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ABSTRACT: Atmosphere and ocean are coupled via air–sea interactions. The atmospheric conditions fuel the ocean circulation

and its variability, but the extent to which ocean processes can affect the atmosphere at decadal time scales remains unclear. In

particular, such low-frequency variability is difficult to extract from the short observational record, meaning that climate models are

the primary tools deployed to resolve this question. Here, we assess how the ocean’s intrinsic variability leads to patterns of upper-

ocean heat content that vary at decadal time scales. These patterns have the potential to feed back on the atmosphere and thereby

affect climatemodes of variability, such as El Niño or the interdecadal Pacific oscillation.We use the output from a global ocean–sea

ice circulation model at three different horizontal resolutions, each driven by the same atmospheric reanalysis. To disentangle the

variability of the ocean’s direct response to atmospheric forcing from the variability due to intrinsic ocean dynamics, we compare

model runs drivenwith interannually varying forcing (1958–2018) andmodel runs drivenwith repeat-year forcing.Modelswith coarse

resolution that rely on eddyparameterizations show (i) significantly reduced variance of the upper-oceanheat content at decadal time

scales and (ii) differences in the spatial patterns of low-frequency variability compared with higher-resolution models. Climate

projections are typically donewithgeneral circulationmodelswith coarse-resolutionoceancomponents.Therefore, thesebiases affect

our ability to predict decadal climate modes of variability and, in turn, hinder climate projections. Our results suggest that for

improving climate projections, the community should move toward coupled climate models with higher oceanic resolution.

KEYWORDS: Eddies; Mesoscale processes; Ocean circulation; Atmosphere-ocean interaction; Empirical orthogonal

functions; Principal components analysis; Model comparison; Climate variability; Decadal variability; Oceanic variability

1. Introduction

The atmosphere and ocean communicate at the sea surface

via air–sea interactions allowing the exchange of heat, fresh-

water, and momentum. There is clear evidence that the at-

mosphere affects the ocean, since it is responsible for setting up

the wind stress and themeridional buoyancy gradients that fuel

the ocean’s mean circulation and its variability. At high fre-

quencies (;weekly), the atmosphere’s synoptic variability

appears at large length scales (;1000 km). The ocean’s large

heat capacity acts as memory since it results in suppressing or

‘‘integrating out’’ the high-frequency atmospheric variability,

enhancing power on longer time scales (;decadal) of the

coupled atmosphere–ocean climate system. This is the ‘‘null

hypothesis’’ for explaining the observed red spectrum of the

climate variability. According to the null hypothesis, the ocean’s

low-frequency response results solely from the atmo-

sphere’s high-frequency synoptic variability (which, from the

ocean’s viewpoint, appears to leading order as stochastic excita-

tion), and the role of the ocean is to introduce the slower time scale

(due to its larger heat capacity) so that the atmosphere’s stochastic

nudging becomes a red-noise process inducing power at low fre-

quencies (Hasselmann 1976; Frankignoul and Hasselmann 1977).

The null-hypothesis paradigm forms the basis of many air–sea

coupling studies up to date (e.g., Barsugli and Battisti 1998).

Recent work revealed that the null-hypothesis paradigm is

only one part of the story. It has been shown that the variability

of air–sea heat fluxes over ocean regions outside the tropics

with high mesoscale eddy activity shows a different character

from the null-hypothesis prediction: air–sea heat fluxes are not

predominantly controlled by the atmosphere in those regions,

but rather the other way around (Bryan et al. 2010; Buckley

et al. 2014, 2015; Bishop et al. 2017; Small et al. 2019, 2020).

The question remains whether the ocean’s intrinsic variability

can enhance power at interannual frequencies, thus allowing

for the potential to affect the climate at decadal time scales.1 Is

it possible that the ocean’s variability can enhance the low-

frequency variability of air–sea heat fluxes through the ocean’s

capacity to create sea surface temperature variability at de-

cadal time scales? Furthermore, to what extent does such low-

frequency variability affect the atmosphere (Vallis 2010)? We

attempt here to tackle both of these questions. Thus, our main

objective in this paper is to assess whether and how the ocean’s

intrinsic variability affects the climate variability on decadal

time scales.

