the cyclical process of formulating, calibrating,
and validating CATKE. In this paper, the parameterization problem is posed by comparing high‐fidelity and
three‐dimensional LESs of turbulent mixing with one‐dimensional parameterized models for the horizontally‐
averaged dynamics of the LES. Our LES integrate the rotating, wave‐averaged Boussinesq equations simpli-
fied for a steady surface wave field (Craik & Leibovich, 1976; Huang, 1979; Suzuki & Fox‐Kemper, 2016),

∂tUL + (UL ⋅∇)UL + ( f ẑ − ∇ × US) × UL + ∇P = B ẑ + ∂tUS + Fu , (1)

∇ ⋅UL = 0 , (2)

∂tC + (UL ⋅∇)C = − ∇ ⋅ Jc + Fc , (3)

where UL = (UL,VL,WL) is the Lagrangian‐mean velocity, US is the Stokes drift associated with surface waves
(which are always steady and oriented in the x̂‐direction in this paper), P is Eulerian‐mean kinematic pressure, B
is Eulerian‐mean buoyancy, f is the Coriolis parameter,Fu is a momentum forcing term representing surface wind
stress, C is any tracer such as temperature or salinity, and Fc is forcing term for C representing boundary con-
ditions, solar insolation, and other imposed body forcing. The Lagrangian‐mean velocityUL is defined as the sum
of the Eulerian‐mean velocity and Stokes drift, and setting US = 0 reduces Equation 1 to the ordinary Navier–
Stokes equations. Note that we have neglected molecular diffusion from Equations 1 and 3, as well as diffusion by
a hypothetical LES closure, to simplify the ensuing discussion. In this work we use buoyancy B itself as a tracer,
which is tantamount to using a linear equation of state with a single constituent.
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We conduct 35 LES of 1–3 forced by constant, horizontally‐uniform fluxes of momentum and buoyancy in a
512 m × 512 m × 256 m horizontally‐periodic domain with O(1 m) resolution using Oceananigans (Ramadhan
et al., 2020; Wagner et al., 2025). Grid‐scale dissipation of kinetic energy and tracer variance is implicitly
provided by a Weighted, Essentially Non‐Oscillatory (WENO, Shu, 2020) advection scheme. The advantages of
this approach are described by Pressel et al. (2017). All 35 LES are initialized with the same piecewise‐constant
density stratification given in Equation A1, which has a weakly‐stratified near‐surface layer, a more strongly
stratified middle layer, and a weakly‐stratified lower layer. The surface momentum flux or “wind stress” τx is
defined via Fu in 1 as

Fu = − ∂z [τx H(z)] x̂ , where H(z) =def {
1 if z ≥ 0

0 if z < 0
(4)

is a Heaviside function. Negative stress τx < 0 forces a current in the +x‐direction. Two types of buoyancy
fluxes are used: a destabilizing surface flux Jb > 0 representing cooling or heat loss, which is defined via Fb in
Equation 3 via

Fb = − ∂z [Jb H(z)] . (5)

We also include 5 LES forced by both wind stress and stabilizing buoyancy forcing that represents heating by
solar insolation. In these “sunny” cases, the flux divergence of buoyancy Fb is given by

Fb = − ∂zI , where I(z) = Jb [ϵ1ez/λ1 + (1 − ϵ1) ez/λ2] . (6)

In 6, I(z) is the buoyancy flux profile associated with penetrating solar insolation, Jb < 0 is the surface solar
insolation, ϵ1 is the fraction of penetrating radiation absorbed over the vertical scale λ1, and (1 − ϵ1) is the
remaining fraction absorbed over λ2. All simulations use ϵ1 = 0.6, λ1 = 1m, and λ2 = 16 m (see for example the
solar insolation used by Whitt et al., 2022).

The LES are organized by duration into 6‐, 12‐, 24‐, 48‐, and 72‐hr “suites”. Because all the LES are initialized
identically and run until the boundary layer is roughly half the depth of the domain, duration indicates forcing
strength: the 6‐hr‐suite are the most strongly forced and the 72‐hr suite simulations are the most weakly forced. So
that we can validate CATKE’s ability to extrapolate outside the training data set, only intermediately‐forced 12‐,
24‐, and 48‐hr suites are used for calibration. The 35 LES are divided into 5 “suites” with 7 cases each, according
to their duration and the intensity of the surface fluxes: the 6‐hr suite exhibits extreme forcing, while the 72‐hr
suite exhibits relatively weak forcing. Each suite consists of 7 physical scenarios that represent different forc-
ing regimes:

• “free convection”, which has pure destabilizing buoyancy forcing and no winds,
• “weak wind strong cooling”,
• “medium wind medium cooling”,
• “strong wind weak cooling”,
• “strong wind”, with no buoyancy forcing,
• “strong wind no rotation” with no buoyancy forcing and f = 0.
• “strong wind and sunny” with penetrative heating, wind forcing, and f = 0.

The “strong wind no rotation” and “strong wind and sunny” are non‐rotating with f = 0, and the rest are rotating
with Coriolis parameter f = 10− 4 s− 1. The range of buoyancy fluxes roughly corresponds to cooling between
156–2,000 W m− 2 or heating by penetrating solar insolation between 104–1,250 W m− 2, and the momentum
fluxes correspond to 10‐m atmospheric winds of approximately 9–25 m s− 1 and oriented in the x̂‐direction. The
fluxes associated with each case are summarized in Tables 1 and 2.

In any LES with wind forcing, we also include the effect of wind‐driven surface waves through an estimate of
∂zUS = ∂zUS x̂ in 1 for equilibrium waves (Lenain & Pizzo, 2020). The equilibrium wave model depends on the
peak wavenumber of the surface wave field, which is chosen so that the Langmuir number La is
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La =def
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅u⋆

US(z = 0)

√

≈ 0.3 , (7)

close to the peak of its global distribution (Belcher et al., 2012). In 7, u⋆ is the friction velocity computed from the
surface wind stress (here u⋆ =

̅̅̅̅̅̅̅
|τx|

√
, where τ = τx x̂ is the wind stress). All LES are initialized from rest with

UL = 0. The LES also include a forced passive tracer, providing additional information about the time scales of
mixing in the interior of the boundary layer. The initial density stratification, numerical methods, Stokes drift
model, effects of including Stokes drift, and the sensitivity of the LES to resolution are described in Appendix A.
Out of the 35 LES cases, 21 are used for calibration, while another 14 are reserved for validation. Figure 1 vi-
sualizes vertical velocity in 9 of the 35 cases.

Table 1
Summary of Surface Boundary Conditions for Large Eddy Simulations (LES) Used to Calibrate CATKE

Suite Case Jb (m2 s− 3) |τx| (m2 s− 2) Q ( Wm2) u10 (ms )

12 hr Free convection +4.8 × 10− 7 0 +1000 0

12 hr Weak wind strong cooling +4.0 × 10− 7 4.0 × 10− 4 +833 15

12 hr Mid wind mid cooling +3.2 × 10− 7 6.0 × 10− 4 +667 17

12 hr Strong wind weak cooling +2.0 × 10− 7 8.0 × 10− 4 +417 20

12 hr Strong wind 0 9.0 × 10− 4 0 21

12 hr Strong wind no rotation 0 6.0 × 10− 4 0 17

12 hr Strong wind and sunny − 5.0 × 10− 7 9.0 × 10− 4 − 1042 21

24 hr Free convection +2.4 × 10− 7 0 +500 0

24 hr Weak wind strong cooling +2.0 × 10− 7 3.0 × 10− 4 +417 13

24 hr Mid wind mid cooling +1.6 × 10− 7 4.5 × 10− 4 +333 16

24 hr Strong wind weak cooling +1.0 × 10− 7 5.9 × 10− 4 +208 17

24 hr Strong wind 0 6.8 × 10− 4 0 18

24 hr Strong wind no rotation 0 3.0 × 10− 4 0 13

24 hr Strong wind and sunny − 3.0 × 10− 7 4.5 × 10− 4 − 625 16

48 hr Free convection +1.2 × 10− 7 0 +250 0

48 hr Weak wind strong cooling +1.0 × 10− 7 2.0 × 10− 4 +208 11

48 hr Mid wind mid cooling +8.0 × 10− 8 3.4 × 10− 4 +167 14

48 hr Strong wind weak cooling +5.0 × 10− 8 3.8 × 10− 4 +104 15

48 hr Strong wind 0 4.5 × 10− 4 0 16

48 hr Strong wind no rotation 0 1.6 × 10− 4 0 10

48 hr Strong wind and sunny − 1.0 × 10− 7 2.0 × 10− 4 − 208 11

Note. All LES are initialized with the buoyancy profile described in Equation A1 and use the the traditional f ‐plane
approximation with Coriolis parameter f = 10− 4 s− 1, except “strong wind no rotation” and “strong wind and sunny”,
which omit Coriolis forces entirely. The “suite” indicates simulation duration. Jb is the surface buoyancy flux, τx is the
kinematic momentum flux (momentum flux divided by ocean reference density), Q ≈ ρocp Jb/ (αg) is the heat flux associated
with Jb, and u10 is an estimate of the 10‐m wind speed associated with τx according to Equation A5 using reference density
ρo = 1024 kg m− 3, seawater heat capacity cp = 3991 J °C− 1, thermal expansion coefficient α = 2 × 10− 4 °C− 1,
gravitational acceleration g = 9.81 m s− 2 are used for Q and u10. When the surface buoyancy flux is negative (Jb < 0) , Jb
represents Jb = I(z = 0), where I(z) is the buoyancy flux associated with penetrating solar insolation in Equation 6. The
forcing in Equation 3 is then defined as Fb = − ∂zI. All fluxes use the convention that a positive flux carries quantities
upwards, out of the ocean, which means a negative τx drives currents in the+ x̂ direction and a positive buoyancy flux cools the
ocean by extracting buoyancy. Additional LES used to validate CATKE are summarized in Table 2.
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Table 2
Summary of Surface Boundary Conditions for LES Used to Validate CATKE

Suite Case Jb (m2 s− 3) |τx| (m2 s− 2) Q ( Wm2) u10 (ms )

6 hr Free convection +9.6 × 10− 7 0 +2000 0

6 hr Weak wind strong cooling +8.0 × 10− 7 5.0 × 10− 4 +1666 16

6 hr Mid wind mid cooling +6.4 × 10− 7 8.0 × 10− 4 +1333 20

6 hr Strong wind weak cooling +4.0 × 10− 7 1.2 × 10− 3 +833 23

6 hr Strong wind 0 1.4 × 10− 3 0 24

6 hr Strong wind no rotation 0 1.1 × 10− 3 0 22

6 hr Strong wind and sunny − 6.0 × 10− 7 1.5 × 10− 3 − 1250 25

72 hr Free convection +8.7 × 10− 8 0 +181 0

72 hr Weak wind strong cooling +7.5 × 10− 8 1.8 × 10− 4 +156 11

72 hr Mid wind mid cooling +6.0 × 10− 8 2.9 × 10− 4 +125 13

72 hr Strong wind weak cooling +3.8 × 10− 8 3.4 × 10− 4 +79 14

72 hr Strong wind 0 4.1 × 10− 4 0 15

72 hr Strong wind no rotation 0 1.1 × 10− 4 0 9

72 hr Strong wind and sunny − 5.0 × 10− 8 1.3 × 10− 4 − 104 9

Note. See Table 1 for a description and a summary of the LES used to calibrate CATKE.

Figure 1. Visualization of vertical velocity w in 9 of 35 large eddy simulations (LESs) of the ocean surface boundary layer
used in this paper, forced variously by winds, surface waves, and heat fluxes. All LES, which are summarized in Tables 1 and
2 and described in more detail in Appendix A, are initialized with the same density stratification. (a)–(c) show strongly‐
forced LES after just 6 hr of simulation, (d)–(f) show LES driven by medium‐strength forcing after 24 hr, and (g)–(i) show
weakly forced LES after 72 hr (a), (d), and (g) show a purely wind and wave driven case, (b), (e), (h) are forced by a mixture
of winds, waves, and cooling, and (c), (f), and (i) are “free convection” cases forced only by cooling with no winds and
waves. All simulations are rotating with Coriolis parameter f = 10− 4 s− 1. The colorscale for each panel saturates at
1
2max|w|. For each panel, max|w| is (a) 0.26, (b) 0.29, (c) 0.086, (d) 0.20, (e) 0.23, (f) 0.070, (g) 0.056, (h) 0.14, and
(i) 0.041 m s− 1.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004522

WAGNER ET AL. 6 of 42

 19422466, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004522 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [21/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.1. The Single Column Context

Wewould like to develop a model that can predict the horizontally‐averaged momentum and buoyancy simulated
by the LES. We therefore decompose all three‐dimensional variables Ψ in 1–3 into a horizontally‐averaged

component ψ =def Ψ and a fluctuation ψʹ such that,

Ψ(x,y, z, t) = Ψ(z, t)
⏟⏞⏞⏟

=
defψ(z,t)

+ ψʹ(x,y, z, t) , (8)

where the overline () denotes a horizontal average, and Ψ ∈ (UL,VL,WL,C) includes the velocity components
UL, VL,WL, and tracer concentrations C. Note that the horizontal average of 2 and the horizontal homogeneity of
our LES implies that wL = 0 and WL = wʹ and thus the vertical momentum equation reduces to a statement of
wave‐modified hydrostatic balance. Figure 2 shows horizontally‐averaged buoyancy, velocity, and kinetic energy
profiles alongside a three‐dimensional visualization of the buoyancy perturbation bʹ for the 12‐hr strong wind,
weak cooling case.

