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ABSTRACT: Whenever oceanic currents flow over rough topography, there is an associated stress that acts to modify the flow. In the
deep ocean, this stress is predominantly form drag, caused by the formation of internal waves and other baroclinic motions: processes that
act on such small scales most global ocean models cannot resolve. Despite the need to incorporate this stress into ocean models, existing
parametrisations are limited in their applicability. For instance, most parametrisations are only suitable for small-scale topography and
are either for periodic or steady flows, but rarely a combination thereof. Here we summarise these existing parametrisations and evaluate
their accuracy using hundreds of idealised two-dimensional and three-dimensional simulations spanning a wide parameter space. In cases
where the parametrisations prove to be in inaccurate, we use our data to suggest improved formulations. Our results thus provide a basis
for a comprehensive parameterisation of stress in ocean models where fine scale topography is unresolved.

SIGNIFICANCE STATEMENT: As the ocean flows
over topographic features it experiences a force. Such to-
pographic features include abyssal hills that are too small
to be accurately described by global ocean and climate
models. These forces shape the ocean structure consider-
ably and affect large-scale ocean circulation features, like
the Atlantic Meridional Overturning Circulation. Because
there is no hope to accurately include these small-scale
features in climate projections we need expressions (a.k.a.
parametrisations) for the collective force they exert on the
ocean. Here, we evaluate existing parametrisations for the
force created when an oceanic current flows over an under-
water hill by comparing them to the output of small-scale,
high-resolution ocean simulations. Compared to previous
studies, we cover a much wider range of cases. This al-
lows us to suggest improvements to the existing parametri-
sations, taking us closer to the goal of developing a gen-
eral and widely applicable mathematical description of this
phenomenon.

1. Introduction

In shallow seas, fast moving currents are subject to sig-
nificant energy losses from frictional drag along the ocean
bottom. However in the deep ocean, where currents are
slower, there is still a significant amount of energy dissipa-
tion attributed to the formation of internal waves in regions
of rough topography (Ledwell et al. 2000; Egbert and Ray
2000, 2001; Naveira Garabato et al. 2013). These waves
can cause substantial mixing, which plays a role in nutrient
transport and large scale ocean circulation (Sandstrom and
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Elliott 1984; Munk and Wunsch 1998; Melet et al. 2013,
2014).

The horizontal extent of many oceanic topographical
features is on the scale of 1− 10 km. In particular, over
half of the ocean floor is covered by abyssal hills and
mountains, defined respectively as having a variation in
height of 300− 1000 m and greater than 1000 m (Harris
et al. 2014). Resolving internal waves generated by such
features is often not possible with current global ocean
models (e.g., Ansong et al. 2015; Kiss et al. 2020), which
generally have horizontal resolutions on the order of 10 to
100 km. As a result, it is important to have parametrisations
for the effects of internal waves that would be generated
at such unresolved hills. Existing parametrisations have
mainly focused on computing the energy flux extracted
from the flow due to the generation of internal waves (e.g.,
Llewellyn Smith and Young 2002; Khatiwala 2003; Per-
fect et al. 2020; Baker and Mashayek 2022). Such a focus
is justified, as it has allowed better understanding of the
contribution of internal waves to ocean mixing and tidal
dissipation. There has however, been far less attention
on parametrising the stress due to internal wave formation
and other related effects such as blocking (e.g., Winters
and Armi 2014) or bottom-trapped tides (e.g., Falahat and
Nycander 2015). Such parametrisations are vital to obtain-
ing accurate representations of eddies and tides in global
models (Arbic et al. 2019). Notably, the energy loss from
a spatially mean flow u and topographic stress τ is equal
to u · τ , and the topographic stress also acts to modify
u. Thus, the topographical stress is a more fundamental
quantity to study, in that it can be used to compute energy
loss, but this is not necessarily true the other way around.

Due to the complexity of developing a generic parametri-
sation for stress, existing parametrisations (e.g., Bell 1975;

1



2

Jayne and St. Laurent 2001; Klymak et al. 2010; Shake-
speare et al. 2020) have focused on special cases. For
instance, previous studies have treated steady and tidal
flows in isolation. However, since the steady and tidal
components of a flow can interact (Shakespeare 2020), it
is important for existing parametrisations to be extended
to mixed flows. Existing parametrisations also have sev-
eral other assumptions that can reduce their accuracy if
incorporated into ocean models. For example, it is often
assumed that the topographical height is small (Bell 1975;
Shakespeare et al. 2020) or that the latitude is close to 0◦
(Jayne and St. Laurent 2001; Klymak et al. 2010).

The first goal of this paper is to evaluate the accuracy of
existing wave and non-wave stress parametrisations. This
is done by comparing theoretical expressions to a large
suite of ocean simulations. To limit the scope of these com-
parisons, we focus on the case of an isolated Gaussian hill
in either two or three dimensions. Working with isolated
hills is useful as there are only a small number of parame-
ters to consider, allowing us to ensure that the basic physics
and scalings of the parametrisations are correct. This is
in contrast to other studies (e.g. Jayne and St. Laurent
(2001); Buijsman et al. (2015); Shakespeare et al. (2021))
which tend to only test stress parametrisations with global
models or more complicated topography. We also note
that whilst three-dimensional simulations are physically
accurate, they are more computationally expensive than
two-dimensional simulations. Moreover, two-dimensional
topography may be interpreted as approximating a section
of a three-dimensional ridge, which can be sites of signifi-
cant internal wave generation (Ledwell et al. 2000; Garrett
and Kunze 2007). Two-dimensional simulations are thus
useful despite being less applicable than three-dimensional
models. As a result, our general procedure is to run a large
number of tests in two dimensions, and then further analyse
any interesting phenomena in three dimensions.

The second goal of this paper is to then suggest improve-
ments to these existing stress parametrisations. This is
done using predominantly mathematical or physical argu-
ments that are supported by the simulation data. Notably,
one of the common shortcomings in existing parametri-
sations is the assumption of small topographical height.
Large topographical features however, are abundant in the
ocean (Harris et al. 2014). Moreover, large isolated hills
called seamounts are of interest in ecology, vulcanology
and ship navigation (Clark et al. 2010; Watts 2019). There-
fore, it is important for existing parametrisations to be ex-
tended to such cases. The ultimate goal of this work is the
formulation of a more complete parametrisation of wave
and non-wave stress for implementation in global ocean
models.

The structure of the paper is as follows. In Section 2 we
recall some existing drag parametrisations used for tidal,
steady and mixed flows. In Section 3 we discuss the setup
for our simulations. In Section 4 we then discuss the results

of the simulations, and use these results to evaluate and
suggest improvements to each parametrisation. Finally, in
Section 5 we discuss the main takeaways from our analysis,
and prescribe new parametrisations that depend on the type
of flow and scale of topography under consideration.

2. Existing parametrisations

We begin by summarising existing parametrisations for
wave and non-wave stress. The parametrisations are cat-
egorised depending on the flow in consideration — tidal,
steady or mixed. Each parametrisation is expressed in
their general form, but we also simplify for the case of
an isolated Gaussian hill. For a two-dimensional domain
(viewed as cross-section of three dimensional space) with
horizontal component [−𝐿𝑥/2, 𝐿𝑥/2], we define the stress
as

𝐹2d =
1
𝜌0

𝐿𝑥/2∫
−𝐿𝑥/2

𝑝ℎ
dℎ
d𝑥

d𝑥, (1)

where ℎ(𝑥) is the bottom topography, 𝑝ℎ (𝑥) the bottom
pressure respectively, and 𝜌0 is the background density of
the sea water. In particular, the stress (1) is the net force per
unit length1 created from the pressure differential across
the hill, divided by 𝜌0 for convenience. As a result, 𝐹2d has
units Nm2 kg−1 and 𝜌0𝐹2d has units of force per unit length.
The sign of 𝐹2𝑑 is also such that a positive value of 𝐹2𝑑
corresponds to a force per unit length of magnitude |𝜌0𝐹2d |
acting on the hill in the positive 𝑥-direction, along with an
equal and opposite force acting on the flow in the negative
𝑥-direction. In three dimensions, with a horizontal domain
[−𝐿𝑥/2, 𝐿𝑥/2] × [−𝐿𝑦/2, 𝐿𝑦/2], we then define the stress
due to a topography ℎ(𝑥, 𝑦) as the vector

F3d =
1
𝜌0

𝐿𝑦/2∫
−𝐿𝑦/2

𝐿𝑥/2∫
−𝐿𝑥/2

𝑝ℎ∇ℎ d𝑥d𝑦. (2)

Note that F3d has units Nm3 kg−1 and 𝜌0F3𝑑 has units of
force (i.e., N).

In what follows, our domain is as shown in Figure 1,
with dimensions 𝐿𝑥 × 𝐿𝑦 ×𝐻 and a spatially mean zonal
flow 𝑈 (𝑡) over topography ℎ(𝑥, 𝑦). For two-dimensional
analysis, we restrict ourselves to the 𝑥 − 𝑧 plane. More-
over, for the ensuing theoretical analysis in this section, we
assume 𝐿𝑥 and 𝐿𝑦 are large. That is, 𝐿𝑥 , 𝐿𝑦 →∞.