What could be the cause of such ocean-generated decadal

variability? One hypothesis is that the high-frequency at-

mospheric variability acts as noise, thus enabling the ocean to

undergo transitions between different close-to-equilibrium

states. Take, for example, a particle in a double-well poten-

tial. Without any external noise the particle sits at the bottom

of either of the potential wells. With some noise, the particle

starts wandering around the bottom of the well and, when the
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1 By ‘‘intrinsic ocean variability’’ here, we mean the variability

that rises due to oceanic dynamical processes and not as a direct

response of the ocean to the atmospheric forcing; we will refer to

the latter as ‘‘forced ocean variability.’’
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noise becomes sufficiently strong, the particle may jump be-

tween wells and end up at the bottom of the neighboring po-

tential well. Such transitions from one well to another occur

less frequently than oscillations due to noise and thus appear as

low-frequency variability of the particle’s position. Turbulent

flows often support large-scale coherent features; such features

are ubiquitous in the ocean (e.g., the Gulf Stream, Kuroshio,

and Antarctic Circumpolar Current). The different states of

these coherent features manifest as equilibria of the dynamics

that the flow statistics obey (e.g., Farrell and Ioannou 2008;

Parker and Krommes 2013; Constantinou et al. 2014;

Constantinou 2015; Farrell and Ioannou 2019). In general,

flows tend to ‘‘wander around’’ such equilibria (similarly to how

the particle wanders around the bottom of the well when

there is noise). When the turbulent flow attractor possesses

more than one stable equilibrium (i.e., exhibits ‘‘bistability’’

with a double well), then transitions between such equilibria

can occur (Kimoto and Ghil 1993; Qiu and Miao 2000; Pierini

2006; Pierini et al. 2009; Parker andKrommes 2013; Constantinou

2015). These transitions typically occur at much longer time

scales than the time scale the flow exhibits and, thus, appear as

lower-frequency variability.

In the atmosphere, low-frequency variability of precisely

this character was demonstrated with the seminal experi-

ments by James and James (1992). Those experiments

revealed a so-called ultra-low-frequency variability, which

was shown to come about from transitions between a two-jet

state, with a subtropical jet distinct from an eddy-driven

midlatitude jet, and a single or merged jet state. Therefore,

in James and James’s (1992) experiments, the intrinsic

nonlinearity of the atmosphere became the source of low-

frequency variability. Notably, James (1998) argued that

models with parameterizations cannot capture the low-

frequency variability that was seen in the experiments of

James and James (1992). Recent studies demonstrated the

occurrence of intrinsic low-frequency variability due to

bistability of the turbulent attractor in barotropic models

(Bouchet et al. 2019; Simonnet et al. 2021).

In the ocean, the primary patterns of variability occur on

smaller scales (;100 km) and lower frequencies (;months)

than the atmosphere, through the creation of mesoscale eddies

predominantly via baroclinic instability. However, the in-

fluence of nonlinear processes in creating intrinsic variability at

lower frequencies (defined in this paper to be approximately

decadal) is difficult to evaluate either from observations or

coupled climate models, because variability of the ocean cir-

culation is also forced from the atmosphere. The superposition

of forced and intrinsic variability requires a targeted approach

to the problem.

Hogg et al. (2005) found that idealized eddy-rich ocean

models show high intrinsic variability, which is greatest in eddy-

ing regions and can influence the atmospheric variability (see

also Hogg et al. 2006; Martin et al. 2020, 2021). Bistability in

the oceanographic context has been discussed by Deshayes

et al. (2013) and Aoki et al. (2020). Other mechanistic and

dynamical explanations have been proposed as candidates for

inducing low-frequency variability in the ocean: the turbulent

oscillator (Berloff et al. 2007), which involves eddy–mean flow

feedback between meridional eddy fluxes and the strength of a

quasi-zonal jet. These proposedmechanisms depend largely on

resolving nonlinear scales of motion, principally ocean eddies.