Next, we derive a set of equations that governs the horizontally‐averaged zonal momentum u(z, t), meridional
momentum v(z, t), and any tracer c(z, t) by taking a horizontal average of 1 and 3 to obtain,

∂tu − f v = − ∂zwʹuʹ + F̄u , (9)

∂tv + f u = − ∂zwʹvʹ + F̄v , (10)

∂tc = − ∂zwʹcʹ + F̄c , (11)

where u, v represent the horizontal average of the horizontal Lagrangian‐mean velocities UL, VL, and the su-
perscript L is omitted to simplify notation. Lateral fluxes vanish from 9–11 due to horizontal homogeneity. No
Stokes‐drift‐dependent terms enter into 9–11 because US(z) is horizontally uniform. Figure 2 illustrates the
horizontally‐averaged buoyancy, velocity, and TKE for the 12‐hr strong wind, weak cooling case.

The parameterization problem may now be stated: we seek a parameterization that predicts the vertical fluxes
wʹuʹ, wʹvʹ, and wʹcʹ in terms of the resolved state u,v,c, boundary conditions, and potentially, additional
auxiliary variables. For example, the parameterization described in the next section uses a downgradient
formulation wʹcʹ ∼ ∂zc to predict vertical tracer and momentum fluxes.

Figure 2. Illustration of horizontally‐averaged data from the 12‐hr strong wind, weak cooling LES. Panel (a) shows the
buoyancy perturbation bʹ. Note the colorbar is strongly saturated to illustrate boundary layer structure; the buoyancy
perturbation is particularly large at the base of the boundary layer, where the horizontally‐averaged buoyancy gradient is also
strong. (b) Shows the horizontally‐averaged buoyancy b, (c) shows the horizontally‐averaged velocities u,v, and (d) shows the

horizontally‐averaged fluctuation kinetic energy, E =def (uʹ2 + vʹ2 + wʹ2)/2 and horizontally‐averaged vertical velocity

variance, wʹ2.
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2.2. Connection to the Regional and Global Ocean Modeling Context

Our LES, and the models that predict the horizontal average of the LES, may be described as “single column
models”. This nomenclature reflects the notion that the models simulate the vertical redistribution of momentum
and tracers by turbulent motions in a single column of a three‐dimensional ocean model. Indeed, we envision that
the single column context is generalized to a large‐scale ocean simulation merely by adding advection by motions
somewhat larger than the scale of the LES domain. This approach relies on two key assumptions. First, the
microscale turbulence must be horizontally homogeneous so as to ignore lateral flux divergences. Second, there
must be a scale separation between microscale turbulence and larger‐scale motions so that interactions between
the two can be ignored.

For typical oceanic situations, the first assumption is likely satisfied because vertical gradients are much larger
than horizontal ones on the scales of a “single column model” and thus the vertical flux divergences dominate
over horizontal divergences. In other words the ocean is more homogeneous in the horizontal than in the vertical
on scales of O(100 m). The second assumption is more problematic especially near the ocean surface and bottom
boundaries. While microscale turbulence does not significantly interact with mesoscale geostrophic eddies with
scales of O(10–100 km), there is growing evidence of interactions between submesoscale frontal dynamics with
scales of O(100 m–10 km) and microscale turbulence (see reviews by Thomas et al., 2008; McWilliams, 2016;
J. R. Taylor & Thompson, 2023). Frontal instabilities are also effective at restratifying the ocean boundary layers
during time of weak microscale turbulence (see for example Boccaletti et al., 2007). These interactions are
presently ignored in the formulation of microscale turbulence parameterizations, but they are an obvious direction
for future development of CATKE. Following the approach outlined in this paper, such an effort will require
generating a library of simulations which resolve microscale turbulence in the presence of ocean fronts, extending
CATKE to include those physics, and then calibrating the extended CATKE against the new library of those
simulations.

Similarly, microscale turbulent mixing in the ocean interior requires considering multiscale dynamics. For
example, internal waves generated by surface winds and tide‐bathymetry interactions produce a direct cascade of
internal wave energy to progressively smaller scales until wave breaking finally transfers energy to microscale
turbulence. Incorporating the physics of turbulent mixing driven by internal wave breaking is another area for
future development.

3. CATKE Formulation
CATKE models the horizontally‐averaged vertical fluxes wʹψʹ appearing on the right side of 9–11 with a
downgradient, mixing length formulation (Prandtl et al., 1925),

wʹψʹ ≈ − ℓψ
̅̅̅
e

√

⏟⏞⏞⏟

=
defKψ

∂zψ , (12)

where e is the TKE,
̅̅̅
e

√
is the turbulent velocity scale, and ℓψ is the mixing length for the horizontally‐averaged

variable ψ(z, t). After choosing to parameterize turbulent transport with eddy diffusion that depends on the tur-
bulent velocity

̅̅̅
e

√
and mixing length ℓψ , the form Kψ = ℓψ

̅̅̅
e

√
follows from dimensional analysis. CATKE

invokes three mixing lengths and three eddy diffusivities for horizontal velocities (ℓu andKu), tracers (ℓc andKc),
and TKE (ℓe and Ke).

With 12, the single column equations become

∂tu − f v = ∂z (Ku∂zu) + F̄u , (13)

∂tv + f u = ∂z (Ku∂zv) + F̄v , (14)

∂tc = ∂z (Kc∂zc) + F̄c . (15)

In this paper we use a linear equation of state that relates density to a single thermodynamic constituent, such that
the buoyancy b is just another tracer,
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∂tb = ∂z (Kc∂zb) + F̄b . (16)

The buoyancy gradient N2 =def ∂zb appears in many of the scaling arguments central to CATKE’s formulation,
where N is often referred to as the “buoyancy frequency”. Note that in more realistic simulations of seawater, b
and N2 are functions of geopotential height, mean temperature, and mean salinity through the empirically‐
determined seawater equation of state (McDougall & Barker, 2011).

Next we turn to the estimation of the TKE e, and thus the turbulent velocity scale
̅̅̅
e

√
in 12. For this we first

introduce the kinetic energy of the subgrid velocity field, E, defined in terms of the velocity fluctua-
tions (uʹ,vʹ,wʹ) ,

E =def 1
2
|uʹ|2 =

1
2
(uʹ2 + vʹ2 + wʹ2) . (17)

We postulate a close relationship between e in 12 and the subgrid kinetic energy, E. However, this is a relationship
rather than an identity, because E has contributions from motions that are unrelated to the eddy diffusivity in 12.
For example, internal waves generated by convective plumes make a significant contribution to E below the base
of boundary layer, despite that there is no mixing there. Moreoever, even if the kinetic energy and mixing length
are known, a correlation coefficient is still required to compute the eddy diffusivity in 12 (G. I. Taylor, 1922). We
therefore interpret e as a latent variable whose sole purpose is to enable accurate computation of the eddy
diffusivity in 12, rather conflating e with the observable but less relevant quantity E. This interpretation has
implications for calibration: we do not use discrepancy between LES‐derived E and e to constrain CATKE’s free
parameters. Instead, we only use the discrepancies between LES and model‐predicted variables u, v, and c.
CATKE's e is therefore free to deviate from E if this produces more accurate eddy diffusivities and thus more
accurate predictions of u, v, c. Interpreting e as a latent variable rather than as the subgrid kinetic energy E is also
proposed by Kolmogorov (see Spalding, 1991) and Saffman (1970).

Though we define e as a latent variable, we still expect similarity between e and E on physical grounds—where
there is turbulence, there will be mixing—and following prior work (Gaspar et al., 1990; Saffman, 1970;
Spalding, 1991; Umlauf & Burchard, 2003), use the evolution equation for E to formulate a model for the
evolution of e. An equation describing the evolution of E can be derived from 1, including the molecular stress
divergence ν∇2 (UL − US) (we include the Stokes drift term here for completeness, though it does not contribute
to the equation for E). The result is

∂tE = − ∂z (wʹEʹ + wʹpʹ − ν∂zE)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

transport

− uʹwʹ ⋅ ∂zu⏟̅⏞⏞̅⏟
shear production

+ wʹbʹ
⏟⏞⏞⏟
buoyancy flux

− ν|∇uʹ|2
⏟⏞⏞⏟
dissipation

, (18)

where ν is the kinematic viscosity, p is kinematic pressure (dynamic pressure divided by a reference density) and
Eʹ = 1

2|uʹ|2 − E. Because u is the horizontally‐averaged Lagrangian‐mean velocity, the shear production term in
18 represents the total transfer of kinetic energy from the average u to the fluctuations uʹ, including the so‐called
“Stokes production” term (McWilliams et al., 1997). Again following prior work (Gaspar et al., 1990; Saff-
man, 1970; Spalding, 1991; Umlauf & Burchard, 2003) we write the equation for e using terms that mirror each
term in Equation 18:

∂te = ∂z (Ke∂ze)
⏟̅⏞⏞̅⏟
transport

+ Ku|∂zu|2
⏟⏞⏞⏟
shear production

− KcN2⏟⏞⏞⏟
buoyancy flux

−
e3/2

ℓD⏟⏞⏞⏟
dissipation

, (19)

where |∂zu|2 = (∂zu)
2
+ (∂zv)

2 is the square vertical shear of the horizontally‐averaged velocity field u (w = 0
because of horizontal homogeneity), Ke is the vertical diffusivity of e, ℓD is the “dissipation length scale”, and we
have labeled the corresponding terms in 18 and 19. The shear production and buoyancy flux terms are formulated
by applying the eddy diffusivity hypothesis (12) to their corresponding expressions in Equation 18. Like in the
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budget for E, the shear production term in 19 represents the total shear production including both “Eulerian” and
“Stokes” production.

Even with perfect predictions of u,v,c—and therefore perfect shear production and buoyancy flux—E and e can
still differ because of the approximate transport and dissipation terms in 19. In particular, we assume in 19 that the
transport of e, which helps to deepen boundary layers by modeling turbulence spreading away from turbulence‐
generating regions, can be modeled with an eddy diffusivity Ke = ℓe

̅̅̅
e

√
. To model the dissipation of e we

introduce the dissipation length scale ℓD, which has a similar form to the mixing lengths ℓu, ℓc, and ℓe. The
expression e3/2/ℓD in 19 follows on dimensional grounds.

Equation 19 requires boundary conditions. We impose a no‐flux condition on e at the bottom. (Extending CATKE
to describe the bottom boundary layer in the future may require imposing a different bottom boundary condition.)
At z = 0, we parameterize subgrid production of e by wind stress and destabilizing buoyancy fluxes across the
uppermost cell interface with

Je=
def
− Ke∂ze|z=0 = − C

shear
J u 3⋆ − C

conv
J w3Δ , where w3Δ =

def Δzmax(Jb, 0) , (20)

and CshearJ and CconvJ are constant, non‐dimensional free parameters, Jb is the surface buoyancy flux defined such
that Jb > 0 removes buoyancy and thus causes convection, Δz is the distance between the top of the ocean
domain and the first interior cell interface, and w2Δ is the convective TKE scale that follows from a balance
between buoyant production and dissipation estimated using the grid spacing Δz as a length scale. u⋆ in 20 is the
ocean‐side friction velocity,

u⋆ =
def

( τ2x + τ2y)
1/4 , (21)

defined in terms of the zonal and meridional kinematic momentum fluxes τx and τy (wind stresses divided by
reference water density). Note that other TKE‐based models (Blanke & Delecluse, 1993; Madec et al., 2017)
prescribe surface TKE (rather than TKE flux), and do not depend on the surface buoyancy flux Jb.

Equation 20 introduces the notation

C label
component (22)

For two free parametersCshearJ andCconvJ , where “label” indicates the parameter's role and “component” associates
the parameter with a variable or model component.

3.1. Turbulence Length Scale Model

We decompose the four length scales ℓψ ∈ (ℓu,ℓc,ℓe,ℓD) into a shear‐dominated length scale ℓshearψ limited by
density‐stratification and surface distance, and a convection‐dominated length scale ℓconvψ limited by the depth of
the convective boundary layer. At any time and location, the maximum of these two length scales is chosen as the
mixing length via

ℓψ = max(ℓconvψ ,ℓshearψ ) , (23)

encapsulating a sharp separation between turbulence regimes. We next describe a length scale formulation that
can be calibrated to predict turbulent fluxes associated with the kinds of flows plotted in Figure 1.

3.1.1. Shear Turbulence Length Scale

To represent shear‐dominated turbulence, we use the length scale

ℓshearψ = Sψ(Ri)min(
̅̅̅
e

√

N+
,Csd) , where N2+=

def max(0,∂zb) (24)
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with d the distance to the ocean surface, Cs a free parameter (“s” for “surface”), and Sψ a “stability function”
defined below.

̅̅̅
e

√
/N is the vertical distance traversed by a patch of turbulence expending all its kinetic energy e

to mix the uniform stratification N. Blanke and Delecluse (1993) point out that
̅̅̅
e

√
/N is a local approximation to

the more complete but computationally‐expensive length scale proposed by Gaspar et al. (1990).

We use (24) for ℓshearc , ℓshearu , and ℓsheare . For the dissipation length scale ℓshearD , we use

ℓshearD =
1

SD(Ri)
min(

̅̅̅
e

√

N+
,Csd) , (25)

so that the stability function for the dissipation length scale is 1/SD The alternative formulation in 25 yields a tight
connection between SD’s free parameters and e dissipation, and facilitates the physical interpretation of CATKE’s
parameters.

