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Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe

instabilities when the density stratification is concentrated in a small region of the shear layer. These

instabilities may cause mixing in highly stratified environments. However, these instabilities occur

in limited bands in the parameter space. We perform Generalized Stability analysis of the two

dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that

Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that

are orders of magnitude larger than by introducing initially the unstable mode itself. We also

determine the optimal growth that is obtained for parameters for which there is no instability. We

find that there is potential for large transient growth regardless of whether the background flow is

exponentially stable or not and that the characteristic structure of the Holmboe instability

asymptotically emerges as a persistent quasi-mode for parameter values for which the flow is stable.
VC 2011 American Institute of Physics. [doi:10.1063/1.3609283]

I. INTRODUCTION

The mixing of shear layers and the development of tur-

bulence is severely impeded when the layer is located in

regions of large stable stratification. The stratification is usu-

ally quantified with the non-dimensional Richardson number

defined as the ratio of the local Brunt-Väisälä frequency N2

to the square of the local shear U0, Ri ¼ N2=U02. Large strati-

fication corresponds to large Richardson numbers. The sig-

nificance of the Richardson number for the stability of

stratified flows has been underscored with a theorem due to

Miles and Howard1,2 which proves that if everywhere in the

flow Ri> 1=4, the flow is necessarily stable to exponential

instability. The essential instability that leads primarily to

mixing in both stratified and unstratified shear layers is the

Kelvin-Helmholtz (KH) instability.3 The KH modes are

eventually stabilized when the local Richardson number

exceeds 1=4, but if the stratification is concentrated in nar-

row regions within the shear layer the Richardson number

may locally become smaller than 1=4 and an instability can

result although the overall stratification is very large. Under

such conditions, a new branch of instability of stratified shear

layers emerges as shown by Holmboe,4 consisting of a pair

of propagating waves with respect to the center flow, one

prograde and one retrograde. This new instability branch has

been named the Holmboe (H) instability and it is physically

very interesting because it persists at all stratifications and

can lead to mixing in highly stratified shear layers.

Holmboe instabilities have been reproduced in laboratory

experiments5–11 and have been numerically simulated.12–20 At

finite amplitude, these Holmboe modes equilibrate into propa-

gating waves and they can induce mixing in highly stratified

environments.12,17,21 Consequently, Holmboe instabilities

present the intriguing possibility that they may be responsible

for transition to turbulence and mixing in highly stratified

flows. In that vein, Alexakis18,22,23 has proposed that the sur-

mised necessary mixing in order for a thermonuclear runway

to occur and highly stratified white dwarfs form supernova

explosions could be effected with Holmboe instabilities.

Holmboe4 also introduced a new method for analyzing

the perplexing instabilities that may arise with the introduc-

tion of stratification. He went beyond classical modal analy-

sis and proposed that a fruitful program for predicting and

obtaining a clear physical idea of the instability of stratified

shear flows is to simplify the background flow to segments

of piecewise constant vorticity, as in Rayleigh’s seminal

work,24 and then consider the dynamics of the edge waves

that are supported at each vorticity and density discontinuity.

Holmboe showed that the flow becomes unstable when the

edge waves propagate with the same phase speed. This

method of analysis has been extended and used to clarify the

detailed mechanism of instability in stratified flows25–29 and

has been shown recently by Carpenter et al.30 to be capable

of readily assessing the character of instability of non-ideal-

ized observed flows. Also, this edge wave description has

elucidated the dynamics of other instabilities that occur in

geophysics31–34 and astrophysics.35–37

However, the efficacy of Holmboe modes to mix highly

stratified layers can be questioned because the instability

occurs only in limited regions of parameter space and the

modal growth rate of the instability becomes exponentially

small with stratification. Specific estimates of the asymptotic

behavior of the growth rates and of the unstable band of

wavenumbers has been recently obtained by Alexakis.23

Also the introduction of viscosity can further reduce the

growth rates of the Holmboe instabilities. It is the purpose of

this work to go beyond the modal analysis and investigate

the non-modal stability of stratified shear layers that are

Holmboe unstable in order to assess the true potential of

growth of stratified shear layers. We will achieve this using

the standard methods of generalized stability theory.38,39

Because shear layers are powerful transient amplifiers of

perturbation energy, we expect that the Holmboe instabilities
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can be excited at enhanced amplitude by composite non-

modal perturbations. Even in the case of an infinite constant

shear flow which has a continuous spectrum with no inviscid

analytic modes and all perturbations eventually decay alge-

braically with time, the non-modal solutions constructed by

Kelvin40 demonstrate that the asymptotic limit is non-uni-

form and perturbation energy can transiently exceed any

chosen bound in the inviscid limit; the same is true for

bounded Couette flow as shown by Orr.41 The Kelvin-Orr

solutions can be extended to stratified flows42,43 and these

solutions can produce transient perturbation growth that can

also exceed in the inviscid limit any bound.44 Specifically, it

can be shown that in constant shear flow and large Richard-

son numbers, the perturbation energy amplification is the

square root of that achieved in the absence of stratification.