Climate projections, on the other hand, are routinely done with

general circulation models that use a ‘‘laminar ocean,’’ that is,

ocean components whose lateral resolution is too coarse to

resolve ocean eddies and instead rely on eddy parameteriza-

tions (Hewitt et al. 2020). What remains outstanding and forms

the basic question addressed in this paper is whether the

ocean’s intrinsic mesoscale flow has the potential to affect the

large-scale patterns of sea surface temperature variability at

decadal time scales.

A series of studies aimed to better understand the forced and

intrinsic response of the ocean using numerical experiments

utilized a large ensemble of global ocean–sea ice model simula-

tions (OCCIPUT project; http://meom-group.github.io/projects/

occiput). These simulations were all initialized with slightly dif-

ferent initial conditions and they were run at a resolution that

was able to partially resolve some of the ocean eddies (Penduff

et al. 2011). The chaotic nature of the ocean’s intrinsic variability

in certain regions led to a spread in the solutions, while in other

regions where the forced component dominates, the oceanic

response among the ensemble members revealed more similar-

ities. These results suggested that intrinsic low-frequency vari-

ability is significant in eddy-presentmodels and can be as large as

80% of all observed variability in regions of high ocean-eddy

activity (see also Penduff et al. 2018; Leroux et al. 2018). Sérazin
et al. (2017) used the OCCIPUT ensemble dataset to quantify

the forced and intrinsic footprint of the ocean heat content at

decadal time scales. They found that the ocean heat content

variance at decadal time scales increased in regions of high eddy

activity.Here, wewill focus on the upper-ocean heat content and

study how low-frequency variance changes as we go frommodels

that parameterize ocean eddies toward models that resolve the

eddies. We furthermore determine the main patterns of low-

frequency intrinsic variability that ocean dynamics induce on the

upper-ocean heat content using an empirical orthogonal function

(EOF) analysis and study how these patterns change with in-

creasing model resolution.

One approach to decompose forced from intrinsic ocean

variability is to use long, eddy-rich global ocean–sea ice model

runs (Sérazin et al. 2015). To distinguish the forced from the

intrinsic component, we can compare ocean–sea ice models

driven by realistic, interannually varying atmospheric forcing

with models driven by a modified atmospheric forcing that

does not vary at subannual frequencies (Stewart et al. 2020).

Given that in the latter experiments the forcing of themodels is

repeated every year, and thus does not vary at time scales

longer than one year, any ocean variability we observe at de-

cadal time scales is attributed to intrinsic variability. In this

paper, we will undertake this approach to disentangle the

forced from the intrinsic ocean’s response, and also to compare

how the intrinsic variability of the upper-ocean heat content

varies as we refine our model’s lateral resolution to better re-

solve ocean eddies.

In what follows, we describe in detail the datasets we use and

the methods we apply to understand the low-frequency vari-

ability of upper-ocean heat content (section 2). Our results are
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then presented in section 3, which is partitioned in two parts:

section 3a studies the intrinsic versus forced low-frequency

variance content across models with different lateral resolu-

tions and section 3b presents global and regional EOF analysis

to understand the main modes of spatial and temporal low-

frequency variability.We concludewith a discussion in section 4.

2. Methods

We use the ocean–sea ice model ACCESS-OM2 at three

different horizontal resolutions (Kiss et al. 2020): eddy-rich at

0.108, eddy-present at 0.258, and at 18 with parameterized

eddies.2 The model is forced with 3-hourly output from the

atmospheric reanalysis JRA55-do dataset (Tsujino et al. 2018).