Throughout this paper, we use the terms “stress”, “form
drag” and “internal wave drag” somewhat interchangeably.
However, it is to be understood that each of these terms
are defined differently. By “stress” we mean the total force
(scaled by 1/𝜌0) acting on the current as per (1) or (2).

1That is, per unit length in the 𝑦-direction. Hence, the two-
dimensional stress can be used to compute the total force across a long
three-dimensional ridge.
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Fig. 1. A schematic of the model domain. A spatially mean flow𝑈 (𝑡 ) interacts with the topography ℎ (𝑥, 𝑦) to generate baroclinic motions and
an associated stress.

Then, by “form drag” we mean the component of the stress
in phase with the current and therefore associated with a
mean energy exchange. Finally, “internal wave drag” refers
to the component of form drag due to the formation of
internal waves. Many existing parametrisations focus only
on internal wave drag, which is the dominant component
of stress in most idealised scenarios, but not if the flow is
“bottom-trapped”, sufficiently non-linear or resonant with
the topography.

a. Case 1: Tidal Flow

We consider a periodic tidal flow𝑈 (𝑡) =𝑈tidal cos(𝜔𝑡) in
the 𝑥-direction where 𝑈tidal is a constant and 𝜔 is the tidal
frequency. Tidal flows are a major source of waves and
the associated stress impacts the strength of barotropic and
internal tides (Ansong et al. 2015; Buijsman et al. 2015).
As a result, this flow regime appears to be the main focus
of stress in the literature. Here, we restrict our focus to two
parametrisations. Namely, an older parametrisation due
to Jayne and St. Laurent (2001, hereafter, JSL2001), and
a more recent parametrisation due to Shakespeare et al.
(2020, hereafter SAH2020).

1) Jayne and St Laurent parametrisation

Jayne and St Laurent give a simple estimate for internal
wave drag based on a scaling argument derived from the
work of Bell (1975). Namely, for each grid cell, they set
the stress (in each horizontal dimension) to be proportional
to 𝑁ℎ2𝑢. Here, 𝑁 is the buoyancy frequency, and ℎ and

𝑢 are taken to be suitable values of the topography height
and tidal velocity in the grid cell. For small ℎ≪ 𝐻, we can
approximate 𝑢 as 𝑈 (𝑡) and 𝑁 as a constant in the vicinity
of the topography. Thus, the total stress over a small hill
with root mean square height ℎ𝑟𝑚𝑠 is estimated by

𝐹JSL =
1
2
𝜅𝑁𝐵ℎ

2
𝑟𝑚𝑠𝑈. (3)

Here, 𝜅 is the tunable scaling constant in JSL2001 related
to the characteristic wavenumber of the topography. Then,
𝑁𝐵 denotes the buoyancy frequency at the seabed, and the
subscript “JSL” indicates that this is the drag force due to
the JSL2001 theory. In line with our units and scaling for
stress in (1) and (2), here 𝜅 has units of length in three
dimensions and is unitless in two dimensions. On the
other hand, in JSL2001 the stress is implicitly divided by
the horizontal length (in two-dimensions) or area (in three-
dimensions) so that 𝜅 has units of inverse length. Note
that the factor of 1/2 in (3) could be absorbed into the
definition of 𝜅, but we have included it to more closely
match the expression given by JSL2001.

Despite the simple form of the JSL2001 parametrisation,
this scaling has proven to significantly improve the accu-
racy of tidal models when compared to observations, and
is thus frequently used today (Arbic et al. 2018; Ansong
et al. 2015). However, there are some notable limitations
of the JSL2001 model. Firstly, the model is only designed
for small-scale topography and large ocean depths. More-
over, (3) is latitude-independent, an omission which Jayne
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and St Laurent state could be significant when the tidal
frequency 𝜔 is close to the Coriolis frequency 𝑓 .

2) Shakespeare, Arbic and Hogg parametrisation

In SAH2020, the authors take a more analytic approach
to parametrising tidal flow stress. The main novelty of
their work is their treatment of “spring” forces, such as
bottom-trapped tides, which do not do any work in the
time mean. This is important, because JSL2001 and other
early parametrisations compute stress by first considering
the time-averaged energy dissipation, and thus do not ac-
count for such spring forces. Under standard assump-
tions, including small topographical height and large ocean
depth, SAH2020 give for subcritical latitudes (| 𝑓 | < 𝜔) and
isotropic topography

𝐹3d =

√︁
(𝑁2 −𝛼𝜔2) (𝜔2 − 𝑓 2)

4𝜋 |𝜔 | 𝑈

∫ ∞

0
| ℎ̂(𝐾) |2𝐾2d𝐾. (4)

Here, ℎ̂ denotes the Fourier transform of ℎ in 𝑡, 𝑥 and
𝑦 to transformed variables 𝜔, 𝑘 and ℓ respectively with
𝐾 =

√
𝑘2 + ℓ2. Note that we use the Fourier transform

convention

�̂�(𝑘) def
=

∫ ∞

−∞
𝑔(𝑥)𝑒−𝑖𝑘𝑥d𝑥. (5)

Since we are assuming the topography is isotropic (and
independent of time), ℎ̂ is a function of the total wavenum-
ber 𝐾 only, as indicated in (4). We have also introduced a
parameter 𝛼 ∈ {0,1}, whereby

𝛼 =

{
0, under the hydrostatic assumption,
1, otherwise.

(6)

In addition, we remark that (4) is only the 𝑥-component of
the stress, as this is the primary direction of our flow and
focus of our analysis.

In SAH2020, a more general expression than (4) is stated
which accounts for wave reflections off the surface. How-
ever, such reflections are difficult to parametrise, and for
an isolated hill the number of waves reflecting back onto
the topography is small. Therefore, we omit any reflection
terms from (4) for simplicity. Nevertheless, we note that
these reflections depend on how the vertical wavelength

𝑚 =
𝑁𝑘√︁
𝜔2 − 𝑓 2

, (7)

resonates with the ocean depth 𝐻. As a result, we expect
(4) to have small deviations from the actual stress as the
geometry of the topography, and the variables 𝑁 , 𝜔 and 𝑓

are varied.

In the case of an isolated Gaussian with half-width 𝑊 ,
whereby

ℎ(𝑥, 𝑦) = ℎ0𝑒
−(𝑥2+𝑦2 )/(2𝑊2 ) (8)

we obtain from (4)

𝐹3d =
𝜋
√
𝜋

4
𝑊

√︁
(𝑁2 −𝛼𝜔2) (𝜔2 − 𝑓 2)

𝜔
ℎ2

0𝑈. (9)

Note that in the limit 𝑁 ≫ 𝜔 (or 𝛼 = 0) and 𝜔 ≫ | 𝑓 |, (9)
is of the same form as (3). The expression for supercriti-
cal (bottom-trapped) latitudes | 𝑓 | ≥ 𝜔 is similar, but with
the stress out of phase with velocity. In particular, for a
Gaussian hill

𝐹SAH3d =
𝜋
√
𝜋

4
𝑊𝜔−1 ℎ2

0𝑈tidal×

×
{√︁

(𝑁2 −𝛼𝜔2) (𝜔2 − 𝑓 2) cos(𝜔𝑡), | 𝑓 | < 𝜔,√︁
(𝑁2 −𝛼𝜔2) ( 𝑓 2 −𝜔2) sin(𝜔𝑡), | 𝑓 | ≥ 𝜔,

(10)

where the subscript SAH3d indicates that this is the three-
dimensional stress due to the SAH2020 theory. In a sub-
sequent paper (Shakespeare et al. 2021), the authors also
give a parametrisation for two dimensions. Namely, for a
Gaussian hill ℎ(𝑥) = ℎ0𝑒

−𝑥2/(2𝑊2 ) ,

𝐹SAH2d = 𝜔
−1 ℎ2

0𝑈tidal×

×
{√︁

(𝑁2 −𝛼𝜔2) (𝜔2 − 𝑓 2) cos(𝜔𝑡), | 𝑓 | < 𝜔,√︁
(𝑁2 −𝛼𝜔2) ( 𝑓 2 −𝜔2) sin(𝜔𝑡), | 𝑓 | ≥ 𝜔.

(11)

Note that (11) is identical to (10) except without the factor
of 𝜋

√
𝜋𝑊/4. To obtain (10) and (11) one also needs to

assume that 𝑁 is constant. In the more physical setting
where 𝑁 is varying function of depth, Shakespeare et al.
(2021) suggest taking 𝑁 to be the value of the buoyancy
frequency at the mean ocean depth.

b. Case 2: Steady Flow

We now consider a constant steady flow 𝑈 in the 𝑥-
direction. Under such a flow, the internal waves formed
are called lee waves. These lee waves have zero Eulerian
frequency (i.e. are steady at a fixed point), and are formed
with intrinsic frequency depending on the topography and
the magnitude of𝑈. This leads to some added complexities
compared to the tidal case, where the internal waves have
the same intrinsic frequency as the tide. In particular, for
steady flows there is a greater dependency on the Froude
number

𝐹𝑟
def
=
𝑁ℎ

𝑈
. (12)

For large Froude numbers, the system becomes highly non-
linear and harder to parametrise. Namely, when 𝐹𝑟 ≳ 1,
this non-linearity manifests as blocking or splitting, which
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can significantly decrease the formation of lee waves
(Nikurashin et al. 2014).