The same robust growth resulting from the continuous spec-

trum is expected to persist in all shear layers as the dynamics

of the Orr waves are universal and do not depend on the

details of the background shear flow.45

Furthermore in shear layers of finite size, the vorticity

and density edge waves that are concentrated in regions of

vorticity and density discontinuities can interact and produce

transient perturbation growth.46 Also, the transiently growing

Kelvin-Orr vorticity structures may deposit their energy to

the edge waves34 or to propagating gravity waves.47–49 In

general, the continuous spectrum can excite at high ampli-

tude the unstable or even stable analytic modes50,51 and

maintain under continuous excitation high levels of variance

in stable flows.52,53

In this work, we will consider the generalized stability

of a Boussinesq stratified shear layer. The Boussinesq

approximation makes inaccurate predictions of the disper-

sion relation of the perturbations in the shear layers when the

stratification is locally very large.54 However, we have found

that the resulting optimal growths are not sensitive to this

approximation, and in this paper, in order to make contact

with previous work, we will only present results obtained

using the Boussinesq approximation. Also following Hazel55

and the work of Smyth and Peltier,56,57 we will consider a

continuous version of Holmboe’s velocity profile with the

characteristic density stratification embedded in the shear

layer. Hazel and Smyth and Peltier had analyzed the charac-

ter of the bifurcations that occur in the instability of the con-

tinuous profile as the Richardson number at the center of the

shear layer increases. Alexakis18,22,23 extended the analysis

to even higher stratifications and was able to predict theoreti-

cally and show numerically that there are higher branches of

Holmboe instabilities in these continuous profiles. Because

of the geophysical and astrophysical interest, we will con-

centrate our analysis of non-modal perturbation growth of

shear layers at very high Richardson numbers which possess

sparse islands of exponential instability of low growth rate.

II. FORMULATION

We will study the stability of an inviscid, unidirectional,

stratified, step like channel flow to two dimensional incom-

pressible perturbations. The mean flow is characterized by a

velocity jump DU over a vertical scale h0, and the associated

statically stable mean density is characterized by a density

jump Dq. The linearized nondimensional perturbation equa-

tions about the mean flow U0(z) and mean density q0(z) in

the Boussinesq approximation are

@t þ U0@xð Þu ¼ �U00w� @xp; (1a)

@t þ U0@xð Þw ¼ �J.� @zp; (1b)

@t þ U0@xð Þ. ¼ �q00w; (1c)

@xuþ @zw ¼ 0: (1d)

The density of the fluid has been decomposed as

q � qm þ q0 zð Þ þ . x; z; tð Þ, where qm is the mean back-

ground density, q0(z) is the mean density variation, and

. x; z; tð Þ is the perturbation density, and furthermore, accord-

ing to the Boussinesq approximation, we assume, q0j j � qm

and j.j � qm. We denote with u and w, the perturbation

velocities in the streamwise (x) and vertical (z) direction, and

p is the perturbation reduced pressure. Differentiation with

respect to z is denoted with a dash. The perturbation equations

have been made nondimensional, choosing h0 as the length

scale, DU as the velocity scale, and Dq as the scale for the

density. Time has been scaled with h0=DU, and pressure has

been scaled with qm(DU)2. The local Richardson number is

Ri ¼ �J
q00
U020

(2)

with

J ¼ gDqh0

qmDU2
: (3)

J provides a measure of the bulk Richardson number of the

shear layer. We will assume that the flow is in a channel of

length L¼ 2h0 and impose at the channel boundaries zero

vertical velocity, w, and zero perturbation density, .. The

length of the channel has been selected so that boundaries do

not affect in an important way the results that we report in

this paper. We have checked by doubling the channel size

that the eigenspectrum and the perturbation transient growth

are converged. Similar insensitivity to the location of the

channel walls has been previously reported by Alexakis.18

The perturbation equations can be written compactly by

introducing a streamfunction w so that the velocities are

u¼ @zw and w¼�@xw, and the vertical displacement,

defined through the relation:

@t þ U0@xð Þg ¼ w; (4)

can replace the perturbation density as

. ¼ �q00g: (5)

The perturbation state will be determined by the fields w and

g. Because of homogeneity in the streamwise direction, the

perturbation state can be decomposed in Fourier components

in x

x̂ðz; tÞeikx ¼ ½ŵðz; tÞ; ĝðz; tÞ�Teikx (6)
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and the perturbation dynamics for the Fourier amplitudes for

each wavenumber k can be written compactly in the form:

@x̂

@t
¼ Ax̂; (7)

with the operator A given by

A ¼ �ik
D�1 U0D� U000

� �
JD�1q00

1 U0

� �
: (8)

With D ¼ @2
zz � k2, we denote the two dimensional Laplacian

for the k streamwise wavenumber. D�1 is the inverse Lapla-

cian, the inversion being rendered possible and unique by

imposing the boundary conditions on the upper and lower

boundaries. The perturbation Eq. (7) is equivalent to the time

dependent Taylor-Goldstein equation:

@t þ ikU0ð Þ2Dŵ� ikU000 @t þ ikU0ð Þŵþ k2Jq00ŵ ¼ 0: (9)

III. KELVIN-HELMHOLTZ AND HOLMBOE
INSTABILITIES OF A SHEAR LAYER

Following Hazel,55 we consider the following back-

ground mean velocity and density

U0ðzÞ ¼
1

2
tanh 2zð Þ; q0ðzÞ ¼ �

1

2
tanh 2Rzð Þ: (10)

The mean velocity and density profiles are shown in Fig. 1

for R¼ 3. The parameter R is the ratio of the width of the

shear layer to the width of the region over which the density

jump occurs. The local Richardson number is given by

RiðzÞ ¼ RJ
sech2 2Rzð Þ
sech4 2zð Þ

: (11)

The Richardson number at the center is related to the bulk

Richardson number through the relation:

Rið0Þ ¼ RJ: (12)

When R¼ 1, the local Richardson number assumes its mini-

mum value at the center, Ri(0)¼RJ, and the shear layer is

unstable only if Ri(0)< 1=4. The instability that results is a

Kelvin-Helmholtz (KH) type instability with a short wave

cutoff and zero phase velocity. For R> 2, the Richardson

number decays exponentially to zero. This exponential decay

allows the local Richardson number to be in regions smaller

than 1=4, and the shear layer may become unstable although

both the bulk stratification J and Ri(0) may be very large.