The stability functions Sψ(Ri) and 1/SD(Ri) in 24 and 25 depend on the gradient Richardson number,

Ri =def
∂zb
|∂zu|2

, (26)

which means that each diffusivity Kψ also depends explicitly on Ri. More specifically, we hypothesize that Ku,
Kc, and Ke are all explicit functions of |∂zu|2 in addition to N2, e, and the wall‐distance d. CATKE is therefore
more expressive than the closure described by Blanke and Delecluse (1993), wherein Ku and Ke do not depend
explicitly on |∂zu|2. Second‐moment closures also define Ku and Kc that depend on |∂zu|2, in addition to N2, e,
and the dissipation rate ϵ (see, for example Burchard & Bolding, 2001). Ri‐dependent stability functions also
allow CATKE to capture, in some form, the well‐known dependence between Ri and the turbulent Prandtl number
(D. Li, 2019; C. Caulfield, 2021)

Pr(Ri) =def
Ku

Kc
=
Su(Ri)
Sc(Ri)

. (27)

We balance expressiveness and parsimony with four‐part Sψ(Ri),

Sψ (Ri) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C−ψ when Ri < 0,

C0ψ when 0 ≤ Ri ≤ C0Ri,

C0ψ + (C∞
ψ − C

0
ψ)

Ri − C0Ri
Cδ

Ri − Ri
when C0Ri < Ri < C0Ri + C

δ
Ri,

C∞
ψ when Ri ≥ C0Ri + C

δ
Ri.

(28)

in 28, the parameter C0Ri is the “transition Ri”. The four regions of the stability function are:

• Constant Sψ = C−ψ for unstably‐stratified shear turbulence with Ri < 0.
• Constant Sψ = C0ψ for near‐neutral turbulence with 0 ≤ Ri ≤ C0Ri
• Linearly‐varying from C0ψ to C

∞
ψ as Ri increases from C0Ri to C

0
Ri + C

δ
Ri.

• Constant Sψ = C∞
ψ when high Ri > C0Ri + C

δ
Ri.

The stability function 28 plays a similar role as the more elaborate stability functions used in two‐equation models
(Burchard & Bolding, 2001), which are derived from a second‐moment closure. The stability functions in
Equation 28 are plotted in the left panel of Figure 3 (see Section 4 for how the parameters are obtained via
calibration to LES). Note that the form of the stability functions in 28 imply that Pr is constant in the limit Ri → 0
and Ri → ∞, which Venayagamoorthy and Stretch (2010) argue is inconsistent with direct numerical simulation
(DNS) data. An extensive exploration of different formulations for Sψ is beyond the scope of the present work but
remains an important direction for future research.
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The four shear length scales introduce 15 free parameters: Cs, Cδ
Ri, and C

0
Ri used in all four length scales, along

with 12 additional parameters associated with the coefficients C−ψ , C
0
ψ and C

∞
ψ for each length scale respectively.

3.1.2. Turbulent Prandtl and Schmidt Numbers in Stably Stratified Shear Turbulence

CATKE’s Pr in 27 is a rational function of Ri, slightly different from the piecewise linear formulation proposed
by Blanke and Delecluse (1993) and Madec et al. (2017). In particular,

Pr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C−u /C
−
c Ri < 0

C0u/C
0
c 0 ≤ Ri ≤ C0Ri

C0u + μu (Ri − C
0
Ri)

C0c + μc (Ri − C
0
Ri)

C0Ri < Ri < C0Ri + C
δ
Ri

C∞
u /C

∞
c Ri ≥ C0Ri + C

δ
Ri

, (29)

where μψ =
def

(C∞
ψ − C0ψ)/C

δ
Ri. Similarly, the Schmidt number for TKE transport in stably‐stratified shear tur-

bulence is Sc =def Ku/Ke. The Prandtl number and Schmidt number for calibrated parameters are visualized in the
right panel Figure 3.

3.1.3. Neutral, Self‐Similar, Wave‐Modulated, Non‐Rotating, Near‐Surface Mixing

To interpret CATKE’s mixing length near the surface in neutrally‐stratified (∂zb = 0) conditions, when ℓψ ∼ d,
we consider quasi‐equilibrium (∂tu ≈ ∂te ≈ 0), non‐rotating ( f = 0) near‐surface turbulence driven by wind
stress τ = τx x̂. We suppose that the CATKE‐parameterized single column Equations 13–15 and 19 possess a
similarity solution in this scenario (Von Kármán, 1931),

∂zu ≈
u⋆

κ d
, (30)

where u⋆ is the friction velocity defined in Equation 21 (here simply
̅̅̅̅̅̅̅
|τx|

√
), d = − z is the distance to the surface,

and κ is a constant parameter. If the ocean surface were rigid, κ could be interpreted as the von Kármán constant.
But because the LES we use in this paper include surface wave effects, κ has a slightly different interpretation—as
a “wave‐modified” similarity layer constant, perhaps, as proposed by Samelson (2022).

Figure 3. Stability functions (left panel), and Prandtl numbers and Schmidt numbers (right panel), computed with parameters
calibrated against LESs as described in Section 4. The stability functions for tracers, momentum, and turbulent kinetic energy
(TKE) are given by Sψ in 28. The stability function for dissipation length scale is 1/SD. The Prandtl number is Su/Sc and the
Schmidt number for TKE is Su/Se.
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To express κ in terms of CATKE’s free parameters, we begin by assuming a balance between shear production
and dissipation and neglecting diffusive turbulent transport to simplify 19 to

Ku(∂zu)
2 ≈

e3/2

ℓD
. (31)

Note that in neutral conditions,

Ku = C0uC
sd

̅̅̅
e

√
, and ℓD =

Cs

C0D
d . (32)

Inserting 30 and 32 into 31 and rearranging, we find an expression that relates the constant κ, u⋆, and e,

u 2⋆
e

≈ κ2
C0D

C0u(C
s)2

. (33)

Notice that e is independent of d in this expression. This means that neglecting turbulent transport in 31 in the
context of the similarity hypothesis (30) is self‐consistent. Next, integrating the quasi‐equilibrium x‐momentum
equation 0 ≈ ∂z (Ku∂zu) from z = 0 to z = − d yields

∂zu ≈
u⋆

d
u⋆

C0uC
s ̅̅̅

e
√

⏟⏞⏞⏟
=1/κ

, (34)

where we have used the neutral momentum diffusivity in 32 and the friction velocity definition
− Ku∂zu|z=0 = u⋆. Equation 34 identifies κ by comparison to 30. We next use 33 to eliminate u⋆/

̅̅̅
e

√
and obtain

an expression for CATKE’s wave‐modified similarity layer constant κ,

κ =defCs
[(C0u)

3C0D]
1/4

. (35)

3.1.4. Steady‐State Gradient Richardson Number for Stably Stratified Shear Turbulence

CATKE's dependence on the stable length scale ℓ ∼
̅̅̅
e

√
/N is associated with a steady‐state gradient Richardson

number in stably‐stratified shear turbulence (Blanke & Delecluse, 1993). To see this, we first note that in stable
stratification and far from boundaries, the mixing and dissipation length scales become

ℓψ = Sψ

̅̅̅
e

√

N
for ψ ∈ (u,c,e) and ℓD =

1
SD

̅̅̅
e

√

N
. (36)

Inserting 36 into 19 and neglecting turbulent transport (equivalently, assuming spatially‐uniform e) yields

∂te = N(Sc + SD)(
Ri†

Ri
− 1)

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

=
defr

e , (37)

where r is a rate, and

Ri† =def
Su

Sc + SD
. (38)

when Ri = Ri†, the shear production of TKE is perfectly balanced by TKE destruction via buoyancy flux and
dissipation, such that r = 0 and ∂te = 0. We therefore call Ri† the “steady‐state Richardson number”. If
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Ri < Ri†, then TKE and mixing will increase, while if Ri > Ri† then TKE will decay and mixing will be
suppressed. As a result—and as illustrated in Section 5.3 and Figure 12—Ri is driven toward Ri† in forced
stratified shear turbulence. Finally we note that the functions Sψ , defined in 28, depend on Ri. For example, if
Ri < C0Ri, then Ri† = C0u/ (C

0
c + C

0
D). But if Ri

† > C0Ri + C
δ
Ri, then Ri† = C∞

u / (C
∞
c + C∞

D ).

3.1.5. Convective Turbulence Length Scale

To formulate a length scale for free convection, we divide the freely convecting boundary layer into two regions: a
“convecting layer” with unstable N2 < 0, and a “penetration layer” with thickness δ. In the penetration layer,
N2(z) > 0 but N2(z + δ) < 0, where we note that the vertical coordinate z increases upwards and is defined
such that z < 0. We use “penetration layer” rather than “entrainment layer” used by Deardorff (1970) to avoid
confusion with lateral entrainment.) Our formulation for the convective length scale models both rapid mixing in
the convective layer as well as entrainment into the boundary layer from below by plumes plunging through the
convecting layer into the stably‐stratified penetration layer below.

Our dynamic length scale for mixing in the convective layer is based on a dimensional analysis first proposed by
Deardorff (1970) that links the turbulent velocity

̅̅̅
e

√
(m s− 1) , surface buoyancy flux Jb (m2/s3), and convective

layer depth, h (m),

̅̅̅
e

√
∼ (h Jb)1/3 . (39)

Recasting 39 in terms of a time‐scale tmix ∼ h/
̅̅̅
e

√
for convective mixing over the depth h yields

tmix ∼ (
h2

Jb
)

1/3

. (40)

But if we represent convection as a diffusive process with diffusivity Kc, then we also have that

tmix ∼
h2

Kc
. (41)

Equating 40 and 41 yields a scaling relation for the convective diffusivity Kc.

Now consider convection driven by constant destabilizing buoyancy fluxes Jb and increasing h(t): according to
(40), the mixing time then evolves according to tmix ∼ h2/3. On the other hand, if we instead we impose a
constant Kc—a commonly used parameterization when N2 < 0 (Gutjahr et al., 2021; Jungclaus et al., 2022;
Kuhlbrodt et al., 2018; Madec et al., 2017)—then 41 implies that, spuriously, tmix ∼ h2. Thus, constant CA
diffusivities inaccurately exhibit tmix ∼ h2 and may produce bias when convection competes with other processes
such as lateral restratification, or biogeochemical production and destruction.

To capture tmix consistently between 40 and 41 over the convective region whereN2 < 0, we introduce a dynamic
convective mixing length scale ℓh

ψ that scales with h,

ℓh
ψ =
defCh

ψ
e3/2

J̃b + Jminb
∼ h , (42)

where Jminb is chosen small enough to have no impact on CATKE‐parameterized solutions, and J̃b is an estimate of
the slowly‐evolving part of the buoyancy flux Jb averaged over time‐scales t ∼ tmix. We compute J̃b by
integrating

∂t J̃b = (
Jb

ℓ2D (z = 0)
)

1/3

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
∼t− 1mix

(Jb − J̃b) , (43)
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where ℓD is the dissipation length scale and (ℓ2D / Jb)
1/3

∼ tmix scales with the instantaneous convective mixing
time. Equation 43 relaxes J̃b to Jb over tmix. We use the dissipation length scale ℓD in 43 rather than a mixing
length because we hypothesize that the convective turbulence evolution time‐scale is most closely related to the
time‐scale for TKE dissipation rather than a mixing time‐scale. In quasi‐equilibrium, J̃b ≈ Jb. Because ℓh

ψ ∼ h,

CATKE’s convective tracer diffusivity scales with Kc ∼ h
̅̅̅
e

√
.

The second objective of our convective mixing length formulation is to correctly predict the evolution of h. For
this we introduce a model for “penetrative mixing” below the convective mixed layer associated with convective
plumes that plunge through the mixed layer and penetrate into the strongly stratified region below. The “empirical
law of convection” (Large et al., 1994; Siebesma et al., 2007; Souza et al., 2020, 2023; Van Roekel et al., 2018) is
the observation, robust across a wide range of convective conditions, that penetrative fluxes at the penetration
level zp scale with

wʹbʹ |z=zp ∼ − Jb such that h2 ∼
Jbt
N2
, (44)

for initially‐constant buoyancy gradient N2 and constant buoyancy flux Jb.

To ensure that CATKE reproduces 44, we introduce a “penetrative mixing length”,

ℓp
ψ =
defCp

c
J̃b

N2
̅̅̅
e

√
+ Jminb

, (45)

which is applied within the aforementioned penetration layer at the depth zp, defined via

N2 (zp) > 0 and N2 (zp + δ) < 0 , (46)

where δ is the thickness of the penetration layer. At z = zp, 45 produces wʹbʹ = − ℓp
c

̅̅̅
e

√
N2 ≈ − Cp

c Jb in
accordance with the empirical law in 44. Our numerical implementation of the convective mixing length uses
δ = Δzwhere Δz is the grid spacing at zp. This assumes that the entrainment layer is thinner than the grid spacing:
when δ > Δz, CATKE solutions may exhibit a “thin entrainment layer bias” even if the boundary layer deep-
ening rate is correct.