As in the tidal case, we also focus on two parametrisa-
tions for steady flows, treating the cases of small and large
Froude numbers separately. The first, which is based on the
linear theory of Bell (1975), is an idealised theory assum-
ing lee waves form without the effects of a high Froude
number. The second, is a semi-empirical parametrisa-
tion due to Klymak et al. (2010, hereafter, KLP2010).
The KLP2010 parametrisation focuses instead on a regime
where most of the flow is blocked, and unable to surmount
the topography to form lee waves. These two parametri-
sations therefore look at different aspects of the wave and
non-wave stress, and so both are useful in obtaining a
wholistic parametrisation.

1) Bell parametrisation for steady flows

In the work of Bell (1975), an expression for the time-
mean stress due to lee waves is provided. In three di-
mensions, their expression for the (𝑥-component of) stress
is

𝐹Bell3d =

=
1

4𝜋2

∬
𝑘 | ℎ̂(𝑘, ℓ) |2
√
𝑘2 + ℓ2

√︁
[𝑁2 −𝛼(𝑘𝑈)2] [(𝑘𝑈)2 − 𝑓 2]d𝑘dℓ

(13)

where 𝛼 is as in (6) and the integrals are taken over all
real values of 𝑘 and ℓ under the restriction | 𝑓 | ≤ |𝑘𝑈 | <
∞ for hydrostatic (𝛼 = 0) and | 𝑓 | ≤ |𝑘𝑈 | ≤ 𝑁 for non-
hydrostatic (𝛼 = 1). As we are taking the flow speed to be
constant, the lee wave stress is non-zero in the time-mean
and there is not an equivalent bottom-trapped spring force
as in the SAH2020 tidal parametrisation theory. However,
it is worth noting that (13) can readily be obtained by
repeating the arguments in SAH2020 for a steady flow.
The two-dimensional equivalent of (13) is then

𝐹Bell2d =

=
1

2𝜋

∫
| 𝑓 | ≤ |𝑘𝑈 |
𝛼 |𝑘𝑈 | ≤𝑁

| ℎ̂(𝑘) |2
√︁
[𝑁2 −𝛼(𝑘𝑈)2] [(𝑘𝑈)2 − 𝑓 2] d𝑘.

(14)

We now consider the case of an isolated Gaussian hill
of height ℎ0. In general, (13) and (14) do not simplify
much further unless one wishes to express the parametri-
sations in terms of incomplete Bessel functions. However,
in the special case at the equator ( 𝑓 = 0) with a hydrostatic

assumption (𝛼 = 0), we have

𝐹Bell3d (𝛼 = 𝑓 = 0) = 𝜋
√
𝜋

4
𝑊𝑁ℎ2

0𝑈, (15)

𝐹Bell2d (𝛼 = 𝑓 = 0) = 𝑁ℎ2
0𝑈, (16)

which is the same as what one obtains in the tidal case (cf.
(10) and (11)).

Bell’s parametrisations are derived in the case 𝐹𝑟 ≪ 1.
For higher Froude numbers the lee wave flux saturates
as non-linear blocking and splitting effects take hold
(Nikurashin et al. 2014). In more recent energy flux
parametrisations (e.g., Baker and Mashayek 2022), a sim-
ple scaling is used to account for this phenomena. Namely,
let 𝐸 denote the internal wave energy flux and 𝐸Bell denote
the energy flux predicted by the Bell (1975) theory. Then
for some critical Froude number 𝐹𝑟𝑐 one sets

𝐸 =

(
𝐹𝑟𝑐

𝐹𝑟

)2
𝐸Bell. (17)

whenever 𝐹𝑟 ≥ 𝐹𝑟𝑐. The standard values of 𝐹𝑟𝑐 used
are 0.7 in two dimensions, and 0.4 in three dimensions
(Nikurashin et al. 2014).

2) Klymak, Legg and Pinkel parametrisation

In KLP2010, a form drag parametrisation is obtained
for when the Froude number 𝐹𝑟 is very large, whereby
blocking effects are the dominant form of stress. Their
parametrisation is derived using numerical simulations for
two-dimensional Gaussian hills under the hydrostatic as-
sumption and 𝑓 = 0. The full expression for the form drag
in KLP2010 is

𝐹KLP = 𝑁ℎ2
0𝑈𝑚

[
1+ 𝜋 𝑈𝑚

𝑁ℎ0
−2𝜋2

(
𝑈𝑚

𝑁ℎ0

)2
]

(18)

where ℎ0 is the hill height and

𝑈𝑚 =
𝐻

𝐻 − ℎ0
𝑈. (19)

In KLP2010, a factor of 𝜋/2 actually appears out the front
of (18). However, this is the result of a small algebraic
error so that the factor is actually 𝜋/3 ≈ 1.

For 𝐹𝑟 ≫ 1, the second and third terms in (18) are small,
so that this parametrisation is nearly equivalent to the linear
lee wave stress given in (16). The main difference is the
scaling of𝑈 by𝐻/(𝐻−ℎ), which represents the increase in
velocity as the flow moves over the narrower channel above
the hill. This suggests that when 𝑓 = 0, an approximate
𝑁ℎ2

0𝑈 scaling could be accurate for both low and high
Froude numbers.
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To limit the scope of this paper we focus on the cases
𝐹𝑟 ≪ 1 (Bell (1975) theory) and 𝐹𝑟 ≫ 1 (KLP2010 the-
ory) discussed above. However, there are also interme-
diate regimes 𝐹𝑟 ≈ 1 that one can consider. In this re-
gard, “hybrid” parametrisations have been developed in
both the atmospheric (Garner 2005; Lott and Miller 1997)
and oceanic (Klymak et al. 2021; Perfect et al. 2020) liter-
ature. This style of parametrisation has been successfully
compared with both global models (Trossman et al. 2013,
2016) and observations (Trossman. et al. 2015). Such
parametrisations generally represent the stress as the sum
of a propragating (wave) component near the crest of the
topography, and a non-propagating (blocked) component
at the base of the topography.

c. Case 3: Mixed Flow

Finally, we consider a mixed flow in the 𝑥-direction of
the form

𝑈 (𝑡) =𝑈mean +𝑈tidal cos(𝜔𝑡), (20)

where𝑈mean and𝑈tidal are constants. Compared to the tidal
and steady cases, very little work has been done on mixed
flows. We thus hope that our subsequent simulations can
shine a light on previously unconsidered regimes.

A priori, we expect that the stress for a mixed flow should
have a mean (𝐹𝑚) and periodic (𝐹𝑝) component i.e.

𝐹3𝑑 = 𝐹𝑚 +𝐹𝑝 cos(𝜔𝑡 +𝜙) (21)

where 𝜙 denotes a phase shift. A naive parametrisation
would be to assume that the mean (steady) and tidal com-
ponents of the flow do not interact. That is, 𝐹𝑚 is inde-
pendent of 𝑈tidal and 𝐹𝑝 is independent of 𝑈mean, so that
𝐹𝑚 and 𝐹𝑝 can be directly computed from the parametri-
sations in the steady and tidal cases respectively. In terms
of a more sophisticated parametrisation, we now discuss a
more general version of the Bell (1975) theory.

Bell parametrisation for mixed flows

Although we previously discussed the Bell (1975) theory
for steady flows, Bell also gives a more general expression
for mixed flows. Namely, in three dimensions, Bell gives
the following formula for the 𝑥-component of the time-
mean stress (cf. (13))

𝐹𝑚,3d =

=
1

4𝜋2

∞∑︁
𝑛=−∞

∬
𝑘 | ℎ̂(𝑘, ℓ) |2
√
𝑘2 + ℓ2

√︃
(𝑁2 −𝛼𝜔2

𝑛) (𝜔2
𝑛 − 𝑓 2) ×

× 𝐽2
𝑛

(
𝑘𝑈tidal
𝜔

)
d𝑘dℓ, (22)

where 𝜔𝑛 = 𝑛𝜔+ 𝑘𝑈mean, 𝐽𝑛 is the 𝑛th-order Bessel func-
tion of the first kind, and the integrals are taken over all
real values of 𝑘 and ℓ under the restriction | 𝑓 | ≤ |𝜔𝑛 | <∞

if 𝛼 = 0 and | 𝑓 | ≤ |𝜔𝑛 | ≤ 𝑁 if 𝛼 = 1. The two-dimensional
equivalent, which we denote 𝐹𝑚,2𝑑 is then given by

𝐹𝑚,2d =

=
1

2𝜋

∞∑︁
𝑛=−∞

∫
| 𝑓 | ≤ |𝜔𝑛 |
𝛼 |𝜔𝑛 | ≤𝑁

| ℎ̂(𝑘) |2
√︃
(𝑁2 −𝛼𝜔2

𝑛) (𝜔2
𝑛 − 𝑓 2) ×

× 𝐽2
𝑛

(
𝑘𝑈tidal
𝜔

)
d𝑘. (23)

There are some notable features of (22). Firstly, if
𝑈tidal = 0 then (22) reduces to the same expression in
the steady flow case (14). Moreover, if 𝑈mean = 0, we
have 𝐹𝑚,3d = 𝐹𝑚,2d = 0. We also note that 𝐽0 (0) = 1
and 𝐽𝑛 (0) = 0 for 𝑛 > 0 but in general |𝐽0 (𝑥) | ≤ 1 and
|𝐽𝑛 (𝑥) | ≥ 0. This can be interpreted as the lee wave en-
ergy (𝑛 = 0) being transferred to higher modes (𝑛 > 0) in
the presence of a tidal flow (Shakespeare 2020). However,
since |𝐽𝑛 (𝑥) | ≪ |𝐽0 (𝑥) | for 𝑛 ≥ 1 and small 𝑥, the time-
mean stress predicted by (22) and (23) is often not too
different from the case of a purely steady flow.