The instabilities that occur under these conditions are the

Holmboe instabilities (H). The variation of the Richardson

number with height is shown in Fig. 2 for R¼ 3, a case that

supports Holmboe instabilities and will be treated in detail in

this paper, and for R ¼
ffiffiffi
2
p

which can support only KH insta-

bility when the Richardson number at the center is smaller

than 1=4.

In order to determine the modal stability of the velocity

and density profiles (10), we assume modal solutions of Eq.

(7) of the form x̂ðz; tÞ ¼ ½ŵcðzÞ; ĝcðzÞ�Te�ikct, with �ikc an

eigenvalue of the evolution operator A in Eq. (8). The modal

growth rate of the perturbation is kci where ci ¼ = cð Þ, and

the flow is exponentially unstable to perturbations of wave-

number k if ci> 0. The real part, cr, of the eigenvalue c(k),

gives the phase speed of the perturbation. Detailed analysis

of the eigenspectrum of Eq. (10) and the bifurcation from

KH instabilities to H instabilities has been already per-

formed.18,22,23,55–57 Here, we review the basic stability char-

acteristics for the case of R¼ 3 that admits both KH and H

instability modes.

The transition from KH instability to H instability is

shown in Fig. 3, where we plot the growth rate and phase

speed as a function of the Richardson number at the center of

the shear zone Ri(0) for k¼ 0.3. For Ri(0)< 0.242, there is a

single unstable Kelvin-Helmholtz instability with phase speed

cr¼ 0. At Ri(0)¼ 0.242, a second KH mode becomes unsta-

ble, also with cr¼ 0. The KH modes coalesce at Ri(0)¼ 0.258

to form a propagating pair of unstable Holmboe modes with

equal and opposite phase speeds and the same growth rate. In

this case, we see two branches of KH instabilities existing

FIG. 1. (a) Mean velocity profile as a function of height. (b) Mean density

profile as a function of height for R¼ 3.

FIG. 2. Richardson number as a function of height for the velocity and den-

sity profiles in Fig. 1 for J¼ 0.2 and R¼ 3 (solid). The Richardson number

assumes values smaller than 1=4 away from the center and the flow may be

exponentially unstable. Also shown is the case of J¼ 0.2, R ¼
ffiffiffi
2
p

(dashed).

In this case, the Richardson number is everywhere greater than 1=4, and the

velocity profile is by necessity exponentially stable. The threshold value

Ri¼ 1=4 (dash-dot) is also indicated.
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even when the center Richardson number exceeds 1=4 (the

Richardson number assumes values smaller than 1=4 away

from the center because the parameter is R¼ 3, see Fig. 2); a

similar case can be found in Smyth and Peltier.56

Numerical results were obtained by discretizing the

channel and all differential operators using second order cen-

tered differences and incorporating the appropriate boundary

conditions. Equation (7) then becomes a matrix equation in

which the state becomes a column vector. We used a stag-

gered grid, that is, we evaluated ŵcðzÞ at N interior points in

the vertical and ĝcðzÞ at Nþ 1 points located halfway

between the collocation points of the streamfunction. The

eigenspectrum is obtained by eigenanalysis of operator A.

Calculations, unless otherwise specified, were performed

with N¼ 1001 in the domain �2 � z � 2. With this discreti-

zation, the finite time evolution of the dynamics is well

resolved when there is no instability up to a time of

t¼O(1=(akDz)), where a is the typical shear.44 However, in

order to numerically resolve the curves of zero modal growth

of the Holmboe modes of instability, we had to include nu-

merical diffusion in both the momentum and density equa-

tions with coefficient of diffusion �¼ (Dz=2)2 in the

momentum equation and �=9 in the density equation for the

case R¼ 3 (Dz is the grid spacing). Very accurate determina-

tion of the neutral curve in the inviscid limit can be obtained,

using the shooting method as in Alexakis.23

Growth rate contours as a function of stratification, J or

Ri(0), and wavenumber, k are shown in Fig. 4 for R¼ 3. The

region of KH instability is concentrated for small Richardson

numbers, and it is not discernible in this plot. However, the

bands of instability corresponding to the various Holmboe

modes of instability can be clearly seen. Note that because of

the inclusion of diffusion, the instability bands do not extend

to infinity as they do in the inviscid limit.4,22,25,58

The first band in Fig. 4 is the first Holmboe mode of

instability, H1, (for J> 0.0833), the second is the second

Holmboe instability mode, H2, (for J> 3.5) and we can also

partly see the growth rate of the third Holmboe instability

mode, H3 (for J> 10). Estimates of the growth rates of

these higher modes and regions of instability can be found

in Alexakis23 who shows that the growth rate of the Holm-

boe instabilities is decreasing exponentially with stratifica-

tion, and as the Holmboe modes approach neutrality, the

critical layer of the instabilities, that is the height zc for

which U0(zc)¼ cr, tends to the height that corresponds to

the maximum=minimum velocity 6 0.5 of the shear zone.23

We obtain a sense of the ordering of the growth rates of the

KH and H instabilities in Fig. 5. In that figure, we plot the

modal growth rates kci as a function of wavenumber k for

R¼ 3 and center Richardson numbers Ri(0)¼ 0.06, 0.65, 12

for which we have, respectively, KH mode instability, H1

and H2 instabilities.

Typical structure of the KH instability mode is shown in

Fig. 6 for k¼ 1, R¼ 3, and Ri(0)¼ 0.06. For these para-

meters, the coalescence of the KH modes and the emergence

of the first Holmboe mode of instability occurs at Ri(0)

¼ 0.182. The Holmboe modes come in prograde and

FIG. 3. (Color online) Bifurcation properties of the unstable modes as a

function of the Richardson number at the center of the shear zone Ri(0)¼RJ
for the mean state given by Eq. (10) for R¼ 3 and perturbations with

k¼ 0.3. (a) The growth rate kci (solid); (b) the associated phase speed cr

(dashed-dotted). For Ri(0)< 0.242, there is a single Kelvin-Helmholtz (KH)

mode with zero phase speed. For 0.242<Ri(0)< 0.258, there are two KH

modes with zero phase speed. The two KH modes coalesce to produce two

unstable Holmboe (H) modes with equal and opposite phase speeds.