To separate the intrinsic from the forced component of the

oceanic flow, we use two different forcing strategies:

(i) 3-hourly interannually varying forcing (IAF) from 1958 to

2018, which is repeated to yield multiple;60-yr cycles, and (ii)

3-hourly repeat-year forcing (RYF), defined to be time-varying

forcing from a single year (May 1990–April 1991; in which

major climate mode indices are neutral) that keeps repeating

itself (Stewart et al. 2020). Note that the IAF cycles are com-

bined together in one long time series for analysis. None of the

RYF forcing fields used to drive the ocean has power at time

scales longer than one year. Thus, in RYF experiments, any

variability at time scales longer than one year is attributed to

intrinsic oceanic processes. More details about the datasets

used here, including the length of the model runs, are reported

in Table 1.

The atmosphere feels the ocean primarily as a thermal

boundary condition and, thus, one may argue that to quantify

the effect of how the ocean feeds back on the atmosphere, we

should look at sea surface temperature. However, in ocean–sea

ice models, such as that used here, the prescribed atmosphere

does not respond to oceanic heat fluxes. Therefore, the atmo-

sphere has effectively infinite heat capacity and the sea surface

temperature is, to a large degree, ‘‘slaved’’ to the imposed

atmospheric state (Hyder et al. 2018). The nature of this

forcing complicates how we can disentangle the forced from

the intrinsic oceanic response. To overcome this impasse, we

will use two other flow quantities to quantify the ocean’s

feedback back to the atmosphere and the global climate at

decadal time scales: the sea surface height (SSH) and the

upper-ocean heat content (e.g., conservative temperature) in-

tegrated over, say, the top 50m of the ocean. By integrating

over the top 50m of the ocean, we alleviate the ‘‘slaving’’ effect

of the sea surface temperature to the forcing fields that drive

the model.

The sea surface height is intimately related to (albeit not a

direct measure of) upper-ocean heat content. But more im-

portantly, the observational satellite altimetry record since

1993 allows an estimate of the low-frequency variability from

observations, which can be used to ground truth themodels. Of

course, the observational altimetry record is short (27 years)

and, therefore, one should be cautious while interpreting es-

timates of variability at decadal time scales or longer from

such a short record. However, comparison with observations

enables us to evaluate how well the model captures variability

at time scales shorter than 27 years.

In summary, we use output from models with 18, 0.258, and
0.108 horizontal resolution and also the sea surface height ob-

servations from the gridded altimetry [Copernicus Marine and

Environment Monitoring Service (CMEMS)] dataset at 0.258
resolution. We first interpolate all flow fields to a a regular

longitude and latitude grid with horizontal resolution of 18. The
motivation behind this choice is that we want to coarsen the

resolution to a common grid, so that the baseline resolution of

the data processing is equivalent.

The upper-ocean heat content H is taken, here, as the heat

content over the top 50m of the ocean:

H(lon, lat, t)5 r
0
c
p

ðh
250m

T(lon, lat, z, t) dz, (1)

where T is the conservative temperature from the model, h is

the sea surface height, r0 5 1035.0 kgm23 is the mean density

of seawater, and cp 5 3992.1 JK21 kg21 is the specific heat

capacity of seawater. The choice of defining upper-ocean heat

content over the first 50m of the ocean may seem arbitrary;

a more natural definition would be to define the upper-ocean

heat content over the mixed-layer depth. However, such a

TABLE 1. Record length and time period of the satellite altimetry observational dataset by the Copernicus Marine and Environment

Monitoring Service (CMEMS) and model output used in this study. Simulations are indicated by their resolution (18, 0.258, or 0.18) and
forcing method (IAF 5 interannual forcing; RYF 5 repeat-year forcing).