The scaling h ∼ e3/2/ Jb is an overestimate when e is produced by both shear and convective buoyancy flux.
Since the total mixing length ℓψ takes the maximum between the convective and shear mixing lengths, blending
the length scales in a mixed turbulence regime requires a way to reduce the convective mixing length in the
presence of significant shear production. For this purpose we introduce an estimate of the flux Richardson number
in near‐neutral conditions,

R̃if =
def d

̅̅̅
e

√
|∂zu|2

J̃b + Jminb
, (47)

where d = − z is depth. R̃if in 47 measures the relative contribution of shear production (the numerator) versus
buoyancy flux (the denominator) to the TKE budget in unstable stratification. We then use this estimate to reduce
the convective mixing length by

ϵsp =
def max(0,1 − Csp R̃if ) , (48)

where Csp is a free parameter. The reduction factor 48 may also be interpreted as modeling how shear disrupts
coherent plumes and thereby reduces convective turbulence correlation scales. Note that the numerator in 47
estimates shear production using the mixing length d, which is appropriate for shear‐driven turbulent mixing. This
formulation means that the free convection length scale is more limited at depth, where convective plumes are less
connected to destabilizing surface buoyancy fluxes.
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Putting 42, 45, and 48 together yields the piecewise parameterization

ℓconvψ (z) = ϵsp

⎧⎪⎪⎨

⎪⎪⎩

ℓh
ψ if N2 < 0 and Jb > 0 ,

ℓp
ψ if N2 > 0 , N2(z + Δz) < 0 , and Jb > 0 ,

0 otherwise .

(49)

figure 4 illustrates the behavior of the convective length scale predicted by CATKE in 49 for three free convection
cases with surface buoyancy fluxes Jb = 9.6 × 10− 7, 2.4 × 10− 7, and 8.8 × 10− 8 m2 s− 3 integrated for 6, 24,
and 72 hr respectively, using the initial buoyancy profile in Equation A1, which is also used for all our LES. The
parameters used to make Figure 4 are automatically calibrated to LESs, as described in Section 4. Figure 4a shows
CATKE‐simulated buoyancy profiles after integrating for 6, 24, and 72 hr Figure 4b shows that stronger forcing
cases have greater levels of TKE. Figure 4c shows the tracer mixing length, which above z = − 100 meters is
dominated by the convective mixing length. Though each case has different TKE and different surface buoyancy
flux, they nevertheless predict similar tracer mixing lengths, corroborating the dimensional analysis in Equa-
tion 39. (We also note that the mixing lengths are twice the boundary layer depth. We discuss this and other
possible biases in free convection further in Section 4.) Figure 4d shows the eddy diffusivity for the three cases—
unlike a typical constant‐diffusivity CA model, CATKE’s “convective adjustment diffusivity” varies depending
on the strength of the surface buoyancy flux. Because the predicted mixing length is similar for all three cases, the
tracer diffusivity varies with the surface buoyancy flux due to variation in the TKE.

4. A Posteriori Calibration Against Large Eddy Simulations
We calibrate CATKE’s 23 free parameters in an a posteriori (Duraisamy, 2021; Frezat et al., 2022) single‐column
context using horizontally‐averaged data from 21 LES described in Section 2 and Appendix A. A posteriori
calibration estimates free parameters by minimizing the error between LES data—b(z, t), u(z, t), v(z, t), and the
forced passive tracer c(z, t) extracted from solutions of 1–3—and single column simulations of b, u, v, and c in 13–
15 that use CATKE as a parameterization. The minimization is computed over the whole time series and thus in a
posteriori calibration free parameters are determined by directly minimizing simulation bias. In this way, a
posteriori calibration incorporates numerical and other errors that accumulate during a simulation. Moreover, a
posteriori calibration can leverage any observational data computable from the predicted solution, even only
indirectly informative data. For example, in this work we calibrate elements of the TKE equation using only
horizontally‐averaged momentum and buoyancy profiles derived from LES.

Figure 4. CATKE mixing length and eddy diffusivity during free convection for three cases with boundary layer depth
h ≈ 100 m. (a) CATKE‐predicted buoyancy profiles for the three cases, (b) profiles turbulent kinetic energyTKE, e,
(c) tracer mixing lengths ℓc, (d) tracer eddy diffusivities Kc. The buoyancy fluxes Jb correspond to heat fluxes Q ≈ 2000, 500,
and 183 W m− 2 using Q ≈ ρocp Jb/αg and ρo = 1024 kg m− 3, cp = 3991 J °C− 1, α = 2 × 10− 4 °C− 1,
and g = 9.81 m s− 2.
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4.1. The Importance of a Posteriori Calibration

Explicitly minimizing simulation bias distinguishes a posteriori calibration from other methods that minimize
other biases that are only indirectly related to simulation bias—for example, by attempting to compute free
parameters directly from data, usually by considering subcomponents of the parameterization in isolation (ex-
amples may be found in Umlauf & Burchard, 2003; Reichl & Li, 2019). These latter methods are called “a priori”
(Duraisamy, 2021), because they hinge on additional (often problematic) hypotheses—such as an assumption of
structurally perfect, unbiased parameterization (permitting a direct computation of free parameters from limited
data), or an assumption that free parameters are uncorrelated with one another (permitting free parameters to be
determined in isolated contexts, rather than leveraging all data simultaneously).

To illustrate the pitfalls of a priori calibration, we consider integrating a CATKE‐parameterized single column
equation for buoyancy b,

∂tb = − ∂z J (b;C)
⏟⏞⏞⏟
CATKE

+ ξ
⏟⏞⏞⏟
noisy error

. (50)

In 50, we include two terms: (a) the divergence of a parameterized flux J that depends on both the simulated
buoyancy b (omitting here for simplicity other aspects of the state such as u or v) and a set of free parameters C,
and (b) an explicit “error” term ξ that represents spatial and temporal discretization errors. We additionally define
the ideal or “perfect” solution as b̂. When Equation 50 is integrated forward to predict the evolution of b,
fluctuations away from the perfect solution b̂ inevitably develop due both to structural errors in J and because of
the discretization error ξ, leading to an error = b − b̂ that grows as

̅̅
t

√
(see, for example Gardiner, 2021).

This error accumulation is potentially fatal for a‐priori‐calibrated parameterizations: because the parameters C
are determined by evaluating J ( b̂) in terms of the perfect b̂, while the predictions J (b) made in terms of the
noisy b are unconstrained by the calibration procedure. At best, the unconstrained predictions J (b) are inaccurate.
At worst, however, the errors J (b) − J ( b̂) self‐amplify without bound, thwarting prediction altogether (Bre-
nowitz & Bretherton, 2019; Rasp, 2020; Rasp et al., 2018).

A posteriori calibration avoids all of these pitfalls by definition, since J (b,C⋆) computed in terms of the
simulated b and optimal parameters C⋆ is explicitly constrained by minimizing the discrepancy between J (b,C)
and data. Put differently: a posteriori calibration “teaches” J how to make accurate, stable predictions in terms of
potentially noisy inputs b. We leverage this feature to realize a key innovation of this work: we explicitly
minimize spatial discretization error by including single‐column simulations with 2‐, 4‐, and 8‐m resolution in our
loss function.

4.2. Ensemble Kalman Inversion for a Posteriori Calibration

To solve the nonlinear inverse problem posed by a posteriori calibration, we use an ensemble‐based method called
Ensemble Kalman Inversion (EKI; Iglesias et al., 2013). An advantage of EKI is that it is gradient‐free, requiring
only the ability to run an ensemble of simulations with different parameters. The EKI algorithm can be construed
either as the integration of a dynamical system or as an iterative scheme for repeatedly refining an initial dis-
tribution of free parameter values.

EKI minimizes the objective function

Φ(G,Y;C) =def
⃦
⃦
⃦M− 1/2 [G(C) − Y]

⃦
⃦
⃦
2
, (51)

whereY denotes a vector of observational data, G(C) denotes a parameterized prediction of the observations made
with a set of free parameters C, and M is a matrix that represents the uncertainty of Y. Φ measures the
discrepancy between G(C) and Y given uncertaintyM. The data Y is extracted from 21 of the LES described in
Table 1 that have intermediate surface forcing, each coarse‐grained three times to 2‐, 4‐, and 8‐m vertical res-
olution, respectively. G is constructed by assembling 21 × 3 = 63 single column simulations, representing a
prediction of each of the 21 LES cases at the three vertical resolutions.
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We note that the near‐surface dynamics in the LES seem uncertain. For example, the LES profiles exhibit strong
unstable near‐surface buoyancy gradients for strongly‐forced convective cases, indicating that turbulent mixing is
suppressed near the top of the LES domain. These features are robust to changes in LES resolution (see Ap-
pendix A) and may represent real physics, since the scale of turbulent motions is restricted by proximity to the
ocean surface. However, it is also plausible that the LES are missing important mixing processes near a wavy,
bubbly, broken ocean surface, such as wave breaking, or unresolved surface‐wave‐turbulence interactions. We
therefore omit the top 4 m of the LES domain from the data vector Y, and thereby avoid overconstraining pa-
rameters with the most uncertain elements of the LES data.

EKI finds a set of optimal parameters C = C⋆ that minimize Φ(G,Y,C) in 51 by evolving an ensemble of
parameter sets using the algorithm described in Appendix C. In this work we use relatively large ensembles with
1,000 members. This means that every EKI iteration requires 21 × 3 × 1000 = 63,000 single column simu-
lations, for 21 LES cases and 3 vertical resolutions. To make the calibration as efficient as possible, we implement
CATKE in Oceananigans and leverage a feature that permits us to integrate an ensemble of single column models
in parallel in the configuration of a single three‐dimensional simulation on a GPU. As a result, each EKI iteration
requires evolving 9 effectively three‐dimensional simulations (3 resolutions for each of the 12‐, 24‐ and 48‐hr
suites). On an Nvidia Titan V GPU and with 1,000 ensemble members, a single EKI iteration takes 40–50 s,
and the entire calibration takes 4–6 hr. In the course of this work we have performed complete calibrations of
CATKE's parameters hundreds of times—to experiment with new formulations, new numerical schemes, and to
tweak the calibration setup. This workflow represents a new “calibration‐based” paradigm in parameterization
development, where physical formulation or numerical implementation changes are tested against the baseline by
comparing predictions for independently calibrated parameterizations. The 23 calibrated free parameters that
correspond to the version of CATKE described in this paper and the previously described LES are listed in
Table 3.

5. Validation
We next assess CATKE’s ability to make accurate predictions in a single column context with the free parameters
listed in Table 3. First, we derive quantities with well‐understood physical interpretations from CATKE’s free
parameters, and evaluate whether their calibrated values are close to values reported in the literature. Second, we
compare CATKE‐parameterized simulations both to the 21 constant‐forcing LES used for calibration and to an
additional 12 constant‐forcing LES that are both more strongly and more weakly forced than the calibration LES.
Third, we conduct a 34‐day CATKE‐parameterized simulation of equatorial deep‐cycle turbulence using the data
set provided by Whitt et al. (2022), and then compare the results to the LES used therein. This third validation
context is useful because it involves both time‐dependent surface forcing, solar insolation, and lateral flux di-
vergences derived from a high resolution tropical general circulation model (GCM). Finally, we evaluate
CATKE’s sensitivity to vertical resolution and time‐step size. These all provide a measure of confidence in
CATKE’s ability to not only represent the LES data used for calibration but also to extrapolate to differently‐
forced conditions, time‐dependent surface forcing, and GCM‐like contexts that include interactions with other
parameterizations and lateral flux divergences from for example, the advection of momentum, temperature, and
salinity. All of this said, we maintain a caveat that CATKE should still be assessed, and likely recalibrated, in a
regional or global context involving lateral fluxes and interactions with other model components.

5.1. Derived Quantities

Table 4 shows several quantities that can be derived or computed in terms of CATKE’s calibrated free parameters.
There is unknown uncertainty in these estimates, so the precise values must be taken with a grain of salt. Un-
certainty quantification, using the methodology proposed by Cleary et al. (2021) for example, is left for future
work.

5.1.1. Steady‐State Richardson Number

Section 3.1.4 shows how a steady‐state Rimay be derived from CATKE’s TKE equation. From the parameters in
Table 3, we find that
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Ri† =def
C0u

C0c + C
0
D

≈ 0.18 , (52)

which lies in the “near‐neutral” stability function regime, since
C0Ri = 0.25 > Ri†. Ri† = 0.18 is somewhat less than the 0.23 used by
Blanke and Delecluse (1993), or the value Ri = 1/4 that determines the
stability of a laminar stratified shear layer. In Section 5.3, we find that Ri† is a
crucial parameter controlling mixing in forced stably‐stratified turbulence,
and that LES tend to exhibit Ri in the range 0.2–0.23.

5.1.2. Near‐Surface Similarity Constant

Section 3.1.3 shows how a near‐surface similarity constant—analogous to the
von Kármán constant for turbulence near rigid non‐wavy walls—may be
computed from the near‐wall and momentum stability function parameters.
From Table 3 and Equation 35 we find that

κ = Cs[(C0u)
3C0D]

1/4
≈ 0.47 , (53)

which is slightly higher than the rigid‐wall von Kármán constant value of 0.4.
A slightly higher similarity constant is consistent with the notion that surface
waves act to increase the coherence of turbulent motions, which increases
mixing lengths and suppresses TKE dissipation.

A similar wave‐induced enhancement to the similarity constant is proposed
by Samelson (2022). However, Samelson (2022) models the enhancement as
a function of wind at 10 m height, u10. In our case, the LES are forced with
varying u10, but constant Langmuir number La ≈ 0.3 (see Table 1 for a
summary of the LES cases). Thus we must either hypothesize that surface
waves can be modeled with a La‐dependent enhancement of κ, or that
CATKE is missing physics. We are unable to proceed further in determining
wave‐induced enhancements to κ without LES that vary La, so we save such
considerations for future work.