FIG. 4. (Color online) Contours of modal growth rate kci of the perturbation

operator A as a function of wavenumber, k, and the bulk Richardson num-

ber, J, for R¼ 3. Because of the inclusion of diffusion the instability bands

do not extend to infinity as the do in the inviscid limit. The corresponding

value of the Richardson number at the origin Ri(0)¼RJ is also recorded at

the ordinate axis on the right. For this value of R, there are KH unstable

modes with phase speed cr¼ 0 for small values of J (barely discernible in

this plot) and three unstable bands of pairs of H instabilities with prograde

and retrograde phase speeds for higher J.

FIG. 5. (Color online) Growth rates kci as a function of wavenumber k for:

a KH instability for Ri(0)¼ 0.06 (dash-dot), an H1 mode of instability for

Ri(0)¼ 0.65 (solid) and an H2 mode of instability for Ri(0)¼ 12 (dashed).

The growth rates of H2 mode have been multiplied by 10.
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retrograde pairs. The prograde and retrograde unstable Holm-

boe modes, H1, for Ri(0)¼ 0.65 are shown in Fig. 7. Because

they are symmetric with respect to z¼ 0, we will subse-

quently plot only the prograde branch of the H mode. Higher

Holmboe modes have larger vertical wavenumbers, the case

of H2 is shown in Fig. 8. In the idealized piecewise constant

problem studied by Holmboe (see Appendix) the prograde

Holmboe instability arises from resonant interaction between

the edge waves at the density discontinuity at the center

with the edge wave at the upper vorticity discontinuity for the

prograde instability, and with the edge wave at the lower vor-

ticity discontinuity for the retrograde instability.25 The same

type of interaction gives rise to the Holmboe instability

modes when the discontinuities of the background are

smoothed as for the background given by Eq. (10). Because

of the delta function nature of the vorticity and stratification

gradient, the edge waves in Holmboe’s idealized profile do

not have internal structure, and as a result, there is a single

pair of unstable Holmboe instabilities that can arise from the

interaction. The smoothed profile allows the edge wave to

obtain vertical structure within the regions of large vorticity

and stratification gradient (cf., respectively, to the left and

right panels of Figs. 7 and 8) and the H2, H3, etc. Holmboe

instabilities emerge with the higher modes associated with

higher vertical wavenumber structure.

IV. OPTIMAL EXCITATION OF KELVIN-HELMHOLTZ
AND HOLMBOE MODES

The perturbation dynamics in a stratified shear flow are

non-normal and, as we will show in this section, the unstable

modes emerge through excitation of their adjoint. In order to

determine the growth that results by introducing initially the

adjoint of the unstable mode, we derive the adjoint perturba-

tion dynamics in the energy norm. For a perturbation of

wavenumber k, the total average kinetic energy over a wave-

length in the region [z1, z2] is

T ¼ 1

4

ðz2

z1

dzŵ� �Dŵ
� �

; (13)

and the potential energy is:

V ¼ 1

4

ðz2

z1

dz J �q00
� �

ĝ�ĝ: (14)

The total energy of a perturbation x̂ ¼ ½ŵ; ĝ�T is thus given

by the inner product:

x̂k k2¼ ðx̂; x̂Þ ¼ 1

4

ðz2

z1

dz ŵ� �Dŵ
� �

þ J �q00
� �

ĝ�ĝ
h i

: (15)

FIG. 7. (Color online) Structure of the streamfunction and density perturba-

tion fields of unstable H1 modes with growth rate kci¼ 0.0331 and phase

speeds cr¼60.2423. Panels (a) and (b): streamfunction and density con-

tours for the prograde H1 mode. Panels (c) and (d): for the retrograde H1

mode. Critical layer at zc¼60.264 (dashed). For perturbations with k¼ 1,

and base flow with R¼ 3 and Ri(0)¼ 0.65.

FIG. 8. (Color online) Structure of the streamfunction (panel (a)) and den-

sity (panel (b)) perturbation fields of unstable prograde H2 mode with

growth rate kci¼ 0.0006 and phase speed cr¼ 0.4425. Critical layer at

zc¼ 0.698 (dashed). For perturbations with k¼ 1 and base flow with R¼ 3

and Ri(0)¼ 12.00.

FIG. 6. (Color online) Structure of the streamfunction (panel (a)) and den-

sity (panel (b)) perturbation fields of an unstable KH mode with growth rate

kci¼ 0.1482 and phase speed cr¼ 0. Critical layer at zc¼ 0 (dashed). For

perturbations with k¼ 1 and base flow with R¼ 3 and Ri(0)¼ 0.06.

074102-5 Optimal excitation of two dimensional Holmboe instabilities Phys. Fluids 23, 074102 (2011)

Downloaded 30 Jul 2011 to 88.197.45.158. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



The adjoint operator A
† in this inner product is defined as

the operator that satisfies

A
†bfa; ĝ� �

¼ bfa;Aĝ
� �

; (16)

for any two states bfa ¼ ½ŵa; ĝa�T and ĝ ¼ ½ŵ; ĝ�T. For a dis-

cussion of the adjoint equation in fluid mechanics, see Far-

rell,59 Hill,60 Farrell and Ioannou,38 Chomaz et al.,61 and

Schmid and Henningson.39

From Eq. (16), the adjoint operator of Eq. (8) in the

energy inner product is easily shown to be

A
† ¼ ik

D�1 U0Dþ 2U00 D
� �

JD�1q00
1 U0

� �
; (17)

with D¼ d=dz denoting differentiation with respect to z and

the adjoint evolution equation is

@x̂a

@t
¼ A

†
x̂a (18)

with the adjoint boundary conditions x̂aðzi; tÞ ¼ 0 at the

channel walls zi. This equation produces the adjoint of the

time-dependent Taylor-Goldstein Equation (9)