Finally we note that the Bell parametrisation (22)
only gives a small glimpse of understanding on how to
parametrise stress for mixed flows. Like the Bell parametri-
sation for a steady flow, (22) only applies in the linear
regime, where the topographical height is assumed to be
small. Bell’s parametrisation also does not tell us any-
thing about the periodic component of stress 𝐹𝑝 . Thus,
we will primarily analyse our simulation data for 𝐹𝑝 by
simply comparing it with the tidal case where 𝑈mean = 0.
However, one should expect some impact of the mean flow
on the periodic stress given that the mean flow will act to
Doppler shift the tidal frequency 𝜔.

3. Numerical Model

We use Oceananigans (Ramadhan et al. 2020; Wagner
et al. 2025) to model flow over an isolated Gaussian hill in
two or three dimensions. Importantly, the GPU capability
of Oceananigans allows us to run several hundred simula-
tions whilst using only a modest amount of computational
resources (see also Silvestri et al. (2024)). In what follows,
we focus on the setup in three dimensions, as the two-
dimensional simulations are essentially the same but with
only one grid cell in the 𝑦-direction and improvements in
the resolution. For more precise details of the setup see
Johnston (2025), which contains the base code used for
each simulation.

By default, our domain was set to be 𝐿𝑥 = 𝐿𝑦 = 500 km
long and wide, 𝐻 = 1.5 km deep and centred on a symmet-
ric Gaussian hill ℎ(𝑥, 𝑦) = ℎ0𝑒

−(𝑥2+𝑦2 )/(2𝑊2 ) with height
ℎ0 and half-width 𝑊 = 5 km. Our domain was periodic in
the horizontal 𝑥-𝑦 directions, and bounded in the vertical.
To capture the features near the hill, the domain grid was
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stretched to give a horizontal spacing of Δ𝑥 = Δ𝑦 ≈ 700 m
around the hill, smoothly varied to Δ𝑥 = Δ𝑦 ≈ 2100 m at
the edge of the domain. Similarly, the vertical grid spacing
was set to be Δ𝑧 ≈ 7.5 m in the bottom half of the domain,
smoothly varied to Δ𝑧 ≈ 22.5 m near the surface.

To keep the hill isolated, we artificially damped wave
features at the horizontal boundaries by introducing a
“sponge layer” in the horizontal regions [−𝐿𝑥/2,−𝐿𝑥/4],
[𝐿𝑥/4, 𝐿𝑥/2], [−𝐿𝑦/2,−𝐿𝑦/4] and [𝐿𝑦/4, 𝐿𝑦/2]. In par-
ticular, the horizontal diffusivity and horizontal viscosity
coefficients were smoothly varied from 0 near the hill, to
2000 m2s−1 in the outer regions of the domain. Note
that everywhere the above-mentioned coefficients were the
same. Similarly, the buoyancy and horizontal velocity were
relaxed to their initial conditions at the horizontal bound-
aries to prevent wave features from propagating across the
periodic boundary and obfuscating the results.

For each simulation, we specified constant values for
background stratification (𝑁), hill height (ℎ0), hill width
(𝑊), ocean depth (𝐻), Coriolis frequency ( 𝑓 ), and tidal
frequency (𝜔) if required. Depending on the whether we
were concerned with a tidal, mean or mixed case, we also
specified the flow speeds 𝑈mean and 𝑈tidal (see (20)). The
velocity is initialised as u(𝑡 = 0) = (𝑈mean+𝑈tidal,0,0) and
the buoyancy is initialised with 𝑏(𝑡 = 0) = 𝑁2𝑧. The ve-
locity is then forced analogously to the simulations by
Shakespeare et al. (2021) or Klymak (2018) to maintain
a background zonal velocity𝑈 (𝑡) =𝑈mean +𝑈tidal cos(𝜔𝑡).
In particular, a forcing of 𝐹𝑦 = 𝑓𝑈mean is added to the
𝑦-momentum equations and a forcing of

𝐹𝑥 =
𝑓 2 −𝜔2

𝜔
𝑈tidal sin(𝜔𝑡) (24)

is added to the 𝑥-momentum equations. Our general
procedure was to run a test using reference values for
𝑁, ℎ0, 𝑊, 𝐻, 𝑓 , 𝜔, 𝑈mean and𝑈tidal, before varying each
parameter individually to determine their impact on the
stress. For the purely tidal or steady flow tests, these de-
fault parameters are listed in Table 1. Note that the bottom-
trapped tests are run at 90◦𝑆 which, although unphysical,
is fine in a simulation and allows us to study a regime
whereby bottom-trapped effects truly dominate. For the
mixed flow case, the parameters will either be the same as
the tidal case with a mean velocity of 𝑈mean = 0.1 ms−1

added, or the same as the mean case with a tidal velocity
of 0.1cos(𝜔𝑡) ms−1 added. This will be made clear in
the text. Also note that the default values of ℎ0 and 𝐻

vary slightly between the two and three-dimensional tests.
This is due to it being more difficult to achieve sufficient
resolution for small hills in the three-dimensional case.

The 𝑥-component of the stress was directly computed as
in (2):

𝐹3d =
1
𝜌0

𝐿𝑦/2∫
−𝐿𝑦/2

𝐿𝑥/2∫
−𝐿𝑥/2

𝑝ℎ
𝜕ℎ

𝜕𝑥
d𝑥d𝑦, (25)

where 𝑝ℎ (𝑥, 𝑦) is the pressure corresponding to the grid
cell directly above the hill at horizontal position (𝑥, 𝑦).

For efficiency, all simulations were run in hydrostatic
mode. The unimportance of non-hydrostatic processes
for the stress is reflected by the parametrisations in Sec-
tion 2, whereby the hydrostatic (𝛼 = 0) and non-hydrostatic
(𝛼 = 1) parametrisations are essentially the same provided
the buoyancy frequency 𝑁 is large compared to the wave
frequency. Each three-dimensional tidal test was run for
200 hours, whereas each three-dimensional steady test was
run for 100 hours. We found that 100 hours was gener-
ally long enough to reach a near-equilibrium state, with
the slightly longer test time given for tidal tests as to have
more full tidal cycles to perform a statistical analysis on.
Since two-dimensional tests were much less computation-
ally expensive, we decided to run them for even longer
(750 hours) to improve accuracy and detect any notable
effects that only appeared at later times. All simulations
used time-step of 7.5 minutes, and an output interval of 15
minutes.

4. Results and Evaluation

We now compare the parametrisations in Section 2 with
the numerical data from the model described in Section 3.
We consider results separately depending on the type of
flow (tidal, steady or mixed) and the number of dimensions
(two or three).

For each of the purely tidal flow simulations, we assume
that (the 𝑥-component of) the stress is periodic and of the
form

Stress(𝑡) = 𝐴cos(Ω𝑡 +𝜙) (26)

for some determinable values of the amplitude 𝐴, fre-
quency Ω and phase 𝜙. To compute these values, we fit the
last 200 simulation outputs (or 40 hours) to a sine curve
using the Python package pyestimate (Humblet 2024). To
calculate uncertainty, we then recompute these values for
the last 100 outputs and the last 101–200 outputs, recording
the difference from the initially obtained values.

For each of the purely steady flow simulations, we use
the average value of the stress over the last 20 hours of
simulation. The uncertainty is then computed using the
minimum and maximum values of the stress during these
last 20 hours.

Finally, for the mixed flow simulations, we assume the
stress was of the form (cf. (21))

Stress(𝑡) = 𝐹𝑚 +𝐹𝑝 cos(Ω𝑡 +𝜙), (27)
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Table 1. The default parameter values used for the tests with a purely tidal or steady flow in either two dimensions (2d) or three dimensions
(3d). For the tidal flow tests, the choice of 𝜔 and 𝑓 (and thus latitude) will be made clear in the text. The parameters for the steady flow tests vary
depending on whether we are interested in a low or high Froude number 𝐹𝑟 = 𝑁ℎ0/𝑈mean regime.