Abbreviation Period of forcing Record length (yr) Frequency

CMEMS (satellite) Jan 1993–Dec 2019 27 Monthly

IAF 18 JRA55-do v1.3 Jan 1958–Dec 2017 240 (4 cycles) Yearly UOHC, monthly SSH

IAF 0.258 JRA55-do v1.3 Jan 1958–Dec 2017 258 (.4 cycles) Yearly UOHC, monthly SSH

IAF 0.108 JRA55-do v1.4 Jan 1958–Dec 2018 183 (3 cycles) Monthly

RYF 18 JRA55-do v1.3 May 1990–Apr 1991 260 Monthly

RYF 0.258 JRA55-do v1.3 May 1990–Apr 1991 250 Monthly

RYF 0.108 JRA55-do v1.3 May 1990–Apr 1991 220 Monthly

2 Note that so-called eddy-present/eddy-rich characterizations

do not derive from any strict definition.We use them here implying

that an eddy-rich model resolves eddies at most latitudes, while an

eddy-present model only resolves eddies in the tropics (Hallberg

2013; Hewitt et al. 2020).
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mixed-layer-depth-dependent definition would create diffi-

culties for comparing across different models with differing

lateral resolution andmixed-layer biases.We therefore choose a

fixed depth for defining upper-ocean heat content and keep in

mind that this may result in an underestimate of upper-ocean

heat content for regions where the mixed layer is deeper, and an

overestimate of upper-ocean heat content in regions where the

mixed layer is shallower.

After coarsening all flow fields, we proceed with a frequency

decomposition. For example, the upper-ocean heat content is

decomposed in frequencies via a Fourier transform as

Ĥ(lon, lat, f )5

ð
H(lon, lat, t)e22pift dt. (2)

We denote the low-frequency component to be anything that

corresponds to frequencies smaller than fmax 5 (1.5 yr)21 (to

ensure we exclude the dominant peak of the seasonal cycle)

and also larger than a low-frequency cutoff fmin; that is,

Ĥ
LF

5

(
Ĥ if f

min
, f , f

max
,

0 otherwise.
(3)

The lower-frequency cutoff fmin in Eq. (3) is chosen to be small

enough to include decadal time scales, while excluding any

long-term model drift. Given that we also want to compare

with the satellite altimetry record (which is only 27 years long),

we choose fmin 5 (25 yr)21.

We can reconstruct the low-frequency component of our

signal via an inverse Fourier transform of the frequency de-

composition in Eq. (3):

H
LF

5

ð
Ĥ

LF
e2pift df . (4)

In view of Parseval’s theorem, the low-frequency variance is

then given by

var[H
LF
](lon, lat)5

1

Dt

ð
H2

LF dt5
1

Dt

ðfmax

fmin

jĤ
LF
j2 df , (5)

where Dt is the duration of the time series of the signal. Similar

frequency decomposition and quantification of the low-frequency

variance as in Eqs. (2), (3), and (5) is also performed for the sea

surface height as obtained both from model output and from

observations, yielding an estimate of var[SSHLF]. To identify the

spatial and temporal patterns of variability, we perform EOF

analysis on the low-frequency component of upper-ocean heat

content HLF.

3. Results

a. Low-frequency variability

We first look into the low-frequency variability of sea sur-

face height and compare it across models with interannual or

repeat-year forcing, and across the three horizontal resolu-

tions. As discussed above, although sea surface height is not a

direct measure of the thermal forcing that the ocean feeds back

to the atmosphere, the observed satellite altimetry record can

provide a ground truth for the interannually forced model.

Figure 1 shows maps of the low-frequency variance for sea

surface height [see Eq. (5)]. Figures 1a, 1d, and 1g show the

results from the interannually forced models at the three dif-

ferent resolutions while Fig. 1j shows the same map obtained

from satellite altimetry (CMEMS). The low-frequency vari-

ance in the interannually forced model at high resolution

(Fig. 1g) resembles that in the observations (Fig. 1j);