@t � ikU0ð Þ2Dŵa � 2ikU00 @t � ikU0ð ÞDŵa � k2Jq00ŵa ¼ 0:

(19)

The eigenvalues of the adjoint operator A
† are the complex

conjugate of the eigenvalues of A, and in this way, we can

establish a correspondence between the modes of the adjoint

A
† and the modes of A. Further, the mode of the adjoint with

eigenvalue ikc*, x̂ac, and the mode of A with eigenvalue -ikc0,
x̂c0 , satisfy the biorthogonality relation:

x̂ac; x̂c0ð Þ ¼ 0 for c 6¼ c0: (20)

From Eq. (19), it can be verified that for any analytic mode

of the Taylor-Goldstein Equation (9) with eigenvalue �ikc
(with ci> 0 or with cr outside the range of the background

flow) the mode of A
† with eigenvalue ikc* is

x̂a c ¼
ŵ�c

U0 � c�
ĝ�c

U0 � c�

2
664

3
775: (21)

From the biorthogonality relation, Eq. (20) arises the physi-

cal importance of the modes of the adjoint: of all perturba-

tions of unit energy, the largest projection on a given mode

is achieved by the adjoint of the mode. Indeed, a state written

as a superposition of the modes of A:

x̂ ¼
X

c

acx̂c; (22)

will have coefficients ac given by

ac ¼
x̂ac; x̂ð Þ
ðx̂ac; x̂cÞ

: (23)

Because x̂ac; x̂ð Þj j � 1, if the mode and the state x̂ are nor-

malized, with equality when x̂ and x̂ac are multiple to each

other, the coefficients satisfy the inequality:

jacj �
1

jðx̂ac; x̂cÞj
; (24)

FIG. 9. (Color online) Structure of the streamfunction (panel (a)) and den-

sity (panel (b)) perturbation fields of the adjoint of the unstable KH mode of

Fig. 6. Parameters as in Fig. 6.

FIG. 10. (Color online) Structure of the streamfunction and density pertur-

bation fields of the adjoint of the unstable prograde H1 mode of Fig. 7. The

adjoint is centered at the critical layer, zc¼ 0.264, of the mode.

FIG. 11. (Color online) Structure of the streamfunction and density pertur-

bation fields of the adjoint of the unstable prograde H2 mode of Fig. 8. The

adjoint is centered at the critical layer zc¼ 0.698, of the mode.
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and the maximum projection on a given mode is achieved by

the adjoint mode, i.e., by choosing x̂ ¼ x̂ac. The adjoint per-

turbation excites the mode at an energy which is a factor

1

ðx̂ac; x̂cÞj j2
; (25)

greater than an initial condition consisting of the mode itself.

For highly non-normal systems, jðx̂ac; x̂cÞj � 1, and as a

result this amplification may be very large, implying that the

emergence of the mode in these systems is mainly due to the

excitation of the adjoint. Although this is not a new result, it

has not been noted in previous studies concerning Holmboe

instabilities.

In Fig. 9, we plot the structure of the adjoint in the energy

inner product of the unstable KH mode shown in Fig. 6 with

k¼ 1, Ri(0)¼ 0.06, and R¼ 3. An initial condition consisting

of the adjoint of the most unstable mode excites the mode

with energy 7.5 times greater than an initial condition consist-

ing of the unstable mode itself. In Figs. 10 and 11, we plot the

adjoints of the two unstable Holmboe H1 and H2 modes,

shown in Figs. 7 and 8, both with the same k¼ 1, R¼ 3, and

stratifications Ri(0)¼ 0.65 and Ri(0)¼ 12, respectively. The

adjoints of the H1 and H2 modes are concentrated at the criti-

cal layer of the modes which is located far from the center of

the shear layer and located in a region at the wings of the

shear layer where the local Richardson number is less than

1=4. An initial condition consisting of the adjoint of the H1

mode excites the most unstable mode with energy 69 times

greater than an initial condition consisting of the unstable

mode itself. This energy amplification reaches 7921 for the

excitation of the H2 mode by its adjoint.

FIG. 13. (Color online) Optimal growth for t¼ 100. Contours of finite time

Lyapunov exponent ln(rmax(t))=t for t¼ 100 as a function of wavenumber,

k, and the bulk Richardson number, J, for R¼ 3. The corresponding value of

the Richardson number at the origin Ri(0)¼RJ is indicated at the ordinate

axis on the right.

FIG. 14. (Color online) Optimal growth for t¼ 600. Contours of finite time

Lyapunov exponent ln(rmax(t))=t for t¼ 600 as a function of wavenumber,

k, and the bulk Richardson number, J, for R¼ 3. The corresponding value of

the Richardson number at the origin Ri(0)¼RJ is indicated at the ordinate

axis on the right.

FIG. 15. (Color online) Comparison of the finite time Lyapunov exponent,

ln(rmax(t))=t (solid), associated with the growth of optimal perturbations for

optimizing times t¼ 50, t¼ 200, and t¼ 600, with the modal growth rate kci

(dashed) for various Richardson numbers. The first three unstable Holmboe

branches are shown. The H1 branch is for Ri(0)< 1.42. The H2 branch is for

10.46 �Ri(0) � 16.26; and H3 is for 31.04 �Ri(0) � 39.63. The optimal

growth rate is almost constant for large Richardson numbers and is continu-

ous across the islands of instability. Parameters are: k¼ 1 and R¼ 3.