Table 3
A Summary of CATKE’s Free Parameters

Symbol Description Optimal value Bounds

CshearJ Wind stress TKE surface flux 3.18 (0,8)

CconvJ Convective TKE surface flux 0.38 (0,8)

Cs Near‐surface mixing scale 1.13 (0,2)

Ch
c Tracer free convection scale 4.79 (0,8)

C−c Tracer mixing for negative Ri 0.57 (0,2)

C0c Tracer mixing for near‐neutral Ri 0.37 (0,2)

C∞
c Tracer mixing for high Ri 0.098 (0,2)

Cp
c Tracer free entrainment scale 0.11 (0,2)

Ch
u Momentum free convection scale 3.71 (0,8)

C−u Velocity mixing for negative Ri 0.37 (0,2)

C0u Velocity mixing for near‐neutral Ri 0.36 (0,2)

C∞
u Velocity mixing for high Ri 0.24 (0,2)

Ch
e TKE free convection scale 3.64 (0,10)

C−e TKE transport for negative Ri 1.44 (0,10)

C0e TKE transport for near‐neutral Ri 7.86 (0,10)

C∞
e TKE transport for high Ri 0.55 (0,10)

Ch
D Dissipation free convection scale 3.25 (0,10)

C−D Dissipation scale for negative Ri 0.92 (0,10)

C0D Dissipation scale for near‐neutral Ri 1.60 (0,10)

C∞
D Dissipation scale for high Ri 0.58 (0,10)

C0Ri Stability function transitional Ri 0.25 (0,2)

Cδ
Ri Stability function Ri width 1.02 (0,2)

Csp Sheared plume scale 0.50 (0,2)

Note. Note that “near‐neutral Ri” means Ri ≤ C0Ri, while “high Ri” means
Ri ≥ C0Ri + C

δ
Ri. The bounds limit the values a parameter can take during

calibration, using the method described in C3. The prior distributions for each
parameter span the range between the bounds.

Table 4
A Summary of Parameters and Non‐Dimensional Numbers Derived From CATKE’s Calibrated Free Parameters

Symbol Value Description

Ri† 0.18 Steady‐state gradient Richardson number

κ 0.47 Near‐neutral near‐surface similarity constant

Pr0 0.98 Near‐neutral turbulent Prandtl number (Ri → 0)

Pr∞ 2.46 Strongly‐stratified turbulent Prandtl number (Ri → ∞)

Pr− 0.65 Unstably‐stratified shear turbulence Prandtl number (Ri < 0)

Prc 0.77 Free convection turbulent Prandtl number (Ri → − ∞)

Γ0 0.23 Near‐neutral mixing coefficient (Ri → 0)

Γ∞ 0.17 Strongly‐stratified mixing coefficient (Ri → ∞)

Sc0 0.046 Near‐neutral turbulent TKE Schmidt number (Ri → 0)

Sc∞ 0.44 Strongly‐stratified turbulent TKE Schmidt number (Ri → ∞)

Sc− 0.26 Unstably‐stratified shear turbulence TKE Schmidt
number (Ri < 0)

Scc 1.02 Free convection turbulent TKE Schmidt number (Ri → − ∞)
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5.1.3. The Turbulent Prandtl Number

The turbulent Prandtl number is defined as

Pr =def
Ku

Kc
, (54)

which is derived for CATKE in Section 3.1.1. For various regimes of turbulence we obtain.

• Prc ≈ 0.77 for weakly‐sheared convection,
• Pr− ≈ 0.65 for unstably‐stratified shear turbulence,
• Pr0 ≈ 0.98 for near‐neutral shear turbulence,
• Pr∞ ≈ 2.46 for strongly‐stratified shear turbulence.

A turbulent Pr that increases from less than unity to above unity as Ri crosses zero is consistent with laboratory
and DNS studies (e.g., D. Li, 2019), as well as typical two‐equation models (e.g., Burchard & Bolding, 2001). On
the other hand, one‐equation models (Blanke & Delecluse, 1993; Madec et al., 2017) often prescribe Pr to a value
of 10 or higher as Ri tends to infinity. It is unlikely that our boundary layer LES are informative for such high Ri
mixing, so more LES are needed to assess and perhaps refine CATKE's stability function to capture very high Ri
regimes.

5.1.4. The Turbulent Schmidt Number

Calibration determines that Sc = 0.26 for unstably‐stratified shear turbulence with Ri < 0, and then varies
between 0.046 < Sc < 0.44 as Ri increases from 0 to C0Ri + C

δ
Ri. As a result, TKE is transported much more

rapidly than momentum or tracers in shear‐dominated turbulence, and similarly to momentum or tracers in
convective or weakly‐sheared stratified turbulence. Rapid TKE diffusion relative to momentum or tracer
diffusion introduces an “implicitly non‐local” element to CATKE’s mixing predictions, because TKE transport
can generate mixing in a region that is displaced from the region of TKE generation.

5.1.5. Stratified Turbulence Mixing Coefficient

The “mixing coefficient”—the ratio between buoyancy flux and dissipation in stably‐stratified turbulence (Gregg
et al., 2018; C.‐c. P. Caulfield, 2020)—measures the relative level of TKE converted to potential energy in the
process of mixing buoyancy versus TKE dissipation. Using 19 and assuming stably‐stratified turbulence far from
boundaries such that ℓc = Sc

̅̅̅
e

√
/N, ℓD =

̅̅̅
e

√
/ (SDN) , and Kc = Sce/N, we find that

Γ =def −
buoyancy flux
dissipation

=
Sc
SD

. (55)

The free parameters in Table 3 imply that the mixing coefficient Γ varies between Γ0 ≈ 0.26 for near‐neutral
turbulence and Γ∞ ≈ 0.17 for strongly‐stratified (shear‐free) turbulence. The latter is applicable to internal wave
breaking, where an extensive literature suggests that Γ∞ ≈ 0.2 (Gregg et al., 2018).

5.2. Validation Against Constant‐Forcing LES and Comparison With Other Parameterizations

In this section, we validate CATKE’s ability to make predictions both within and outside the range of surface
forcings used for calibration. To add context to this validation exercise and connect with other studies, we include
a comparison with predictions from the K‐profile parameterization (KPP; Large et al., 1994), and the “Langmuir
turbulence” second‐moment closure (SMC‐LT) described by Harcourt (2015), whose results depend additionally
on the Stokes drift profile we used for LES. All simulations, including those with KPP and SMC‐LT, use
staggered vertical grids with 128 cells, in a 256‐m deep domain with 2‐m vertical resolution. We use a 2‐min time
step for CATKE and KPP, and a 1‐s time‐step for SMC‐LT. Such a short time‐step was used for SMC‐LT because
we observed that the results were sensitive to time steps 20 s and longer for the strong forcing cases.

We should treat these comparisons with some caution: KPP or SMC‐LT were calibrated to different data sets than
what we use for CATKE. Moreover, uncertainty in the accuracy of LES profiles near the surface—where
CATKE, KPP, and SMC‐LT often exhibit significant discrepancies—prevent firm conclusions about near‐
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surface biases. That said, we find by manual inspection that for every constant‐forcing case, CATKE predicts
boundary layer depth simulated by LES—both inside and outside the training data set—more accurately than
either KPP or SMC‐LT. This is an important result because boundary layer depth is a key metric determining the
short‐term sensitivity of climate predictions (Gregory, 2000; Held et al., 2010). With this broad summary of
CATKE’s main successes stated, we focus the subsequent discussion for each case on CATKE’s biases and areas
to focus on for future improvements.

5.2.1. Constant Forcing Validation: Free Convection

We begin with the free convection cases plotted in Figure 5. The free convection cases represent some of the best
predictions of KPP and SMC‐LT. Boundary layer depth is well‐predicted by all parameterizations to within 10 m,
with perhaps the greatest bias coming from SMC‐LT in the weakly‐forced 72‐hr case—despite that KPP has
known structural biases for representing free convection (Souza et al., 2020). A large portion of the KPP profiles
are stably‐stratified within the boundary layer in our most strongly‐forced convective cases. This bias, which is a
known issue with KPP (see Section 8.6.3 in Griffies et al., 2015), is particularly prominent in the cases we
consider due to the strength of our forcing and the weakness of our underlying stratification. Of the three, CATKE
exhibits the most well‐mixed boundary layers under very strong forcing due to its convective mixing length.

For near‐surface buoyancy (and equivalently SST, or SST) the three parameterizations make different pre-
dictions. For example, CATKE predicts a warmer SST because of its near‐neutral boundary layer profile. On the
other hand KPP, SMC‐LT, and the LES all exhibit layers of unstable stratification next to the surface, and thereby
also predict substantially colder SST than CATKE. Such upper boundary layer structure sensitively depends on a
description of how mixing is suppressed (or not) close to the ocean surface. Unfortunately, we are unsure how far
to trust the LES results, which may be missing important processes associated with wave breaking or unresolved
wave‐turbulence interactions. Addressing near‐surface uncertainties in the LES data, and thereby coming to
stronger conclusions about the relative fidelity of CATKE, KPP, and SMC‐LT, requires observations of near‐
surface boundary layer structure to either validate or motivate improvements to the LES. We leave this for
future work.

The buoyancy profiles in Figure 5 reveal bias in CATKE’s predictions of the detailed structure of the lower half of
the convecting boundary layer. One contribution to this bias is well‐known: in free convection, buoyancy fluxes in
the lower half of the boundary layer are upgradient. In order to accurately capture the boundary layer depth,
CATKE must accurately predict the buoyancy flux—and therefore cannot avoid erroneously predicting a slightly
unstably stratified buoyancy profile where in the LES the profile is either nearly mixed or actually slightly stably
stratified. No amount of calibration or additional free parameters can fix this bias given CATKE’s downgradient
formulation. The only solution is to introduce a non‐downgradient, non‐local contribution to CATKE’s fluxes.
For example, CATKE could be augmented with a mass flux scheme in the manner of Siebesma et al. (2007);
Giordani et al. (2020). Other alternatives include evolving fluxes directly as in Garanaik et al. (2024), or adding
prognostic tracer variances (Legay et al., 2024).

To investigate CATKE’s free convection bias further, Figure 5 compares CATKE’s predictions of the forced
passive tracer profile with LES. This comparison reveals that while CATKE generally models the tracer profile
well (except for the extreme, extrapolating, 6‐hr case in panel a), CATKE tends to overmix especially in the lower
part of the boundary layer, where the LES tracer profiles exhibit a slight peak and stronger gradients. Thus in
addition to lacking a non‐local contribution to fluxes, CATKE also overpredicts mixing to some degree, espe-
cially near the base of the boundary layer. The overprediction of mixing may be related to an overprediction of the
tracer mixing length exhibited by Figure 4. Addressing this bias could motivate adding non‐local contributions to
convective fluxes as well as modifying the depth structure of the convective mixing length.

5.2.2. Constant Forcing Validation: Shear‐Driven Turbulence

We next turn to pure shear‐ or wind‐driven turbulence. We have two such cases, one without rotation and thus
representing near‐equatorial mixing, and a second with a Coriolis parameter of f = 10− 4 s− 1 corresponding to a
latitude of about 43°N. The wind forcing that would produce the momentum flux applied to the strong wind, no
rotation cases spans from 9 to 22 m s− 1. The wind forcing in the strong wind (and rotating) cases spans 15–
24 m s− 1.
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A comparison between LES, SMC‐LT, KPP, and CATKE for the strong wind, no rotation case is shown in
Figure 6. All parameterizations make similar and good predictions for boundary layer depth and surface tem-
perature, except for SMC‐LT in the 6‐hr case, where it overmixes slightly. A comparison between CATKE and
LES simulations of the forced passive tracer for the strong wind, no rotation case is shown in Figure 6, revealing
that CATKE fares far better for this case than for free convection, and more specifically exhibits a slight tendency
to overmix near the base of the boundary layer and to undermix near the surface.

The strong wind case with rotation plotted in Figure 7 proves more challenging for CATKE and extremely
challenging for SMC‐LT and KPP. For all forcing strength, SMC‐LT and KPP exhibit serious shallow bias and
warm SST bias. CATKE simulations, on the other hand, are better but still exhibit a tendency to overmix slightly,
resulting in boundary layers that are approximately 5% too deep. Figure 7 compares CATKE and LES predictions
of the forced passive tracer for the strong wind case, corroborating the “overmixing bias” especially for the 6‐ and
48‐hr suites, while additionally revealing undermixing near the surface.

5.2.3. Constant Forcing Validation: Mixed Shear and Convective Turbulence

CATKE simulations are also more accurate than KPP or SMC‐LT for cases involving both wind and destabilizing
buoyancy forcing, which produces a mixed regime of turbulence with both shear and buoyant production of TKE.
We have three mixed cases comprising a total of 15 LES with both wind and buoyancy forcing: strong wind, weak
cooling, medium wind, weak cooling, and weak wind, strong cooling. Results for these 15 cases are shown in
Figures 8–10. KPP exhibits significant shallow bias for all cases. SMC‐LT exhibits less shallow bias than KPP,
but still more than CATKE. CATKE’s worst performance is in the weak wind, strong cooling cases where it
overmixes.