Fig. 1k shows the ratio of the IAF 0.108 variance over

observations (for the period 1993–2018), demonstrating

that in most of extratropical regions the model captures at

least 80% of the low-frequency variance seen in obser-

vations. Close inspection of the ratio in Fig. 1k reveals that

the regions where low-frequency variance differs between

model and observations are in the tropical Pacific and

Indian Ocean, and the extension of the Kuroshio east of

Japan. The tropical Indo–Pacific is dominated by interannual

variability [ElNiño–SouthernOscillation (ENSO) and the Indian

Ocean dipole (IOD)], which depends on coupled ocean–

atmosphere dynamics (Webster et al. 1999; Timmermann

et al. 2018); therefore, weaker variability in this region is

expected in an ocean-only simulation. Regarding the

Kuroshio Extension region, it has been documented that

the Kuroshio undergoes decadal transitions between two

different states (Qiu and Chen 2010) and the variance

associated with these transitions requires a longer obser-

vational record to be accurately captured.

Comparison of the IAF simulations at the three different

resolutions (Figs. 1a,d,g) shows that, on one hand, the low-

frequency variance in the tropics seems insensitive to in-

creasing resolution, while on the other hand, midlatitude and

eddy-rich regions (like the Southern Ocean, the Kuroshio,

the Gulf Stream, and their extensions) show progressively

more low-frequency variance as we increase the model res-

olution. Remember that flow fields from models across all

resolutions have been interpolated to a grid with nominal 18
spacing and, therefore, the increased extratropical variance

of Fig. 1g compared with Fig. 1a suggests that the model

resolution affects the large-scale, low-frequency patterns of

variability for the eddy-rich model, when compared with the

eddy-present model. The insensitivity of the low-frequency

variance in the tropics to model resolution may occur be-

cause variability in that region is dominated by atmospheric

interaction, or because eddies, tropical instability waves,

and large-scale Kelvin waves, which come into play in the

tropics and in particular in the tropical Pacific, are partially re-

solved even at the coarse 18 resolution.
Oceanic eddies are generated intrinsically from oceanic

processes (baroclinic or barotropic instability of currents, ba-

thymetry interactions) and these processes are particularly

active in the midlatitudes. Thus, one would logically hypothesize

that oceanic eddies are likely to contribute to increased variance

at these latitudes.However, eddies occur on time scales less than a

year, so the observed increase in low-frequency variance between

the 18 IAF model (Fig. 1a) and the 0.108 IAF model (Fig. 1g)

cannot be explained by the direct effect of ocean eddies.

To better understand the contribution of the intrinsic oce-

anic response to the atmospheric forcing, and how that leads to

decadal patterns of variability, we turn next to the repeat-year
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forcing model runs. The corresponding maps of the integrated

low-frequency variance for sea surface height for RYF models

are shown in Figs. 1b, 1e, and 1h. The striking difference

comparedwith the IAFmodel runs is the lack of low-frequency

variance at the tropics. This lack of tropical low-frequency

variability in the RYF runs implies that low-frequency vari-

ability in the tropics is dominated by atmospheric interactions

(e.g., ENSO), and accounts for the insensitivity of tropical

variability to resolution in the IAF simulations. On the other

hand, theRYFmodels show significant low-frequency variance

in the extratropical regions that increases with model resolu-

tion (cf. Figs. 1b, 1e, and 1h). This variance is attributed to

intrinsic oceanic variability.

One can ask howmuch of the total low-frequency variance is

due to intrinsic processes and how much is due to the low-

frequency component of the forcing. Assuming that the IAF

runs represent low-frequency variance resulting from both

intrinsic and forced motions, then the ratio of the low-

frequency content variance from RYF over that from IAF

(Figs. 1c, 1f, and 1i, respectively) depicts the percentage of

intrinsic low-frequency variance in eachmodel resolution. Two

things should be taken away from Figs. 1c, 1f, and 1i: that the

percentage of intrinsic variance increases with model resolu-

tion, and that the regions of intrinsic low-frequency variance in

models with parameterized eddies differ from those seen in the

eddy-rich models.