FIG. 12. (Color online) Time evolution of the perturbation energy when the

adjoint of the H1 mode shown in Fig. 10 and the H2 mode shown in Fig. 11

are introduced at t¼ 0 (solid); also shown is the energy evolution if the H1

mode and H2 mode are introduced at t¼ 0 (dashed). The adjoint excites the

corresponding modes optimally. The adjoint of the H1 mode excites

the mode with energy 69 times greater than an initial condition consisting of

the H1 mode itself. The H2 adjoint excites the mode with energy 7921 times

greater than an initial condition consisting of the H2 mode itself. Parameters

are k¼ 1, R¼ 3, and for the H1 mode, the stratification is Ri(0)¼ 0.65, while

for the H2 mode, Ri(0)¼ 12.
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Initial conditions in the form of the adjoints of the most

unstable mode evolve changing form and eventually assume

the corresponding modal form. During their evolution, the

adjoint perturbation extracts energy from the mean flow

which is eventually deposited to the mode itself exciting it in

this way at high amplitude. The time development of the

energy of a unit energy initial condition in the form of the

adjoints of the H1 and H2 mode is plotted in Fig. 12 demon-

strating the increased excitation of the corresponding modes.

This demonstrates that the unstable Holmboe modes at high

Richardson numbers arise primarily due to excitation by

their adjoint and the modal growth underestimates the

growth of the instabilities.

V. OPTIMAL GROWTH OF PERTURBATIONS AND THE
EMERGENCE OF THE HOLMBOE QUASI-MODE

In the previous section, we have demonstrated that for

large Richardson numbers, the adjoint of a mode can excite

the modes at much higher amplitude. In this section, we

investigate the optimal growth of perturbations. The optimal

growth38,39,59 of perturbations at time t in the energy metric

is obtained by calculating the norm of the propagator eAMt,

where AM ¼M1=2AM�1=2 and M is the energy metric

defined as

M ¼ Dz

4

�ðD2 � k2Þ 0

0 �Jq00

� �
; (26)

FIG. 19. (Color online) Amplitude, ja(cr)j, of the absolute value of the

expansion coefficients of the quasi-mode at k¼ 1.75 as a function of the

phase speed of the modes of the perturbation operator at k¼ 1.75. All

the zmodes of the perturbation operator are stable. The quasi-mode is

excited by a unit energy initial condition with the structure of the adjoint of

the unstable mode for k¼ 3.5. Notice the sharp peak at cr � 0.4278, which

indicates the formation of long-lived quasi-modes that propagate with this

phase speed (see Fig. 17(a)). For R¼ 3 and Ri(0)¼ 5.

FIG. 16. (Color online) Modal growth rate kci as a function of wavenumber

k for center Richardson number Ri(0)¼ 5. The instability for 2.6< k< 3.9

corresponds to the H1 branch. The dots indicate the growth rate at k¼ 1, 2,

2.5, 4 and at k¼ 3.5 when the maximum growth rate occurs.

FIG. 17. (Color online) Contours of the logarithm of the positive real part

of the perturbation <ðŵðz; tÞeikxÞ at z¼ 0.7 in the (x, t) plane for an initial

perturbation in the form of the adjoint in the energy norm of the most unsta-

ble Holmboe mode at k¼ 3.5 for R¼ 3 and Ri(0)¼ 5. Panel (a): evolution

under the dynamics with k¼ 1.75 when the flow is stable. Panel (b): evolu-

tion under the dynamics with k¼ 3.5 when the flow is unstable and this

adjoint excites optimally the prograde Holmboe mode. The same propaga-

tion characteristics emerge at other wavenumbers for which the flow is sta-

ble. These Hovmöller diagrams indicate that when the flow is stable, a

quasi-mode emerges propagating with phase speed close to that of the Holm-

boe mode.

FIG. 18. (Color online) Energy evolution of a unit energy initial condition

with the structure of the adjoint in the energy norm of the unstable H1 mode

at k¼ 3.5, R¼ 3 and Ri(0)¼ 5 with the dynamical operator for the unstable

k¼ 3.5 (solid-squares) and for k¼ 1.0 (solid crosses), k¼ 1.75 (solid-dots),

k¼ 2.0 (dashed), k¼ 2.5 (dash-dot) and k¼ 4.0 (solid) for which the flow is

stable. When the flow is stable large amplitude propagating quasi-modes

emerge as shown in Fig. 17.
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so that total perturbation energy is given by E ¼ x̂†Mx̂. The

optimal growth is given by the largest singular value, rmax,

of eAMt and determines the largest perturbation growth that

can be achieved at time t. The optimal perturbation, the ini-

tial perturbation that produces this growth, is x̂opt ¼M�1=2
v,

where v the right singular vector with singular value rmax.

We calculate the optimal growth for two indicative opti-

mizing times t¼ 100 and t¼ 600 and plot the finite time Lya-

punov exponent ln(rmax(t))=t associated with the optimal

perturbations as a function of wavenumber k and stratification

J. As t ! 1, the exponent tends to the modal growth rate

ln(rmax(t))=t ! kci. We saw that the modal growth rate (cf.

Fig. 4) is non zero only in narrow bands of parameter space.

In contrast, the growth rate associated with the optimal per-

turbations covers all parameter space. For example, for opti-

mizing time t¼ 100, the finite Lyapunov exponent, shown in

Fig. 13, is almost constant for large Richardson numbers, and

the equivalent growth rates for large Richardson numbers are

at least an order of magnitude larger than the modal growth

rates for all values of the parameters. Furthermore, the growth

rates do not reveal the underlying bands of exponential insta-

bility. The optimal growth is robust even for optimizing time

t¼ 600. Contours of the finite Lyapunov exponents for this

optimizing time (Fig. 14) show that the optimal growth rates

continue to be at least an order of magnitude larger than the

modal growth rate for all parameter values. Moreover, the

optimal growth rates are almost constant as a function of

Richardson number for large Richardson numbers. This can

be seen in Fig. 15, where we compare the optimal growth rate

for optimizing times t¼ 50, 200, and 600 with the modal

growth rate as a function of the stratification at the center

Ri(0) for k¼ 1. While the modal growth rate is only substan-

tial for the H1 branch of instability, the optimal growth rates

produce sustainable growth at all stratifications and are

reduced only by a factor of less than 2 when the center

Richardson number increases tenfold from 5 to 50.