Tidal Steady (𝐹𝑟 ≲ 1) Steady (𝐹𝑟 ≫ 1)

𝑁 (s−1) 0.004 0.002 0.005

ℎ0 (m) 100 20 (2d) or 30 (3d) 500

𝑊 (m) 5000 5000 5000

𝐻 (m) 1500 1500 (2d) or 1250 (3d) 1500

𝑓 (s−1) −5 ·10−5 or −1.46 ·10−4 −2.53 ·10−5 0

Latitude (◦𝑆) 20 or 90 10 0

𝜔 (s−1) 1.4 ·10−4 or 7.3 ·10−5 − −

𝑈mean (ms−1) 0 0.2 0.1

𝐹𝑟 = 𝑁ℎ0/𝑈mean − 0.2 (2d) or 0.3 (3d) 25

𝑈tidal (ms−1) 0.1 0 0

with both a mean component 𝐹𝑚 and a periodic component
𝐹𝑝 cos(Ω𝑡 + 𝜙). To compute 𝐹𝑚 and 𝐹𝑝 we again use the
pyestimate package to fit the last 200 simulation outputs to
a shifted sine curve of the form (27). The uncertainty in
𝐹𝑚 and 𝐹𝑝 is obtained by recomputing these values using
the last 100 outputs and 101–200 outputs and recording
any difference.

a. Tidal flow in two dimensions

We first consider tidal flow over an isolated hill in
two dimensions. For each simulation, the computed
stress is compared to the parametrisations in Section 2a.
Figure 2 shows this comparison for the parametrisation
𝐹SAH2d (11) when the parameters 𝑈tidal, 𝑁 , 𝑓 , 𝑊 , 𝐻
and ℎ0 are varied. For most of these simulations, the
flow is forced with the semi-diurnal 𝑀2 constituent, with
𝜔 = 1.4× 10−4 s−1. The only exception is the bottom-
trapped ( | 𝑓 | > 𝜔) tests, whereby we use the diurnal 𝐾1
constituent (𝜔 = 7.3×10−5 s−1). This is because bottom-
trapped effects are more common for diurnal constituents
than semi-diurnal constituents (since the frequency 𝜔 is
smaller).

In general, the parametrisation 𝐹SAH2d performs well
compared to the simulations. However, in most cases the
theoretical prediction slightly underestimates the stress.
This is to be expected as the parametrisations from
JSL2001 and SAH2020 are derived in an idealised regime
whereby the topographical height and flow speed are as-
sumed to be small. There are thus other non-linear effects
that are not accounted for which could contribute to the
drag. For instance, calculations of Balmforth et al. (2002)
show that the energy flux should increase by around 14%

above the linear theory for isolated Gaussians as the steep-
ness parameter

𝑠 =
𝑁𝑘ℎ0√︁
𝜔2 − 𝑓 2

(28)

goes from 0 to 1, which we expect should also translate
to form drag. Note that with the default parameters used
here, 𝑠 ≈ 0.6 for the dominant wavenumber.

Looking at Figures 2a and 2b, we see that the predicted
linear scaling by 𝑈tidal and 𝑁 matches the simulations al-
most precisely. The same is true for the

√︁
𝜔2 − 𝑓 2/𝜔 scal-

ing for 𝑓 (Figure 2c), highlighting the importance of ac-
counting for latitude in tidal stress, which was neglected in
the JSL2001 parametrisation.

However, for the simulations varying𝑊 , 𝐻 and ℎ0 (Fig-
ures 2d–2h), there are some larger discrepancies between
the computed stress and 𝐹SAH2d. Firstly for the tests vary-
ing 𝑊 we see a small increase in the drag as 𝑊 increases.
Note that a priori we do expect some dependence of the
stress on 𝑊 despite it not appearing in 𝐹SAH2d. This is
because a wider hill gives more area for waves reflected off
the surface to interact with topography. However, it is not
clear whether this should always correspond to an increase
in stress as observed in the simulations.

Next, for the tests varying 𝐻 and ℎ0 we find that, pro-
vided | 𝑓 | < 𝜔, the flow in the vicinity of the hill speeds up
as it moves over the narrow channel at the top of the hill.
Thus, to better model the stress for the 𝐻 and ℎ0 tests we
use the velocity scaling

𝑈𝑚 (𝑡) =
𝐻

𝐻 − ℎ0
𝑈 (𝑡), (29)
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inspired by the steady flow parametrisation 𝐹𝐾𝐿𝑃 (see
(19)). Here, the factor of 𝐻/(𝐻 − ℎ0) is the ratio of the
ocean depth𝐻 away from the hill, to the ocean depth𝐻−ℎ0
at the centre of the hill. For medium-sized hills replacing
𝑈 (𝑡) with 𝑈𝑚 (𝑡) in 𝐹SAH2d more accurately matches our
simulation data. However, we also find that the scaling
𝑈𝑚 (𝑡) “saturates” around ℎ0 ≈ 𝐻/2 in the sense that using
the velocity scaling

𝑈𝑚 (𝑡) =
{

𝐻
𝐻−ℎ0

𝑈 (𝑡), ℎ0 ≤ 𝐻/2
2𝑈 (𝑡), ℎ0 > 𝐻/2

(30)

yields better results for large values of ℎ0. This is shown
in Figures 2e–2g, whereby incorporating 𝑈𝑚 (𝑡) into the
𝐹SAH2d parametrisation gives a stress profile that closely
matches the simulation data. The only exception is when
the hill crest is close to the surface (ℎ0 ≈ 𝐻) and the stress
plateaus (Figure 2g).

For bottom-trapped (| 𝑓 | ≥ 𝜔) flows we found that the
𝐹SAH2d parametrisation remains relatively accurate as ℎ0
increases (Figure 2h). This is expected as such flows have
a different velocity profile compared to the | 𝑓 | < 𝜔 case.
Namely, when | 𝑓 | ≥ 𝜔, the flow still speeds up at the top
of the hill but is slowed down or “trapped” at the base of
the hill. Thus in this case, it is not accurate to use the 𝑈𝑚
scaling, which assumes the current speeds up along the
entire length of the hill.

Finally, we analyse the frequency and phase of the sim-
ulated stress and how it compared to the parametrisations.
For the tests varying 𝑓 , this is shown in Figure 3. Here,
the 𝐹SAH2d parametrisation suggests that the frequency of
the stress should be equal to 𝜔. Then, in the absence of
wave reflections, the stress should be in phase with 𝑈 (𝑡)
when | 𝑓 | < 𝜔 and then 90◦ (or 1/4 of a tidal period) out of
phase with𝑈 (𝑡) when | 𝑓 | > 𝜔. Note that we give the phase
in hours, obtained by multiplying 𝜙 (from (26)) by 𝜔/2𝜋.
Most of our simulations accurately reflect the predicted
values from 𝐹SAH2d, usually giving a stress profile with the
predicted frequency (Figure 3a) and within half an hour
of the predicted phase (Figure 3b). This provides further
support for using the SAH2020 parametrisation over the
JSL2001 parametrisation, which does not account for the
phase shift when | 𝑓 | > 𝜔.

b. Tidal flow in three dimensions

Our results for tidal flow in three dimensions are anal-
ysed analogously to our results in two dimensions. Note
that in what follows, we compute the 𝑥-component of the
stress amplitude, frequency and phase. Figure 4 shows a
comparison between 𝐹SAH3d and the simulation data when
the parameters 𝑈tidal, 𝑊 , 𝑓 and ℎ0 were varied. Plots of
the stress frequency and phase are also included for tests
that vary the latitude (or equivalently 𝑓 ).

Similar to the two-dimensional case, the simulations
varying 𝑈tidal, 𝑊 and 𝑓 (Figures 4a–4c) qualitatively re-
flect the scaling predicted by the 𝐹SAH3d parametrisation.
However, for tests varying 𝑓 there is a notably larger quan-
titative deviation between the simulated stress and that pre-
dicted by 𝐹SAH3d. This is particularly true near the critical
latitude where | 𝑓 | =𝜔 = 1.4 ·10−4 s−1. To account for this,
we note that the 𝐹SAH3d parametrisation is derived assum-
ing a small excursion parameter 𝜖 = 𝑘𝑢/𝜔. As a result of
this assumption, the temporal and spatial terms of the gov-
erning equations cancel when | 𝑓 | = 𝜔. Therefore, the fact
that the simulated stress is non-zero at the critical latitude
represents the limitation of such an assumption, and our
results indicate that this effect may be more impactful in
three dimensions.