Figure 5. A four‐way comparison for the “free convection” constant forcing cases described in 1 and Appendix A between
horizontally‐averaged LES, CATKE, the K‐profile parameterization (KPP Large et al., 1994), and the Langmuir turbulence
second moment closure (SMC‐LT) described by Harcourt (2015) (SMC‐LT). Both KPP and SMC‐LT are implemented in the
General Ocean Turbulence Model (GOTM, Burchard et al., 2006; Q. Li et al., 2019, 2021). Panels (a)–(e) compare buoyancy
profiles in free convection with forcing of decreasing strength corresponding to the 6‐, 12‐, 24‐, 48‐, and 72‐hr suites,
respectively. The free convection cases have no wind forcing and destabilizing buoyancy fluxes that correspond, roughly, to
heat fluxes between 181 and 2000 W m− 2. The initial condition is density stratified with a depth‐varying buoyancy gradient that
varies between 10− 6 s− 2 and 2 × 10− 5 s− 2. Panels (f)–(i) compare the profiles of a forced passive tracer simulated by LES with
that simulated by CATKE. The passive tracer forcing, which is described in Appendix A2, is a Gaussian centered on z = − 96 m
and 8 m wide. The strength of the forcing depends on the suite: the 6‐, 12‐, 24‐, 48‐, and 72‐hr suites use 15 min, 30 min, 1 hr,
2 hr, and 4 hr forcing time scales, respectively.
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Figure 6. A comparison between LES and three turbulence closures (CATKE, KPP, and SMC‐LT) for the “strong wind, no
rotation” constant forcing cases described in Table 1 and Appendix A. Surface stresses correspond to 9–22 m s− 1 10‐m
winds. See Figure 5.

Figure 7. A four‐way comparison between LES and three turbulence closures (CATKE, KPP, and SMC‐LT) for the “strong
wind” constant forcing cases described in Table 1 and Appendix A. The Coriolis parameter is f = 10− 4 s− 1 and surface
stresses correspond to 15–24 m s− 1 10‐m winds. See Figure 5.
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Figures 8–10 also compare CATKE and LES predictions of the forced passive tracer for strong wind, weak
cooling, mid wind mid cooling, and weak wind weak cooling cases. The most bias is exhibited in the weak wind
strong cooling case, where it tends to overmix as exhibits in both the boundary layer depth in Figure 8 and the
tracer profiles in Figure 8. This shows that the most difficult cases are free convection and “weak wind, strong
cooling”—the cases where convective dynamics dominate.

In the “weak winds, strong cooling” case, the 72‐hr LES is forced by 156 W m− 2 equivalent heat flux and 11
m s− 1 10‐m atmospheric winds, while the 6‐hr LES is forced by 1,666W m− s and 16 m s− 1 10‐m winds. In the 6‐
and 12‐hr cases, KPP exhibits a similar “stable stratification bias” as seen in free convection in Figure 5. SMC‐LT
exhibits a shallow bias for the strongly forced cases and a deep biased for the weakly forced cases (and quite
accurate predictions for the 24‐hr case). CATKE also predicts a too‐sharp entrainment layer that is much thinner
than the broad entrainment layer observed in the LES in the 6‐ and 12‐hr weak winds, strong cooling cases. These
simulations are farthest from quasi‐equilibrium in time and may exhibit strong non‐locality. Despite CATKE’s
errors for the 6‐hr case, however, CATKE’s boundary layer depth predictions for the 24‐, 48‐, and 72‐hr case are
accurate.

5.2.4. Constant Forcing Validation: Summary

CATKE exhibits less bias than either KPP or SMC‐LT across all cases, even when making predictions “outside”
its training data set. In particular, CATKE generates good predictions of boundary layer structure and depth, even
in convective dominated cases where an analysis of tracer profiles suggests that CATKE tends to overmix. Fixing
CATKE’s convecitve biases will likely require additional work with both the convective mixing length, and
CATKE’s stability function formulation for Ri < 0.

CATKE makes good predictions relative to KPP or SMC‐LT in part because its formulation expresses reasonable
physical hypotheses, but also because its parameters have been calibrated comprehensively to minimize bias
across a wide range of physical scenarios and vertical resolutions. In particular, the simulations that CATKE has
been trained on are more similar to the extrapolation test cases (the 6‐ and 72‐hr cases) than the data sets that either
KPP or SMC‐LT have been trained on. This generates ambiguity: do KPP and SMC‐LT exhibit greater bias
because of structural issues with their formulation, or do they need to be recalibrated in a similar manner as

Figure 8. A four‐way comparison between LES and three turbulence closures (CATKE, KPP, and SMC‐LT) for the “strong
wind, weak cooling” constant forcing cases described in Table 1 and Appendix A. The Coriolis parameter is f = 10− 4 s− 1,
surface stresses correspond to 14–23 m s− 1 10‐m winds, and surface cooling ranges from 79 to 833 W m− 2. See Figure 5.
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Figure 9. A four‐way comparison between LES and three turbulence closures (CATKE, KPP, and SMC‐LT) for the “mid
wind, mid cooling” constant forcing cases described in Table 1 and Appendix A. The Coriolis parameter is f = 10− 4 s− 1,
surface stresses correspond to 13–20 m s− 1 10‐m winds, and surface cooling ranges from 125 to 1,333 W m− 2. See Figure 5.

Figure 10. A four‐way comparison between LES and three turbulence closures (CATKE, KPP, and SMC‐LT) for the “weak
wind, strong cooling” constant forcing cases described in Table 1 and Appendix A. The Coriolis parameter is f = 10− 4 s− 1,
surface stresses correspond to 11–16 m s− 1 10‐m winds, and surface cooling ranges from 156 to 1,666 W m− 2. See Figure 5.
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CATKE? Answers prove elusive. While KPP has known structural biases (see, for example, Souza et al., 2020),
the formulation of SMC‐LT is seemingly more general than CATKE. Further understanding requires calibrating
KPP and SMC‐LT in the same way we calibrate CATKE.

5.3. Deep Cycle Turbulence in the Tropics

We turn to a validation case that requires significant extrapolation outside of the constant‐forcing data set: 34 days
of deep cycle turbulence in the tropics forced by time‐varying winds, surface heat fluxes, and surface freshwater
fluxes, as well as lateral flux divergences derived from a regional ocean model. The scenario and LES that we use
to validate the single column model simulations are described by Whitt et al. (2022). A comparison between the
same LES and two other turbulence closures is also given by Reichl et al. (2024).

Figure 11 illustrates the complex dynamics of this tropical turbulence situation by showing vertical kinetic energy
from the LES, TKE from CATKE, and Ri from days 8–13 of the time‐series. A combination of wind stress and
stabilizing solar insolation in daytime produces a shallow, stably‐stratified jet in the upper ∼10 m of the water
column. As day turns to night, outgoing radiation starts to dominate the incoming solar insolation to reduce
stratification and eventually destabilize the upper part of the water column, producing turbulent mixing driven by
a combination of convective buoyancy flux and shear. Momentum is thereby mixed downwards and injected into
the stably stratified region below the base of the boundary layer. Remarkably, because the region below the
boundary layer is close to marginally stable (Smyth & Moum, 2013), this nocturnal injection of momentum from
above eventually leads to shear instability that spans the entire, roughly 100 m depth of the region below the
mixed layer. More often then not, the turbulence “pulsates”—initial bursts of turbulence mix momentum and
buoyancy, decay, and precipitate a second and even a third burst of turbulence later on the evening (Smyth
et al., 2017). The process, which is called “deep cycle turbulence”, repeats itself the next day.

The slow growth and intermittent bursting of turbulence at night is prominent in LES vertical kinetic energy
shown in Figure 11a. Figure 11b shows that CATKE exhibits a qualitatively similar bursting behavior, though the
timing of the bursts are sometimes misrepresented. Moreover, inspection of Figures 11c and 11d reveals that
CATKE underpredicts the Richardson number, Ri. (Panel d also shows that CATKE exhibits regions of negative
Ri below z = − 70 m which are absent from the LES. This deep unstable stratification, which can only produced
by the GCM‐derived lateral flux divergences, is also present in other parameterizations, such as in the k‐ϵ so-
lutions that underpin Figures 13c and 14c. We are unsure why the lateral fluxes produce negative Ri, but do not
investigate this issue further here. Finally, we note that this issue is relatively less prominent outside days 8–13
within the total 34 days time‐series).

Figure 12 investigates the discrepancy between LES‐derived and CATKE‐based Ri further by plotting the median
Ri, N2, and S2 and shading the range of values between the 25% and 75% quantiles. The Ri statistics in the left
panel show that while the LES Ri is relatively variable with a broad peak around Ri ≈ 0.21, CATKE’s Ri are
narrowly concentrated around its steady state value 0.18. Turning to N2 (middle panel) and S2 (right panel), we
see that the Ri bias is not straightforwardly associated with a bias in either N2 or S2—both are slightly over-
predicted (indicating undermixing), but nevertheless exhibit similar medians and ranges compared to the LES.

Despite the errors in burst timing and Richardson number, CATKE’s predictions have realistic qualities not
shared by other closures. To show this, Figures 13 and 14 compare the vertical temperature flux, and the time‐
derivative of the vertical temperature flux between the LES, CATKE, and the k‐ϵ parameterization imple-
mented in Oceananigans (Ramadhan et al., 2020; Umlauf & Burchard, 2005). k‐ϵ is similar to SMC‐LT except
that, like the LES described by Whitt et al. (2022), it neglects surface wave effects. Note that the LES data has
been smoothed with a moving average to reduce noise, which is especially distracting when computing the time
derivative of the vertical flux.

In Figure 13, which shows the period between days 8–13, both the LES and CATKE vertical fluxes exhibit
vertically‐coherent bursts, whereas k‐ϵ’s flux predictions are smoother and smeared out over the deep turbulence
cycle. The vertical coherence of vertical flux maxima is even more pronounced in the time‐derivative of the
vertical fluxes plotted in panels d–f. Figure 14 shows the same data between days 28–34, during which the three
solutions are more qualitatively distinguished. In particular, the time‐derivative of the k‐ϵ fluxes shown in panel f
of Figure 14 exhibit sharp, progressively deepening interfaces and generally lack vertically‐coherent features.
Neither the LES (panel d) or CATKE solutions (panel e) possess these interfaces and instead exhibit vertically‐
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Figure 11. Overview of the tropical turbulence validation case. Panels show: (a) surface heat fluxes and solar insolation,
(b) vertical kinetic energy wʹ2 from the LES described byWhitt et al. (2022), (c) CATKE’s TKE variable, (d) the Richardson
number computed from the horizontally‐averaged LES momentum and buoyancy profiles, and (e) the Richardson number
predicted by CATKE. The shaded red areas in panels (d) and (e) indicate a negative Richardson number. Shown here are days 8–
13 out of the entire 34‐day time‐series. The heat fluxes are negative during the day (heat going downwards, into the ocean) and
positive at night (heat going up, out of the ocean). The LES vertical kinetic energy and CATKE TKE exhibit intermittent
bursting. In the deep region below the boundary layer where turbulent bursting occurs, LES‐derived Richardson numbers get as
low as 0.15. In the CATKE solution and in the same region, the Richardson number reaches a minimum of about 0.18.

Figure 12. Median Ri = N2/S2 (left panel), and buoyancy frequency N2 (middle), and shear S2 (right panel) at each depth
computed from 34 days of realistic equatorial turbulence simulated by LES and CATKE. The LES Ri is computed in terms of
the horizontally‐averaged shear and buoyancy. Shading shows the range between the 25% and 75% quantiles. CATKE’s
prediction of Ri is smaller and more narrowly distributed around its steady‐state Richardson number Ri† = 0.18 than the LES
Ri. On the other hand, CATKE overpredicts both N2 and S2, thus undermixing both momentum and buoyancy (with more
momentum bias than buoyancy bias).
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coherent features. Despite their qualitative similarity to LES, however, the CATKE solutions misrepresent the
magnitude and timing of the vertically‐coherent bursts. Improving both CATKE and k‐ϵ will probably benefit
from including time‐dependent LES data with deep‐cycle turbulence physics in a future calibration exercise.

5.4. Sensitivity to Vertical Resolution and Time‐Step

Next we investigate the sensitivity of CATKE’s predictions to numerical parameters like vertical resolution and
time‐step size—a well‐appreciated concern with ocean microscale parameterizations (Reffray et al., 2015; Van
Roekel et al., 2018). The sensitivity of CATKE’s predictions to vertical resolutions ranging from 1 to 16 m is
shown in Figure 15 for the weak wind, strong cooling case (the case for which CATKE exhibits the most bias).
Recall that CATKEwas calibrated using simulations with 2‐, 4‐, and 8‐m vertical resolution, such that 1 and 16 m
represent extrapolation in resolution. Based off the results in Figure 15, we conclude that CATKE is insensitive to
vertical resolutions 8 m and finer. At 16 m resolution, CATKE’s predictions are still better than KPP and SMC‐
LT, but nevertheless start to deviate from the higher‐resolution CATKE solutions and, in particular, tend to
overmix. It may be that with such a coarse resolution, the structure of strongly‐stratified entrainment layers at the
base of the boundary layer cannot be adequately resolved.

The sensitivity of CATKE’s predictions to time‐step size—at a vertical resolution of 1 m—are shown in
Figure 16. Note that CATKE requires a smaller time step for finer vertical resolution. Put differently, smaller

Figure 13. A comparison of the vertical temperature flux and vertical temperature flux divergence in tropical turbulence
between LES (Whitt et al., 2022), CATKE, and the k‐ϵ two‐equation model (Umlauf & Burchard, 2005).
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Figure 14. Vertical temperature flux and vertical temperature flux divergence as in Figure 13, but showing days 28–34.

Figure 15. Illustration of sensitivity of CATKE predictions to vertical resolution for the weak wind, strong cooling case. Four
vertical resolutions are shown: 1, 4, 8, and 16 m. CATKE’s calibration explicitly minimized errors between LES and CATKE
simulations at 2, 4, and 8 m resolution, such that the 1 and 16 m cases represent “extrapolation in resolution.” The predictions
are converged for resolutions 8 m and finer, but the 16 m resolution results exhibit small discrepancies from the converged
solutions.
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time‐steps are required to resolve the evolution of TKE, momentum, and tracers, and associated vertical trans-
mission of information, on finer grids. More strongly forced cases also require smaller time steps. Figure 16, and
additional tests, show that with 1 m vertical resolution, CATKE requires time‐steps 2 min or shorter to resolve the
dynamics associated with surface forcing as strong as that encountered in the 6‐hr‐suite. (A 5‐min time step is
adequately converged for the 12‐, 24‐, 48‐, and 72‐hr suite, however).