The structure of the optimal perturbations for the larger

optimizing times is very close to the structure of the adjoint

of the modes, even for wavenumbers for which there is no

Holmboe instability. This reveals that excitation of these

flows at high Richardson numbers will lead to the emergence

of propagating perturbations which are close in structure to

Holmboe waves. To be specific, consider central stratification

Ri(0)¼ 5 and excitation of the shear layer with various wave-

numbers k. In Fig. 16, we plot the growth rate as a function

of k. There is a band of instability producing H1 waves with

phase speeds close to cr � 60.5 and when the flow is excited

at these wavenumbers pairs of propagating waves emerge.

This can be seen in the Hovmöller diagram Fig. 17(b) in

which contours of the logarithm of the positive real part of

<ðŵðz; tÞeikxÞ for k¼ 3.5 and fixed z¼ 0.7 are plotted in the

(x, t) plane for an initial condition in the form of the adjoint

of the unstable H1 mode. The characteristics of the prograde

propagating Holmboe wave emerge from the start. In Fig.

17(a), we plot the corresponding Hovmöller diagram when

the same adjoint is introduced as initial condition and

evolved this time with the dynamics for k¼ 1.75. Although at

k¼ 1.75, there is no instability, a propagating structure

emerges with the characteristics of the unstable Holmboe

wave. The same propagating structure also emerges at other

wavenumbers k. Therefore, the Holmboe wave is a robust

dynamic entity that forms a quasi-mode at wavenumbers

which do not support an unstable Holmboe wave. This quasi-

mode is the manifestation of the near resonant edge wave

structures that lead to the Holmboe instability at reso-

nance4,25–28,30. Similar quasi-mode behavior is seen in the

evolution of the edge waves in the Holmboe profile (cf. Ap-

pendix) for wavenumbers k for which there is no instability.

When k is close to the wavenumber for which there is insta-

bility there exist superpositions of edge waves that form peri-

odically amplifying quasi-modes that propagate with a phase

speed which is close to the phase speed of the unstable Holm-

boe mode. What is surprising here is that these propagating

quasi-modes can be excited at such high amplitude and that

their growth is so persistent. This is shown in Fig. 18 where

the adjoint of the Homboe instability for k¼ 3.5 excites at

high amplitude quasi-modes for the wavenumbers k¼ 1, 2,

2.5, 4 for which the flow is stable. The same highly amplified

quasi-mode would emerge if we initialize the flow with a

large time optimal.

The structure of the quasi-mode cannot be ascribed to the

structure of any single mode of the operator. The quasi-mode

is the superposition of a multitude of continuum spectrum

modes. The quasi-mode can propagate as a coherent entity at

a single phase speed because the distribution of the amplitude

of the coefficients of the modal expansion is sharply peaked at

the phase speed of the propagation of the quasi-mode (the am-

plitude of the coefficients is time invariant because all modes

have zero growth). For example, the distribution of the ampli-

tude of coefficients of the modal expansion of the quasi-mode

for k¼ 1.75 in Fig. 19 is concentrated at the phase speed cr �
60.4278, which is exactly the phase speed that emerges in

Fig. 17(a).

The quasi-mode can be identified from the frequency

response of the perturbation dynamics to harmonic forcing.

Because the operators are either neutral or unstable in order to

FIG. 20. (Color online) The maximum energy response, RðxÞk k2
, to har-

monic forcing as a function of x=k for perturbations with k¼ 1, k¼ 2.5,

k¼ 3.5, and k¼ 4.0. The dynamics have been rendered stable by addition of

Rayleigh friction. The response is maximized at the phase speed of the

quasi-mode. Also shown is the resonant frequency response that would

obtain if the operators were normal (dashed). The amplified response in

energy is a measure of the non-normality of the operator. For stratification,

Ri(0)¼ 5 and R¼ 3.
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obtain steady harmonic response, we introduce a linear damp-

ing in the dynamics that does not affect the eigenstructures

and consider the frequency response of the stable operatorseAM ¼ AM � 0:02 I, where I is the identity. The steady state

harmonic response, ~wðz;xÞ, where ŵðz; tÞ ¼ ~wðz;xÞeixt, to

harmonic forcing Feixt is then given by

~wðz;xÞ ¼ RkðxÞF; (27)

where RkðxÞ is the resolvent given by

RkðxÞ ¼ ðix I� eAMÞ�1: (28)

The maximum possible response to harmonic forcing is then

given by the square of the 2-norm of the resolvent,

RkðxÞk k2
, which is equal to the square of its largest singular

value. This determines the maximum energy that can be

achieved at frequency x by unit energy harmonic excitation.