We now consider tests varying ℎ0. In the bottom-trapped
(| 𝑓 | > 𝜔) case, the simulated data matches the scaling pre-
dicted by the 𝐹SAH3d parametrisation (Figure 4d). How-
ever, for our choice of parameters, the simulated stress
underestimates 𝐹SAH3d more than in the two-dimensional
case. In particular, 𝐹SAH3d overestimated the simulation
data by an average of 146% in three dimensions, compared
to 118% in two-dimensions. In the case where | 𝑓 | < 𝜔
there is then a qualitative difference between the computed
stress profile and that predicted by 𝐹SAH3d, depending on
whether the hill width 𝑊 is small or large (Figures 4f and
4g). To account for this difference, we let 𝐹SAH3d be equal
to 𝐹SAH3d but with the velocity scaling𝑈𝑚 (Equation (30))
discussed in the two-dimensional setting. For large 𝑊
(Figure 4f), the scaling of the simulated stress is the same
as in the two-dimensional case. Namely, it matches the
stress profile predicted by 𝐹SAH3d until ℎ0 ≈ 𝐻. However,
for our default width 𝑊 = 5000 𝑚, the simulated stress
only matches 𝐹SAH3d for small–medium values of ℎ0 (Fig-
ure 4e). Then, for ℎ0 ≳ 500 𝑚, the stress is much closer to
the unscaled 𝐹SAH3d parametrisation. This is not entirely
unexpected as provided𝑊 is not too large, we expect some
of the current to flow around the hill, rather than be forced
over the top as in the two-dimensional case.

Finally, we remark that, as with the two-dimensional
case, the frequency and phase accurately matches the val-
ues predicted by the SAH2020 theory (Figures 4g and 4h).
However, the most notable difference in three dimensions
is a smoother transition from the stress being in phase when
| 𝑓 | < 𝜔 to being 90◦ out of phase when | 𝑓 | > 𝜔. Never-
theless, this effect was only clear when | 𝑓 | was very close
to 𝜔 so that the phase predicted in 𝐹SAH3d is still accurate
for almost all values of 𝑓 .

c. Steady flow in two dimensions

For two-dimensional tests with a steady flow we compare
the computed stress with the parametrisations 𝐹Bell2d and
𝐹KLP from Section 2. In particular, tests with low Froude
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Fig. 2. The amplitude of the oscillatory stress given by 𝐹SAH2d and the simulation data for two-dimensional tidal flow. The default parameters
for each test are as in Table 1 with 𝜔 = 10−4 s−1 (𝑀2 tide) at a latitude of 20◦𝑆 ( 𝑓 = 5 · 10−5 s−1). The only exception was the bottom-trapped tests
(Figure (h)) which used 𝜔 = 7.3 · 10−5 s−1 (𝐾1 tide) at a latitude of 90◦𝑆 ( 𝑓 = 1.46 · 10−4 s−1). In all tests, the uncertainty in the computed stress
was less than 3% so the (small) error bars have been omitted.

numbers 𝐹𝑟 ≲ 1 are compared with 𝐹Bell2d and tests with
high Froude numbers 𝐹𝑟 ≫ 1 are compared with 𝐹KLP.

Figure 5a shows our comparison between the simulated
data and 𝐹Bell2d for Froude numbers in the range 0.1− 1.
We see that although the scaling used in Bell’s theory
is generally accurate, 𝐹Bell2d typically underestimates the
stress by about 50%, and even more so as the Froude num-
ber approaches 1. Hence, Bell’s parametrisation should
ideally be adjusted to depend on 𝐹𝑟. In this regard, one

could define a scaled parametrisation

𝐹Bell2d =
1

𝐴1 −𝐵1 (𝑁ℎ0/𝑈)
𝐹Bell2d, (31)

for constants 𝐴1, 𝐵1, and 𝐹𝑟 ≲ 1. Note that the linear trend
line in Figure 5a corresponds to the values 𝐴1 = 0.71 and
𝐵1 = 0.46. However, a parametrisation of the form (31)
still does not describe the full behaviour of the stress in the
regime 𝐹𝑟 ≲ 1. Namely, in Figure 5b we also see a non-
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Fig. 3. The fitted frequency and phase of the stress for our two-dimensional tidal flow simulations varying latitude. Here, the phase
𝜙′ = 𝜙 × (𝜔/2𝜋 ) is given in hours as opposed to radians (cf. (26)). In each test, the uncertainty was less than 10−6 rad/s in the frequency, and less
than 0.05 hours in the phase so the (small) error bars have been omitted.

linear relationship between the stress and latitude. This
reinforces that, even for low Froude numbers, non-wave
and non-linear effects manifest that are not accounted for
by Bell’s theory. We also remark that the trend line in
Figure 5a is the opposite to what one gets with energy flux
calculations. That is, as the Froude number increases, one
reaches a saturation of lee waves and Bell’s parametrisation
(for energy flux) becomes an overestimate (see (17)).

Figures 5c–5e then show our comparison between the
simulated data and 𝐹KLP for large Froude numbers and
𝑓 = 0. Here, the approximately linear scaling of 𝑁 and
𝑈 in 𝐹KLP seems to be very accurate (Figures 5c and 5d).
On the other hand, the height scaling of ℎ2

0𝐻/(𝐻 − ℎ0)
overestimates the stress as ℎ0 gets large (Figure 5e). Our
results indicate that a simpler scaling than that in 𝐹KLP is
more accurate. In particular, if we set

𝐹2d = 𝐶1𝑁ℎ
2
0𝑈 (32)

for some suitable constant 𝐶, then we get much closer to
the drag from the simulations. For 𝐶1 = 1.4 this is shown
in Figure 5e. Moreover, using (32) as opposed to 𝐹KLP
gives a valid result for lower Froude numbers when 𝐹KLP
is negative (and thus unphysical).

We also ran a few tests with rotation added to the high
Froude number simulations. In this case, the stress was
unstable and increased by several fold. Upon analysing
the simulation data, we found that for these cases signif-
icant mixing occurred downslope, and gradually reduced
the downstream stratification to zero. This phenomena is
reminiscent of atmospheric downslope windstorms, which
can occur near large-scale topography on land (see (e.g.,
Peltier and Clark 1979; Scinocca and McFarlane 2000).
However, this dramatic effect was only observed in our
two-dimensional tests, since in three-dimensions the pres-
ence of a lateral flow helps to stabilise the stratification.
Therefore, such effects are mostly unphysical and we have
not attempted to parametrise them here.

d. Steady flow in three dimensions

For steady flow tests in three-dimensions, we again com-
pare simulations with low Froude numbers 𝐹𝑟 ≲ 1 to the
Bell (1975) theory. However, for tests with high Froude
numbers 𝐹𝑟 ≫ 1, it does not make sense to compare our
results directly to the KLP2010 theory as this theory was
only derived in the two-dimensional case. Thus, for high
Froude numbers, we instead focus on how the stress scales
with different parameters.

Figure 6 shows a comparison between the stress from
our simulations and 𝐹Bell3d when the parameters ℎ0, 𝑁 ,
𝑈, 𝑓 and 𝑊 are varied. For tests varying ℎ0 and 𝑁 (Fig-
ure 6a) we find, similar to the two-dimensional case, that
𝐹Bell3d underestimates the stress but still gives a mostly ac-
curate scaling (i.e. 𝐹3d ∝ 𝑁ℎ2

0). However, for tests that vary
𝑈, 𝑓 and 𝑊 (Figure 6b), we see that 𝐹Bell3d significantly
underestimates the stress as the Rossby number

𝑅𝑜
def
=

𝑈

| 𝑓 |𝑊 (33)

decreases. In this regard, it is worth noting that via a
change of variables, 𝐹Bell3d can be expressed as

𝐹Bell3d

(
𝛼 = 0, ℎ(𝑥, 𝑦) = ℎ0𝑒

−(𝑥2+𝑦2 )/2𝑊2
)
=

= Re©«
2𝜋∫

0

∞∫
0

�̃�𝑒−�̃�
2
cos2 𝜃

√︂
�̃�2 − 1

𝑅𝑜2 cos2 𝜃
d�̃�d𝜃ª®¬𝑁ℎ2

0𝑊𝜌0

(34)

where �̃� =𝑊
√
𝑘2 + ℓ2 and (𝑘𝑊,ℓ𝑊) = (�̃� cos𝜃, �̃� sin𝜃).

From (34) we see that as 𝑅𝑜 increases so too does the
lee wave stress. Therefore, a possible explanation for the
discrepancy between 𝐹Bell3d and the simulation data is that
as 𝑅𝑜 decreases, fewer lee waves are formed and the stress
is instead generated by other non-linear motions such as
partial blocking (see e.g., Trossman et al. 2016; Klymak
et al. 2021). To parametrise this phenomenon, we note
that from Figure 6b the ratio 𝐹Bell3d/𝐹3𝑑 has a clear linear
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Fig. 4. The amplitude of the oscillatory stress given by 𝐹SAH3d and the simulation data for three-dimensional tidal flow (panels (a)–(f)), and the
frequency and phase of the stress as the latitude is varied (panels (g) and (h)). The default values for each test were the same as the two-dimensional
case (see Figure 2 and Table 1). In panels (a)–(g), the uncertainty in the computed values was less than 10% so the (small) error bars have been
omitted. In Figure (h), error bars have only been included in the single case where the uncertainty in the phase was greater than 0.1 hours.

dependence on the ratio 𝑓𝑊/𝑈. In particular, our data
points give a correlation coefficient between 𝐹Bell3d/𝐹3𝑑
and 𝑓𝑊/𝑈 of 𝑅2 = 0.89. This suggests that we should use
the scaling

𝐹Bell3d =
1

𝐴2 −𝐵2 | 𝑓𝑊/𝑈 | 𝐹Bell3d (35)

for some constants 𝐴2 and 𝐵2 and 𝐹𝑟 ≲ 1. The linear
trend line in 6b corresponds to 𝐴2 = 1.34 and 𝐵2 = 0.88.