We address this sensitivity of CATKE’s predictions to time‐step by implementing a novel split‐explicit scheme
that substeps the TKE using a short time‐steps, while evolving momentum and tracers with a longer time‐step.
The details are given in Appendix B. The results are shown in Figure 17, showing that CATKE generates
converged predictions for momentum and tracer time‐steps between 1 and 20 min when the TKE is substepped
with a short 30 s time step. When using substepping, the TKE time‐step can be configured according to the
vertical resolution and strongest expected forcing over the duration of the simulation, while the momentum and
tracer time‐steps may be configured by other stability criteria, such as a Courant‐Freiderichs‐Lewy condition.

6. Discussion
This paper describes a novel one‐equation parameterization for vertical fluxes by ocean microscale turbulence
called “CATKE”. CATKE extends existing one‐equation parameterizations (Blanke & Delecluse, 1993; Madec

Figure 16. Sensitivity of CATKE predictions to time step for 1 m vertical resolution for the weak wind, strong cooling case.
At 1 m resolution and in the strong forcing conditions of the 12‐ and 6‐hr suites, CATKE solutions show time‐step
dependence for time steps longer than 1 min. To enable longer time steps for high vertical resolutions in the presence of
strong forcing, the substepping scheme described in Appendix B is used and demonstrated in Figure 17.

Figure 17. A comparison between LES and CATKE‐parameterized single column simulations at 1 m vertical resolution and
three different momentum and tracer time‐steps, when turbulent kinetic energyTKE is substepped with a 30 s time step using
the scheme described in Appendix B For the 6‐hr suite, the time‐step dependence is greatly reduced compared to the non‐
substepped case shown in Figure 16, but is not entirely converged. We suspect this is because even momentum and tracers
require a time step shorter than 20 min for such strong forcing at high vertical resolution.
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et al., 2017) with a dynamic model for CA capable of describing the wide range of convective mixing rates
observed in the ocean surface boundary layer. CATKE’s 23 free parameters are calibrated against LESs ac-
counting for discretization errors. We use a posteriori calibration, meaning that the CATKE parameters are
calibrated to capture the full temporal evolution of the coarse‐grained variables rather than, for example, matching
the unresolved eddy fluxes. This approach improves both the accuracy and the stability of the calibrated
parameterization.

Our decision to develop a one‐equation TKE‐based parameterization rather than a K‐profile parameterization
(KPP, see Large et al., 1994; McWilliams et al., 2009; Van Roekel et al., 2018; Reichl &Hallberg, 2018; Reichl &
Li, 2019) merits some discussion. KPPs have a major advantage over TKE‐based parameterizations in coarse
resolution ocean models (especially with different time‐steps for momentum and tracer variables) because they
admit time‐steps as long as 2 hr (Reichl & Hallberg, 2018). In part, we are interested in one‐equation parame-
terization because our focus is higher resolution, mesoscale‐permitting and mesoscale‐resolving simulations that
require 1–10 min time‐steps to satisfy the advective numerical stability constraints of energetic solutions on
relatively high‐resolution grids. CATKE adds no additional time step constraints to such simulations, while
offering some significant benefits: (a) dynamic prediction of diffusivity vertical structure versus prescription via
“shape functions”; (b) turbulent intensity growth and relaxation time scales or “memory”, and (c) better
computational performance on hardware with fine‐grained parallelism such as GPUs used for example, by
Oceananigans (Ramadhan et al., 2020; Silvestri, Wagner, Constantinou, et al., 2024) and Veros (Häfner
et al., 2021), which are ill‐suited for the nonlinear solvers for boundary layer depth common to KPP‐type models
(Zhang et al., 2020).

The automated calibration described in Section 4 and Appendix C was repeated hundreds of times during the
development of CATKE. We developed CATKE by starting with a simple formulation similar to the one
described by Blanke and Delecluse (1993)—with no stability functions (and thus a constant Prandtl number) and
no special convective mixing length. We then progressed, using calibration to justify increasing model
complexity, to the presently described form with continuously Ri‐dependent stability functions in Equation 28
and the convective mixing length described in Section 3.1.5. This development process represents a “knowledge
discovery loop” (National Academies of Sciences et al., 2022) with three steps: (a) formulation, (b) calibration,
and (c) assessment. For complex, nonlinear models—and even in the relatively simple single column context of
this paper—automatic calibration is essential to progress quickly from formulation to assessment, and then to
discover and justify further improvements to formulation, thereby iteratively producing a high‐quality, well‐
motivated, parsimonious parameterization.

Our calibration to a relatively limited range of LES cases reported in this paper (though extensive compared prior
efforts in ocean turbulence parameterization development) is just the first step toward using CATKE for global
ocean modeling and climate projection. In particular, our ultimate objective is more accurate climate predictions
with quantified uncertainties. Addressing this ultimate goal requires first quantifying the uncertainty of CATKE’s
free parameters relative to LES, using the calibration context presented in this work. Next, with prior parameter
distributions in hand, CATKE’s free parameters must then be recalibrated concomitant with other climate model
free parameters against global climate observations to account for physics missing from the LES in this work, and
to account for interactions between CATKE and other components of the climate model.

A second future step is to further calibrate CATKE to a more comprehensive suite of LES forced with temporally‐
varying surface fluxes, surface wave fields with La≠ 0.3, and horizontal flux divergences (e.g., following Whitt
et al., 2022). These calibrations against more comprehensive LES will provide better prior estimates of CATKE’s
parameters in preparation of the final goal of calibrating CATKE in a global context. More comprehensive
calibration to more LES and to observations in a global context will likely reveal deficiencies to be addressed by
further development of CATKE's formulation, such as accounting for the effect of surface waves on CATKE's
mixing and dissipation length scales.

Appendix A: A Synthetic DataSet Generated by Large Eddy Simulations
We use a synthetic data set to calibrate and assess CATKE consisting of 35 idealized large eddy simulations
(LES) of the ocean surface boundary layer with imposed constant surface fluxes of temperature and momentum
and a simple surface wave field.
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A1. Initial Conditions

The LES are initialized from rest with zero velocity and the piecewise‐linear buoyancy stratification

b(z, t = 0) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

N21 z for z > − h1 ,

N22 z + (N22 − N21) h1 for − h2 < z < − h1 ,

N23 z + (N23 − N22) h2 + (N22 − N21) h1 for z < − h2 ,

(A1)

with N21 = N23 = 2 × 10− 6 s− 2, N22 = 10− 5 s− 2, h1 = 48 m, and h2 = 72 m.

A2. Passive Tracer Forcing

We additionally simulate the evolution of a passive tracer c which is forced by

Fc(z) = ω+e− (z− zc)
2
/2λ2c − ω− , (A2)

where zc is the depth of the forcing, λc is the width of the forcing, ω+ is an inverse forcing time‐scale that varies
between each suite, and ω− is chosen so that Fc has zero mean, that is

Figure A1. Resolution dependence of 12‐hr LES.

Figure A2. Resolution dependence of 24‐hr LES.
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ω− =
def ω+

Lz
∫

0

− Lz

e− (z− zc)
2
/2λ2c ⅆz (A3)

≈ω+
λc

̅̅̅̅̅
2π

√

Lz
, (A4)

where Lz is the depth of the domain. The approximation in A4 holds when the forcing is far from boundaries, or
when − Lz ≪ zc − λc and 0 ≫ zc + λc.

To generate tracer gradients within the boundary layer, we use a relatively narrow forcing profile with λc = 8 m
centered at zc = − 96 m, near the bottom of the boundary layer at the end of each simulation. We additionally use
a forcing time scale ω − 1

+ that is similar to the typical mixing time‐scale: 15 min, 30 min, 1 hr, 2 hr, and 4 hr for the
6, 12, 24, 48, and 72 hr suites, respectively. These choices ensure a passive tracer profile that, unlike the well‐
mixed buoyancy profile, reveals the structure of turbulent tracer mixing within the boundary layer. The pas-
sive tracer data thus provides an important additional constraint on CATKE's prediction of the tracer mixing
length, ℓc.

A3. Constant‐Flux Boundary Conditions

The 35 simulations, which have different boundary conditions and Stokes drift are organized into 5 “suites”, each
of which has 7 cases: free convection, weak wind strong cooling, medium wind medium cooling, strong wind
weak cooling, strong wind, strong wind no rotation, and strong wind and sunny. The suites differ by both forcing
strength and duration, simulating 6, 12, 24, 48, and 72 hr of boundary layer turbulence respectively. The forcing
strength is chosen for each suite and case so that the boundary layer deepens to roughly half the depth of the
domain; for example, the “6‐hr suite” has the strongest forcing, and the “72‐hr suite” has the weakest forcing.
“Strong wind no rotation” and “strong wind and sunny” use f = 0, while the rest use the Coriolis parameter
f = 10− 4 s− 1. The surface fluxes for the 35 LES are summarized in Tables 1 and 2. To draw a connection between
the LES suites and real air‐sea flux conditions, Tables 1 and 2 provide an estimate of heat fluxes Q for each case,
as well as an estimate of the atmospheric wind at 10 m height using similarity theory (reduced to the case of
neutral buoyancy fluxes for simplicity, see Large and Yeager (2009)),

u10 =

̅̅̅̅̅̅̅̅
|τa|
c10

√

, where c10 = (
κ

log(10/ℓr)
)

2

, and ℓr = 0.011
|τa|
g
, (A5)

Figure A3. Stokes drift dependence of 12‐hr LES.
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where ℓr is the Charnock roughness length given gravitational acceleration g = 9.81 m s− 2, κ = 0.4 is the von
Kármán constant, and τa = ρoτx/ρa is the atmospheric kinematic momentum flux given ocean reference density
ρo = 1024 kg m− 3 and atmosphere density ρa = 1.2 kg m− 3.

A4. Stokes Drift Model

For all wind‐forced cases, we additionally impose a surface wave field with a surface Stokes drift amounting to a
constant “Langmuir number” La =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u⋆/US(z = 0)

√
≈ 0.3. Our Stokes drift prescription models a surface wave

field with the friction‐number‐dependent peak wavenumber

kp = Ck
g
u 2⋆

, (A6)

where u⋆ =
̅̅̅̅̅̅̅
|τx|

√
is the water‐side friction velocity, g is gravitational acceleration, and we use Ck = 10− 6.

We follow Lenain and Pizzo (2020) to estimate the depth‐profiles of Stokes drift and Stokes drift shear. The
Stokes drift beneath a spectrum of deep‐water waves is

US(z) = 2∫
ki

kp
e2kzk

̅̅̅̅̅
gk

√
χ(k) dk , (A7)

where χ(k) is a one‐dimensional wave spectrum that neglects “directional spreading”. The spectrum χ(k) is
divided into an “equilibrium range” just above the spectral peak kp, and a “saturation range” at even higher
wavenumbers:

χ(k) =
⎧⎪⎨

⎪⎩

Cβ

2
̅̅̅
g

√ a⋆k− 5/2 for kp < k < kn (equilibrium) ,

CBk− 3 for kn < k < ki (saturation) ,

(A8)

where kn is a transition wavenumber between equilibrium and saturation ranges, ki is an upper wavenumber cutoff
above which waves are assumed to be isotropic and there do not contribute to Stokes drift. a⋆ = u⋆

̅̅̅̅̅̅̅̅̅̅̅
ρo/ρa

√
is the

air‐side friction velocity defined in terms of the water‐side friction velocity u⋆, a reference air density
ρa = 1.2 kg m− 3 and ocean density ρo = 1024 kg m− 3. Wavenumbers below the spectral peak kp are assumed
too weak to contribute appreciably to Stokes drift.

Both the transition wavenumber kn and the isotropic wavenumber ki decrease with increasing u⋆:

kn =
defCrga − 2⋆ , (A9)

ki =
defCiga − 2⋆ , (A10)

where Cr = 9.7 × 10− 3 and Ci = 0.072.

The Stokes drift is

US(z) = Cβa⋆∫
kn

kp

e2kz

k
dk + 2CB

̅̅̅
g

√
∫

ki

kn
k− 3/2e2kz dk . (A11)

Noting that ∫kn
kp k

− 1e2kz dk = Ei(2knz) − Ei(2kpz) , where Ei is the exponential integral function, we find

US (z) = Cβa⋆ [Ei(2knz) − Ei(2kpz)] + 2CB
̅̅̅̅̅̅̅̅̅
2gkz

√
[υ(2knz) − υ(2kiz)] , (A12)
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where

υ(ζ) =
2
ζ
[eζ +

̅̅̅̅̅̅̅̅
π|ζ|

√
erf(

̅̅̅̅̅
|ζ|

√
)],

and

∂zUS = 2Cβa⋆∫
kn

kp
e2kz dk + 4CB

̅̅̅
g

√
∫

I

n

e2kz
̅̅̅
k

√ dk , (A13)

= Cβa⋆
e2kpz − e2knz

|z|
+ 2CB

̅̅̅̅̅̅̅̅̅
2πg
|z|

√

[erf(
̅̅̅̅̅̅̅̅̅̅̅
2kn|z|

√
) − erf(

̅̅̅̅̅̅̅̅̅̅̅
2ki|z|

√
)] , (A14)

for the Stokes shear.