The frequency response shown in Fig. 20 demonstrates the

concentration of the response at the phase speeds of the

emergent quasi-modes which is very close to the phase speed

of the Holmboe waves at k¼ 3.5. It demonstrates also the

importance of the non-normal interactions in the excitation

at high amplitude of the quasi-modes. In the same plot, we

plot the equivalent normal frequency response

max
j

1

jix� ikcjj2
; (29)

where ikcj is the jth eigenvalue of AM that would have

resulted if the eigenvectors were orthogonal. The difference

between the responses reflects the excess energy that is

maintained by the system against friction because of the

non-orthogonality of the eigenmodes.53,62

VI. CONCLUSIONS

Highly stratified shear layers are susceptible to Holmboe

instabilities which can lead to mixing. We have demon-

strated in this work that especially at large Richardson num-

bers the adjoint of the weakly unstable modes can excite,

through potent transfer of energy from the mean flow, the

unstable modes at high amplitude. Further, we found that

even in regions of parameter space where the flow is neutral,

optimal perturbations can grow strongly and excite at large

amplitude long-lived propagating quasi-modes. We have

demonstrated that the modal growth substantially underesti-

mates the growth potential of perturbations in such highly

stratified shear layers.
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APPENDIX: NON-MODAL GROWTH PRODUCED BY
THE EDGE WAVES IN THE IDEALIZED HOLMBOE
BACKGROUND STATE

We consider perturbations in Holmboe’s4 idealized

piecewise linear velocity profile U0(z)¼ z for jzj � 1=2 and

U0(z)¼ z=(2jzj) for jzj> 1=2 and mean density q0(z)¼�z=jzj
in an infinite domain. This profile has two vorticity disconti-

nuities at z¼61=2 and a density discontinuity at z¼ 0; each

vorticity discontinuity supports an edge wave and the density

discontinuity supports a pair of edge waves one prograde and

the other retrograde.4,28,29 Consider perturbations with

streamfunction ŵðz; tÞeikx. A time dependent solution to the

perturbation equations can be obtained4,25 by introducing

solutions of the form,

ŵ1ðz; tÞ ¼ A1ðtÞe�kðz�1=2Þ for z > 1=2; (A1a)

ŵ2ðz; tÞ ¼ A2ðtÞe�kz þ B2ðtÞekz for 0 < z < 1=2; (A1b)

ŵ3ðz; tÞ ¼ A3ðtÞe�kz þ B3ðtÞekz for � 1=2 < z < 0; (A1c)

ŵ4ðz; tÞ ¼ B4ðtÞekðzþ1=2Þ for 0 < z < 1=2; (A1d)

which reduce them, by imposing the usual continuity condi-

tions at the discontinuity interfaces, to a set of ordinary differ-

ential equations for the evolution of the amplitudes A and B.

FIG. 22. (Color online) Optimal energy growth that can be produced by the

edge waves as a function of time for stratification parameter J¼ 1.5 for

k¼ 4.2528, 4.24, 4. All k � 4.2528 are modally stable (kci¼ 0) and

k¼ 4.2528 is located at the stability boundary. The non-modal growth pro-

duced by the edge waves is substantial as the stability boundary is

approached.

FIG. 21. (Color online) Contours of modal growth rate kci as a function of

wavenumber, k, and stratification parameter, J, of perturbations in Holm-

boe’s idealized piecewise constant background state. At larger values of

k and J, there is a band of instability associated with the Holmboe instability.
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We choose as a state variable u(t)¼ [A1(t), C2(t), B4(t),
g0(t)]T, where g0ðtÞ � ĝðz ¼ 0; tÞ is the displacement at z¼ 0

and C2(t) : (A2(t)þB2(t))ek=2. The perturbation equations

are thus reduced to

du

dt
¼ Au; (A2)

with A ¼ K�1L with the matrices K and L given by

K ¼
�ek 1 0 0

2 �2 1þ e�k
� �

2 0

0 1 �ek 0

0 0 0 1

2
664

3
775; (A3a)

L ¼ i

1þ ekðk � 1Þ
� �

=2 �k=2 0 0

0 0 0 J ek=2 � e�k=2
� �

0 k=2 � 1þ ekðk � 1Þ
� �

=2 0

0 �ke�k=2 0 0

2
664

3
775: (A3b)

These equations determine the time evolution of the pertur-

bation structure as determined by the interaction of the four

edge waves. It determines fully the modal stability properties

of the background state, and the non-normal dynamics that

derive from the interaction of the edge waves. In this formu-

lation, we have neglected the continuum spectrum. A con-

tour plot of the resulting growth rate is shown in Fig. 21 as a

function of wavenumber, k, and stratification parameter, J.

The KH branch of instability is at low k and J and the nar-

rowing band of the Holmboe mode of instability at larger k
and J.

In order to study the non-normal dynamics associated

with the edge waves we must introduce the corresponding

to Eq. (15) energy metric. The potential energy, since

q00 ¼ �d zð Þ, is P ¼ 1
4
J g0j j2. The kinetic energy can be writ-

ten as

T ¼ 1

4
	 �ŵ�1Dŵ1

			
z¼1=2
þŵ�2Dŵ2

			
z¼1=2
�ŵ�2Dŵ2

			
z¼0


 �

þ 1

4
	 ŵ�3Dŵ3

			
z¼0
�ŵ�3Dŵ3

			
z¼�1=2

þŵ�4Dŵ4

			
z¼�1=2


 �
:

(A4)

We thus derive that the perturbation energy of the state u(t)
is given by

E ¼ u†Mu (A5)

with the metric, M, given by

M ¼ 1

4

MT 0

0 J

� �
(A6)

where MT is

MT ¼
2k

ek � 1ð Þ

ek �1 0

�1 1þ e�k �1

0 �1 ek

2
4

3
5: (A7)

The non-modal growth associated by the dynamics of the

edge waves is obtained by calculating the optimal energy

growth that can be achieved at time t which is given by

EoptðtÞ ¼ jj expðAMtÞjj2 (A8)

where AM ¼M1=2AM�1=2. It can be shown that the edge

waves can lead to substantial growth for parameter values

for which there is no instability but are close to the stability

boundary. For example, consider the large value of stratifica-

tion J¼ 1.5. The flow supports unstable waves only for

4.2528< k< 5.142, and the maximum growth rate is 0.064.

The optimal energy growth produced by the edge waves for

k¼ 4.2528, 4.24, 4 is shown in Fig. 22 to be substantial as

the stability boundary is approached.
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