Certainly, (35) should only be applied for small values of
| 𝑓𝑊/𝑈 | so that the denominator 𝐴2 − 𝐵2 | 𝑓𝑊/𝑈 | remains
positive.

Figure 7 shows the results of our tests for the high Froude
number 𝐹𝑟 ≫ 1 regime. In this case, we find that the stress
deviates significantly from the approximate 𝑁ℎ2

0𝑊𝑈 scal-
ing found in other regimes. Instead we find that the stress
obeys a quadratic law 𝐹3𝑑 ∝ ℎ0𝑊𝑈

2, similar to what one
expects in the atmosphere (e.g., Lott and Miller 1997). In
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Fig. 5. A comparison of the stress predicted by the Bell (1975) and KLP2010 parametrisations with our simulation data for two-dimensional steady
flow. The default parameters are as in Table 1 and error bars are shown whenever the uncertainty in the stress was greater than 10%.

fact, the simple parametrisation 𝐹3𝑑 = ℎ0𝑊𝑈
2 works re-

markably well for our choice of parameters. The stress
then appears to be mostly independent of 𝑁 and 𝑓 (Figures
7d and 7e); only increasing or decreasing by small amounts
as these parameters are varied. We note however, that for
larger values of 𝑓 , our computed value of the stress has a
large uncertainty. These results can be directly compared
to recent work of Klymak et al. (2021) which involved a
similar analysis but with many, randomly distributed ob-
stacles. Klymak et al. also observed this 𝑓 independence
for the stress but an approximately linear dependence on 𝑁
for high Froude numbers. Therefore, we do not expect the
stress to remain independent of 𝑁 for more complicated
non-isolated topography.

e. Mixed flow in two dimensions

We now analyse our results for mixed flows with a hori-
zontal velocity of the form (20) and stress of the form (27).
In what follows we let 𝐹𝑚 and 𝐹𝑝 be the values for 𝐹𝑚
and 𝐹𝑝 if 𝑈tidal or 𝑈mean are set to be zero respectively.
This lets us discern the impact of a tidal flow on a steady
flow and vice versa. Note that values for 𝐹𝑚 and 𝐹𝑝 are
obtained using simulations as in the purely steady or tidal
flow cases. In Figure 8 we show our computed values of
𝐹𝑚/𝐹𝑚 and 𝐹𝑝/𝐹𝑝 for a range of parameters. When the
Froude number is small (𝐹𝑟 ≲ 1) these ratios are also com-
pared to the expected ratio from Bell’s parametrisations
defined in Sections 2b and 2c (Figures 8e and 8f).

To compute the uncertainty in our values of 𝐹𝑚/𝐹𝑚 and
𝐹𝑝/𝐹𝑝 , we define 𝐹−

𝑚, 𝐹−
𝑚, 𝐹−

𝑝 , 𝐹−
𝑝 and 𝐹+

𝑚, 𝐹+
𝑚, 𝐹+

𝑝 , 𝐹+
𝑝 to

respectively be the lower and upper values of uncertainty
for each quantity. The lower and upper uncertainties in
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Fig. 6. A comparison of the stress predicted by the Bell (1975) parametrisation (𝐹Bell3d) and the simulation drag (𝐹3𝑑) for three-dimensional
steady flows with low Froude number (𝐹𝑟 ≲ 1) . The default parameters are as in Table 1 and error bars are shown whenever the uncertainty in the
computed stress is greater than 10%.

𝐹𝑚/𝐹𝑚 and 𝐹𝑝/𝐹𝑝 are then given by(
𝐹𝑚

𝐹𝑚

)±
=
𝐹±
𝑚

𝐹∓
𝑚

and

(
𝐹𝑝

𝐹𝑝

)±
=
𝐹±
𝑝

𝐹∓
𝑝

. (36)

First we consider our results for the mean component of
the stress 𝐹𝑚. In general, for both low and high Froude
numbers, we find that 𝐹𝑚/𝐹𝑚 ≈ 1, suggesting that the naive
parametrisation 𝐹𝑚 = 𝐹𝑚 is accurate for a wide range of
parameters. However, in some regimes we find that 𝐹𝑚
notably exceeds 𝐹𝑚. This is most evident in Figure 8e,
where 𝐹𝑚 can be over two times larger than 𝐹𝑚 for small
values of 𝑈mean. This is reflected by Bell’s formula (23),
whereby as 𝑈mean → 0 we have 𝜔0 → 0 so that the 𝑛 = 0
term becomes small and the 𝑛 ≥ 1 terms associated with
the tide become more dominant. However, we note that
using Bell’s parametrisation, 𝐹𝑚 exceeds 𝐹𝑚 by more than
what is reflected by the simulation data.

Our simulations also indicate that Bell’s parametrisation
is very inaccurate for larger Froude numbers 𝐹𝑟 ≥ 1, so that
this parametrisation should not be extended to such a case.
For instance, for our ℎ0 tests in Figure 8c we have 2 ≤ 𝐹𝑟 ≤
26 and 𝐹𝑚/𝐹𝑚 ≈ 1. However, Bell’s parametrisation gives
the substantially larger value 𝐹𝑚/𝐹𝑚 = 21.38.

Next we consider our results for the periodic component
of the stress 𝐹𝑝 . Similar to the mean component, we find
in most regimes that 𝐹𝑝/𝐹𝑝 ≈ 1, thereby further highlight-
ing the accuracy of the naive parametrisation 𝐹𝑝 = 𝐹𝑝 .

The most notable exception is near critical latitudes when
| 𝑓 | ≈ 𝜔 (Figure 8b). This is to be expected as the steady
component of the flow acts to Doppler shift the tidal fre-
quency 𝜔. Therefore when | 𝑓 | = 𝜔, we expect 𝐹𝑝 to not
approach zero unlike 𝐹𝑝 (see (11)), leading to a large value
of the ratio 𝐹𝑝/𝐹𝑝 .

For low Froude numbers (Figures 8e and 8f) we also
observe a dependence of 𝐹𝑝/𝐹𝑝 on the parameters 𝑈mean
and 𝑊 . In particular, 𝐹𝑝/𝐹𝑝 notably exceeds 1 for large
values of 𝑈mean (Figure 8e), and small values of 𝑊 (Fig-
ure 8f). This is likely linked to the fact that the classical
lee wave frequency 𝑘𝑈mean depends explicitly on 𝑈mean
and implicitly on 𝑊 . In particular, with the Fourier con-
vention in (5), the wavenumber spectrum for a Gaussian
hill ℎ(𝑥) = ℎ0𝑒

−𝑥2/(2𝑊2 ) is

ℎ̂(𝑘) = ℎ0𝑊
√

2𝜋𝑒−𝑘
2𝑊2/2. (37)

It appears difficult however, to convert these observations
into an accurate analytic parametrisation for 𝐹𝑝 .

We also investigate the change in phase from a purely
tidal flow to a mixed flow. In what follows we set 𝜙tidal and
𝜙mixed to be the respective phases for a purely tidal and a
mixed flow with the same choice of parameters (besides
the presence of a mean flow𝑈mean = 0.1 ms−1 in the mixed
case). When | 𝑓 | ≪𝜔, we find that both 𝜙tidal and 𝜙mixed are
approximately in phase with the velocity 𝑈 (𝑡). However,
as 𝑓 increases, 𝜙tidal increasingly deviates from 𝜙mixed.
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Fig. 7. Topographic stress for three-dimensional steady flows with high Froude number (𝐹𝑟 ≫ 1) . In panels (a)–(c), the drag from the simulation
data is compared with both a linear 𝑁ℎ2

0𝑊𝑈 and quadratic ℎ0𝑊𝑈
2 scaling. The default parameters are as in Table 1. Note that in panels (a)–(d)

the uncertainty in the computed stress was always less than 10% so the (small) error bars have been omitted.

In Figure 8g this is shown for our tests varying latitude
(cf. Figure 8b), whereby the difference between 𝜙tidal and
𝜙mixed reaches about 5 hours at 80◦𝑆. This effect was also
observed in a small number of supplementary simulations
(not shown) for other tidal constituents besides 𝑀2.

f. Mixed flow in three dimensions

Finally we consider mixed flows in three dimensions,
with our results for this regime shown in Figure 9. Note
that we use the same notation as in Section 3e).

Like the two-dimensional case, we also find that
𝐹𝑚/𝐹𝑚 ≈ 1 and 𝐹𝑝/𝐹𝑝 ≈ 1 for the majority of tests. In
fact, this approximation holds true even more often than
the two-dimensional case (cf. Figure 8). Of particular note
is the far less dramatic increase in 𝐹𝑝/𝐹𝑝 near the critical
latitude | 𝑓 | ≈ 𝜔. There is however, a distinct increase in

the ratio 𝐹𝑚/𝐹𝑚 as ℎ0 increases, which was not observed

in the two-dimensional setting.