A5. LES Uncertainty: Effects of Resolution and Stokes Drift

All LES use 2 m horizontal resolution and a stretched vertical resolution that varies from 0.8 m in the upper half of
domain to 2.3 m at the bottom. We refer to this as “1 m” vertical resolution. Our LES utilize an “implicit” model
for subgrid fluxes whereby kinetic energy and tracer variance are solely dissipated by a minimally‐diffusive 9th‐
order WENO advection scheme (Shu, 2020). The advantages of using WENO‐based implicit dissipation (and no
explicit closure for subgrid turbulent fluxes) are discussed by Pressel et al. (2017) and Silvestri, Wagner, Campin,
et al. (2024).

To account for the effects of resolution on the 35 LES used as synthetic observations in this paper, we run 70
additional LES on coarser grids with double (“2 m”) and quadruple (“4 m”) resolution, and use these to estimate
the observational uncertainty used in calibration (see 4 for more details). The effect of resolution depends on
forcing strength: for the 6 and 12 hr suite, the results are nearly identical for 1‐ and 2‐m vertical resolution.
Figure A1 shows the results for 4 cases in the 12 hr suite. Note that in the free convection case, the first two grid
points exhibit a strong unstable stratification in the 12 hr suite. We attribute this to an artificial reduction of mixing
near the top boundary of the LES. It might be possible to address this artificially‐strong unstable mean stratifi-
cation by introducing, for example, a surface‐concentrated eddy diffusivity. However, because the LES are used
only for training CATKE and thus matter mostly in their predicted boundary layer depth, we choose instead to
ignore the top 4 m when computing the LES–CATKE discrepancy during calibration.

Figure A2 shows the resolution dependence of the 24‐hr suite. These LES show slightly more resolution
dependence than the 12‐hr suite, especially for cases forced by a combination of wind and cooling. This indicates
that our LES data for more weakly forced cases are less certain than the strongly forced cases.

A6. Effect of Stokes Drift on LES Results

Next we turn to the effect that including the Stokes drift profile described in section A4 has on our LES results.
The inclusion of Stokes drift in our LES is an attempt to make them slightly more realistic. In other words, we
hypothesize that calibrating CATKE to LES without surface waves would generally lead to a shallow bias in
mixed layer depth prediction with CATKE—since surface waves are always present above real wind‐forced
ocean surface boundary layers.

This notion is corroborated by Figure A3, which shows the horizontally‐averaged buoyancy profiles for 4 LES in
the 12 hr suite, with and without Stokes drift. As expected, the inclusion of Stokes drift produces more mixing and
makes the boundary layer deeper. The effect of Stokes drift is minor in the case of weak and medium winds
(leftmost and second from left panels). In the strong wind (and rotating) case, the inclusion of Stokes drift makes
the boundary layer 20 m deeper, or around 20% of the total. In the strong wind, no rotation case, the case without
Stokes drift completely fails to transition to the turbulence. (A small amount of cooling would probably be
required to produce turbulence in the strong wind, no rotation case without Stokes drift).
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Appendix B: Split‐Explicit Turbulent Kinetic Energy Time Stepping and Vertical
Discretization
CATKE’s time discretization is a little non‐trivial since we step forward velocity and tracers first, then step
forward TKE and also use substepping/split–explicit scheme for TKE. In the single column case, we integrate
Equations 13–15 with the backward Euler scheme

un+1 − un

Δt
= ∂z (Ku

n∂zun+1) + f vn + F̄n
u , (B1)

vn+1 − vn

Δt
= ∂z (Ku

n∂zvn+1) − f un + F̄n
v , (B2)

cn+1 − cn

Δt
= ∂z (Kc

n∂zcn+1) + F̄n
c , (B3)

where Δt = tn+ 1 − tn and the superscripts n or n + 1 indicate the time step at which the quantity is evaluated.
For the TKE Equation 19, we introduce a substepping scheme that usesM short time step sizes Δt/M to integrate
e between n to n + 1,

em+1 − em

Δt/M
= ∂z (Km

e ∂ze
m+1)

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
transport

+ Ku
n1
2
(∂zun + ∂zun+1) ⋅ ∂zun+1

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
shear production

+ wʹbʹm −
̅̅̅̅̅
em

√

ℓm
D

em+1

⏟⏞⏞⏟
dissipation

, (B4)

where the superscriptsm andm + 1 denote the substep level. In practice, when using substepping, we fix the time
step size for the TKE equation, Δte, and compute the substep number M = ceil(Δt/Δte) in terms of Δte and the
momentum and tracer time step size, Δt.

The buoyancy flux wʹbʹm in B4 is discretized in time using the conditionally‐implicit “Patankar trick” (Burch-
ard, 2002), such that

wʹbʹm =
⎧⎪⎨

⎪⎩

− Kc
n∂zbn+1 when ∂zbn+1 ≤ 0

− Kc
n∂zbn+1

em+1

em
when ∂zbn+1 > 0

(B5)

which improves the stability of B4 and keeps e from becoming too negative due to numerical errors associated
with, for example, advection schemes with oscillatory errors. Note that shear production is not updated during
substepping. The time discretization of the shear production term in B4, which incorporates shear measured at the
time step n and n + 1, also follows Burchard (2002) and requires an algorithm that stores the velocity field at
time step n, stepping forward momentum and tracers, and then substepping forward e.

We spatially‐discretize u, v, c, and e on a staggered vertical grid (not shown), with all variables vertically located
at cell centers—a deviation from Blanke and Delecluse (1993), Burchard (2002), or Madec et al. (2017) who place
u,v,c at vertical cell centers but TKE at vertical cell interfaces where the diffusivity is computed (sometimes
called “w‐locations”). The vertical spatial discretization of the shear production term is derived from the mean
kinetic energy equation following Burchard (2002), but adapted to our cell‐centered placement of e. We use a
tridiagonal solve to advance u,v,c,e in B1–B4 over each time step of substep, treating both diffusion and linear
terms in B4 implicitly.

Discretizing e at cell centers allows us to re‐use tracer advection and diffusion schemes and may yield a higher‐
quality representation of three‐dimensional advection (a process that is neglected in the single column results of
this paper). However, we anticipate a trade‐off between representing advection and the need to reconstruct e to
compute the diffusivities Ku, Kc, and Ke at vertical cell interfaces according to 12. That said, the vertical
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resolution results shown in Figure 15 suggest that our discretization yields accurate solutions at 10‐m‐resolution
and finer. We leave further investigation into CATKE’s vertical discretization (which may depend on the
application, since for example the advection of e likely only becomes important at very high horizontal resolution)
for future work.

Appendix C: A Posteriori Calibration
We use Ensemble Kalman Inversion (EKI; Iglesias et al., 2013) to calibrate CATKE. EKI is a gradient‐free and
computationally inexpensive method for solving nonlinear inverse problems. EKI supposes that a forward map
G(C) can predict uncertain observations Y given a set of free parameters C,

Y = G(C) + η , (C1)

where η ∼ N(0,M) is normally‐distributed random uncertainty with covarianceM. Four objects appear in the
model‐data relation (C1),

1. ObservationsY withQ discrete elementsYq. In this paper, eachYq represents a state variable like velocityU or
buoyancy B at a particular depth and time, computed from LES data by horizontal averaging and vertical
coarse‐graining, and then normalized and shifted to have zero mean and unit variance.

2. A parameter set C with P free parameter values Cp.
3. A forward map G(C) whose elements Gq(C) predict the observation Yq. G(C) represents a model that maps a
parameter set C to the space of observations Y. In our case, constructing G(C) requires forward evaluations of
63 single column models parameterized byC, each predicting the evolution of horizontally‐averaged variables
in 21 LES at 2‐, 4‐, and 8‐m resolution.

4. Random Gaussian uncertainty η ∼ N(0,M) with covariance M associated with both Gq(C) and Yq. η
conflates uncertainty in Y with “structural” uncertainty associated with imperfect forward maps G.

The elements ofY are the discrete values of the horizontally‐averaged temperature and velocity fields output from
21 LES coarse‐grained to three grids with uniform 2‐, 4‐, and 8‐m spacing. Each physical field is shifted,
normalized, and weighted before being assembled into Y. Each forward map G(C) involves 3 × 21 = 63
simulations to find U, V, and B profiles for each LES case at the three model vertical resolutions.

C1. Ensemble Kalman Dynamics

Ensemble Kalman Inversion may be interpreted as a dynamical system that governs the evolution of an ensemble

of E parameter sets, or “particles”, C =
def

[C1,C2,… ,CE]. Here the superscript α denotes the “particle index”,
which varies across the ensemble: Cα

p is the pth parameter value of the αth particle.

Each parameter set Cα obeys the ordinary differential equation

d
dT C

α = − K(C,G)M− 1 (Gα − Y) , (C2)

where Gα =
def G(Cα

) is the forward map computed with the parameter set Cα, and T is the “pseudotime”. The
matrix K(C,G) in (C2) is the covariance matrix estimated from ensemble statistics at pseudotime T , thus
coupling the evolution of the ensemble. For two “ensemble matrices” A and B, where A for example, is con-
structed from an ensemble of vectors [A1i ,A

2
i ,… ,AE

i ] , the elements Kij(A,B) are defined

Kij (A,B) =
def 1

N
∑
N

α=1
(Aα

i − 〈A〉i) (B
α
j − 〈B〉j) , with 〈C〉i =

def 1
E
∑
E

α=1
Cα

i . (C3)

For nearly‐linear maps Gq(C) ≈ HpqCp, C2 reduces to
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d
dT C

α ≈ − K(C,C) ∇CΦα , (C4)

where Kij(C,C) is the P × P parameter‐parameter covariance matrix (Kovachki & Stuart, 2019). The “EKI
objective” Φα associated with parameter set α appears in C4, where

Φ(G,Y;C) =def
⃦
⃦
⃦M− 1/2 [G(C) − Y]

⃦
⃦
⃦
2
, (C5)

and Φα =
def Φ(G,Y;Cα). Φ in C5 is a functional of G that measures the uncertain discrepancy between G(C) − Y.

The system C4 minimizes Φ using gradient descent preconditioned with K(C,C), where the gradients ∇CΦ are
estimated from the parameter ensemble.

We integrate the EKI dynamical system C2 in using a forward Euler discretization,

Cα |ν+1 = C
α |ν − ΔT [K(C,G)M− 1 (Gα − Y)]ν , (C6)

where ν is the pseudotime iteration and ΔT is a pseudotime step size. The adaptive step size ΔT is chosen at each
iteration according to Kovachki and Stuart (2019). The initial parameter sets Cα at T = 0 are generated by
randomly sampling the priors listed in table 3.

EKI is practical for two reasons: (a) it does not require explicit gradients of Gwith respect to parametersC, and (b)
the forward map evaluations Gα—the most expensive part of integrating C2—are independent and thus easily
parallelized. Reason (a) means EKI is applicable to any simulation framework with changeable parameters C.
Reason (b) means that considerable yet distributed resources can be leveraged efficiently: given sufficient
distributed resources, the cost of a single EKI iteration depends only on the cost of a single forward map eval-
uation, independent of ensemble size. This parallelizability benefits small problems such as calibration in a single
column context.

C2. Uncertainty Covariance

We associate the uncertaintyM with the numerical fidelity of the LESs by defining

M = cov( [Y1m Y2m Y4m]) , (C7)

where Y1m,Y2m,Y4m denote observations obtained from LES with 1‐, 2‐, and 4‐m vertical resolution.

C3. Constrained and Unconstrained Parameters

The dynamics C6 require normally‐distributed parameters Cp, which precludes the imposition of strict bounds
such as non‐negativity. We therefore introduce the forward and inverse transforms,

Cp = log
b − C̃p

C̃p − a
and C̃p = a +

b − a
1 + exp(Cp)

, (C8)

between “constrained” physical parameters C̃ that are bounded between (a,b), and unconstrained parameters C.
The transformation C8 implies that ifCp is normally‐distributed then C̃ is bounded by (a,b)with a scaled, shifted
logit‐normal distribution.

We denote the scaled, shifted logit‐normal distribution bounded by (a,b) as B(a,b) and use it to model the
distribution of all of CATKE’s free parameters. The distributions B(a,b) formulated so their corresponding
normal distributions have zero mean and unit variance. When integrating C6, the normally‐distributed parameter
sets Cα are transformed into their physical space counterparts C̃α via C8 when evaluating Gα = G(Cα

) and thus
solving the single column Equations 13–15 and 19.
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C4. Failure Criterion Handling

Poor parameter choicesCα often lead to failed simulations of the single column system 13–15 and 19. In that case
the forward map Gα is not informative and must be ignored when performing the Euler step C6.

We first define the median and the “median absolute deviation” of the EKI objective samples, Φα=
defΦ(G,Y;Cα) ,

Φ̃=def median(Φα) and s =def median(
⃒
⃒Φα − Φ̃

⃒
⃒) , (C9)

we mark a particle α as “failed” if

Φα > Φ̃ + 3s . (C10)

This excludes both non‐finite and just “particularly anomalous” Φα.

Data Availability Statement
This work relied on the open‐source software LESbrary.jl (Wagner et al., 2023) and Oceananigans.jl (Ramadhan
et al., 2020; Wagner et al., 2025) to run the LES, Oceananigans.jl to run calibration simulations, and Parame-
terEstimocean.jl (Wagner et al., 2022) and EnsembleKalmanProcesses.jl (Dunbar et al., 2022) for the Ensemble
Kalman Inversion. Visualizations were made using Makie.jl (Danisch & Krumbiegel, 2021). Scripts for per-
forming the calibration are available at the GitHub repository github.com/glwagner/Single-
ColumnModelCalibration.jl (Wagner, 2024).
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