FIG. 1. Sea surface height (SSH) low-frequency variance, var[SSHLF] [frequencies between (25 yr)21 and (1.5 yr)21] fromACCESS-

OM2 models at three different resolutions and from satellite altimetry (CMEMS). (a),(d),(g) Models forced with interannually

varying forcing (IAF) from the JRA55-do dataset during 1958–2018; (b),(e),(h) models forced with repeat-year forcing (RYF) from

the JRA55-do dataset; (j) results from observations. (c),(f),(i) Ratio of the RYF over the IAF low-frequency variance at the corre-

sponding model resolution; (k) ratio of the low-frequency variance in observations over that from the IAF model at 0.108 for the same

period. (Only data between 658S and 658N were used from the CMEMS dataset.)
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The analysis of the sea surface height above demonstrates

that (i) the IAF models, at least at the eddy-rich 0.108 resolu-
tion, adequately capture the variance seen in the observational

record from satellite altimetry (Fig. 1k), and (ii) that intrinsic

low-frequency variance is enhanced when oceanic eddies are

resolved. Point (i) allows us to trust that ourmodel captures the

phenomena we are trying to assess, while point (ii) suggests

that this analysis is worthy of further investigation. We turn

now to the upper-ocean heat content, a quantity that may di-

rectly influence the atmosphere.

Figure 2 shows maps of the integrated low-frequency vari-

ance for upper-ocean heat content (in a similar manner as seen

in Fig. 1 for sea surface height, but without any comparison to

observations). The results are similar to those seen in the sea

surface height analysis of Fig. 1: intrinsic low-frequency vari-

ance increases with model resolution outside the tropics, while

low-frequency variance within the tropics only appears in IAF

model runs and is insensitive to model resolution. Furthermore,

for the eddy-rich 0.108 resolution, Fig. 2i suggests that in the eddy-
rich regions, more than 50% of the low-frequency variance is due

to intrinsic oceanic variability.

In both sea surface height and upper-ocean heat content

analyses, we note enhanced low-frequency variance in the

North Atlantic, and in particular in the Labrador Sea, for

the coarse 18-resolution model runs. This enhanced variance

can be seen both in the IAF and RYF models (see Figs. 1a,b

and 2a,b) but it is not apparent in eddy-rich model runs nor

in the sea surface height observations of Fig. 1j. This vari-

ability occurs because of spurious convection that occurs in

the Labrador Sea in models with parameterized eddies

(Ortega et al. 2017). The enhanced low-frequency variance

that shows up in the Labrador Sea in 18models is replaced by

variance in the North Atlantic region at the location of the

Gulf Stream Extension in the 0.108 model.

b. Spatial and temporal patterns of large-scale
low-frequency variability

We have established that intrinsic oceanic variability leads

to enhanced low-frequency patterns of upper-ocean heat

content. But maps like those in Figs. 1 and 2 only quantify the

variance and do not elaborate on the spatial or temporal pat-

terns of the low-frequency signal that the atmosphere may feel

FIG. 2. Upper-ocean heat content (top 50m) low-frequency variance, var[HLF] [frequencies between (25 yr)21 and (1.5 yr)21] from

ACCESS-OM2models at three different resolutions. (a),(d),(g)Models forced with interannually varying forcing (IAF) from the JRA55-

do dataset during 1958–2018; (b),(e),(h) models forced with repeat-year forcing (RYF) from the JRA55-do dataset; (c),(f),(i) ratio of the

RYF over the IAF frequency content at the corresponding model resolution.
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as a result of the ocean’s intrinsic variability. To better un-

derstand and quantify the spatial and temporal patterns of low-

frequency intrinsic oceanic variability, we perform an EOF

analysis on the low-frequency reconstruction of the upper-

ocean heat content, HLF [see Eq. (4)] from the RYF model

output. Details on error bars and sensitivity checks of the EOF-

analysis are provided in the appendix.