The other key difference in the three-dimensional setting

is the value of the phase for mixed flows. In Figure 9g we

see that the mixed flow phase is close to 0 so that the total

stress is given by

𝐹3𝑑 = 𝐹𝑚 +𝐹𝑝 cos(𝜔𝑡 +𝜙) (38)

with 𝜙 ≈ 0. By comparison, in two dimensions we found

that 𝜙 was much larger as | 𝑓 | increased (Figure 8g). Such

an effect is also in contrast to the purely tidal flow case,

whereby the phase 𝜙 approaches −𝜋/2 for large | 𝑓 |.
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Fig. 8. Results for two-dimensional mixed flow simulations. In panels (a)–(d), the value of the ratios 𝐹𝑚/𝐹𝑚 and 𝐹𝑝/𝐹𝑝 are shown using
𝑈mean = 0.1 ms−1 and the default parameters from our tidal tests (Figure 2). In panels (e) and (f), our results for low Froude numbers are displayed
using 𝑈tidal = 0.1 ms−1, an 𝑀2 tidal frequency, and the default parameters from our steady flow tests (Figure 5). In Figure (g), our results for
the phase shift for both the tidal (𝐹𝑝) and mixed (𝐹𝑝) cases are shown for the simulations that varied latitude (cf. Figure (b)). In each test, the
uncertainty was always less than 10% (or less than 0.2 hours for Figure (g)) so the small error bars have been omitted.

5. Discussion and summary of suggested parametrisa-
tions

In the previous section, we tested existing topographic
stress parametrisations for oceanic flows against a suite of
simulations. Particular parametrisations of interest were
those of Shakespeare et al. (2020) for tidal flows, as well
as Bell (1975) and Klymak et al. (2010) for steady flows.
Spanning a wide parameter space for an isolated Gaussian
hill, we found that in many cases these parametrisations
proved accurate, sometimes even when tested beyond their

assumptions. In other cases, it was clear that an alternate
parametrisation is required.

We also studied the case of a mixed flow in Sections 3e
and 3f. Here, we primarily compared our simulation data
against the naive parametrisation which assumes that the
tidal and steady components of a flow are independent. Our
data yielded the cases for which this naive parametrisation
was accurate, and for which cases a more sophisticated
parametrisation needs to be developed.

In what follows, we summarise our suggested parametri-
sations based on our results in Section 4. Here, as in
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Fig. 9. Results for three-dimensional mixed flow simulations. In panels (a)–(d), the value of the ratios 𝐹𝑚/𝐹𝑚 and 𝐹𝑝/𝐹𝑝 are shown using
𝑈mean = 0.1 ms−1 and the default parameters from our tidal tests (Figure 4). In panels (e) and (f), our results for low Froude numbers are displayed
using𝑈tidal = 0.1 ms−1, an 𝑀2 tidal frequency, and the default parameters from our steady flow tests (Figure 6). In Figure (g), our results for the
phase shift for both the tidal (𝐹𝑝) and mixed (𝐹𝑝) cases are shown for the simulations that varied latitude (cf. Figure (b)). In panels (a)–(f), error
bars are only shown when the uncertainty is greater than 10%. In Figure (g), error bars are only displayed in the single case where the uncertainty
was greater than 0.2 hours.

Section 2, 𝐹2d and 𝐹3d denote the stress in two and three
dimensions respectively.

a. Suggested tidal flow parametrisations

For a purely tidal flow, we found that the parametrisa-
tions 𝐹SAH2d (Equation (11)) and 𝐹SAH3d (Equation (10)
due to Shakespeare et al. (2020, 2021) were very accurate,
mainly just requiring a small modification for large hill
heights. In particular, for a purely oscillatory (tidal) flow

in two dimensions, we suggest setting

𝐹2d =
𝐻

𝐻 − ℎ0
𝐹SAH2d, if ℎ0 ≤ 𝐻/2,

𝐹2d = 2𝐹SAH2d, if ℎ0 > 𝐻/2,

noting that this parametrisation may overestimate the stress

when ℎ0 ≈ 𝐻.
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In three dimensions, we then similarly suggest setting

𝐹3d =
𝐻

𝐻 − ℎ0
𝐹SAH3d, if ℎ0 ≤ 𝐻/2,

𝐹3d = 2𝐹SAH3d, if ℎ0 > 𝐻/2,

for large hill widths 𝑊 , where 𝐹SAH3d is as in (10). From
our testing, 𝑊 = 10000 m was a sufficiently large width
to notice this effect (with ℎ0 = 100 m). For more modest
values of𝑊 , we instead suggest setting 𝐹3𝑑 = 𝐹SAH3d.

b. Suggested steady flow parametrisations

For a purely steady flow, we found that the parametri-
sations due to Bell (1975) and Klymak et al. (2010) had
mostly accurate scalings, but required additional parame-
ters to be accurate across a diverse set of regimes.

For a purely steady flow in two dimensions, we suggest
setting

𝐹2d =
1

𝐴1 −𝐵1 𝐹𝑟
𝐹Bell2d, if 𝐹𝑟 ≲ 1, (39)

𝐹2d = 𝐶1𝑁ℎ
2
0𝑈, if 𝐹𝑟 ≫ 1, (40)

where 𝐴1, 𝐵1 and 𝐶1 are tunable constants, 𝐹𝑟 = 𝑁ℎ0/𝑈,
and 𝐹Bell2d is as defined in (14). Our data gave the fitted
values 𝐴1 = 0.71, 𝐵1 = 0.46 and 𝐶1 = 1.4. Note that one
can use the Taylor expansion of (39) for small Froude
numbers (𝐹𝑟 ≪ 1) to obtain an expression with polynomial
dependence on 𝐹𝑟.

In three-dimensions, we then suggest setting

𝐹3d =
1

𝐴2 −𝐵2 | 𝑓𝑊/𝑈 | 𝐹Bell3d, if 𝐹𝑟 ≲ 1, and | 𝑓𝑊/𝑈 | ≲ 1

(41)
𝐹3d = 𝐶2ℎ0𝑊𝑈

2, if 𝐹𝑟 ≫ 1, (42)

where similarly 𝐴2, 𝐵2 and 𝐶2 are tunable constants, and
𝐹Bell3d is as defined in (13). Our data gave the fitted values
𝐴2 = 1.34, 𝐵2 = 0.88 and 𝐶2 = 1. Similar to (39), one
could also change (41) to have a polynomial dependence
on | 𝑓𝑊/𝑈 | if desired. Such an alternate form of (41) could
be useful in the regime 𝐴2 −𝐵2 | 𝑓𝑊/𝑈 | ≈ 0, in which (41)
is unphysical.

c. Suggested mixed flow parametrisations

For a mixed flow

𝑈 (𝑡) =𝑈mean +𝑈tidal cos(𝜔𝑡) (43)

with associated stress (parallel to𝑈 (𝑡))

𝐹2𝑑 = 𝐹𝑚 +𝐹𝑝 cos(𝜔𝑡 +𝜙), (two dimensions)
𝐹3𝑑 = 𝐹𝑚 +𝐹𝑝 cos(𝜔𝑡 +𝜙), (three dimensions)

the naive parametrisation

𝐹𝑚 = 𝐹𝑚, 𝐹𝑝 = 𝐹𝑝 (44)

proved to be accurate for a wide range of parameters. Here,
as in Sections 3e and 3f, 𝐹𝑚 and 𝐹𝑝 are the values of 𝐹𝑚
and 𝐹𝑝 if 𝑈tidal or 𝑈mean are set to be zero respectively. In
two dimensions, the main regimes where (44) disagreed
with our simulations were those near the critical latitude
| 𝑓 | = 𝜔, those with small values of 𝑈mean (for 𝐹𝑚), and
those with small values for 𝑊 (for 𝐹𝑝). Then, in three
dimensions, the naive parametrisation was again less ac-
curate near the critical latitude | 𝑓 | = 𝜔, and also for large
hill heights ℎ0 (for 𝐹𝑚). Further work is required to accu-
rately parametrise the stress in these specific cases.

In the bottom-trapped regime (| 𝑓 | > 𝜔), the phase 𝜙 also
notably disagreed with that predicted by the Shakespeare
et al. (2020) theory for tidal flows, but still satisfied 𝜙 ≈ 0
for | 𝑓 | ≪ 𝜔.

6. Conclusion

We have evaluated existing stress parametrisations for
tidal, steady and mixed flows over rough topography. In
the case where the topography is an isolated Gaussian hill in
two or three dimensions, we have directly compared these
parametrisations with idealised numerical simulations. In
some regimes, such as those with large scale topography,
we find that existing parametrisations fall short. As a result,
we have suggested new or improved parametrisations that
more accurately match the simulation data. It is hoped that
these new parametrisations may be used to more accurately
model stress for mixed flows or other cases for which there
is currently limited theory available. In future work, it
would be insightful to perform a similar analysis in less-
idealised settings with more complicated topography.
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