Figure 3 shows the global EOF analysis of the low-frequency

upper-ocean heat content. Figure 3a shows the percentage of the

total low-frequency variance explained for each EOF and for

each model resolution, while Fig. 3b shows the total variance

explained for each EOF for each model resolution. Note that

output from different model resolutions has been interpolated

onto a grid of 18 nominal resolution. Therefore, the higher var-

iance at increased resolution is not a direct effect of oceanic

eddies. This result reiterates once more that models that resolve

ocean eddies present enhanced large-scale, low-frequency vari-

ance of the upper-ocean heat content. The spatial patterns that

emerge (Figs. 3c–h) are associated with the regions of enhanced

variance seen in Figs. 2b, 2e, and 2h. Note that the EOF patterns

from the 0.18 model (Figs. 3e,h) resemble features associated

with regions of high eddy activity.

The global EOF analyses in Fig. 3 are dominated by patterns

of limited spatial extent. It follows that independent processes

act in different ocean basins meaning that we can refine our

understanding of these individual processes by limiting the

FIG. 3. Global EOF analysis of the low-frequency reconstructed upper-ocean heat contentHLF [see Eq. (4)] for models driven by repeat-year

forcing at 18, 0.258, and 0.108 resolutions. (a),(b) Percentage and the area-integrated explained variance for the first 10 EOFs. (c)–(e) (top) The

first EOF for each model resolution; (f)–(h) (top) another EOF, selected to emphasize a mode that is qualitatively different from EOF1. (c)–(h)

(bottom) the spatial structure of the EOF and the frequency power spectrum of the principal component (PC) time series of the corresponding

EOF. Contours for the EOF maps in (c)–(h) are saturated at values 6(1/2)maxjEOFj.
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regional extent of these EOF analyses. Thus, we next perform

regional EOF analyses in the North Atlantic, the North Pacific,

the IndianOcean, and the SouthAtlantic regions (see Figs. 4–7

respectively). A feature that emerges from all EOF patterns is

that, with increasing model resolution the patterns of low-

frequency variability become more aligned with the eddy-rich

regions (e.g., the western boundary currents and their exten-

sions and the Southern Ocean). In terms of low-frequency sea

surface height variance, the highest-resolution models showed

better agreement with observations compared to coarse-

resolution models (see Figs. 1a,d,g,j). This result implies that

the patterns concentrated in eddy-rich regions that were

revealed by the EOF analysis for 0.108 resolution models are

closer to reality compared with 18 resolution models.

In the North Atlantic, the 18 model shows more low-

frequency variance than the higher-resolution models. The

variance in the 18model occurs in the Labrador Sea (Figs. 4c,f)

and it is intimately related to the spurious numerical convec-

tion that occurs there. We note that the signature of Labrador

Sea spurious convection (Figs. 4c,f) is almost completely

eliminated in the eddy-rich 0.108 model (Figs. 4e,h), which

shows low-frequency variance at the location of the Gulf

Stream and its extension. The leading EOF of the eddy-present

model (RYF 0.258) appears as a combination of the other two,

FIG. 4. Regional EOF analysis for the North Atlantic Ocean (208–758N, 1008–08W). (a),(b) Percentage and the area-integrated ex-

plained variance for the first 10 EOFs over the region. (c)–(h) (top) The spatial structure of the EOF and the frequency power spectrum of

the principal component (PC) time series of the corresponding EOF and (bottom) the first EOF for each model resolution and also an

additional EOF selected to emphasize a mode that is qualitatively different from EOF1. Contours for the EOF maps in (c)–(j) are

saturated at values 6(1/2)maxjEOFj.
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with patterns both in the Gulf Stream region and in the higher

latitudes of the Labrador Sea, where the 0.258 model is not

adequate to resolve eddies.3 It is also interesting to note that

the frequency power spectrum of the dominant EOFs shows a

shift toward lower frequencies as we increasemodel resolution.

Therefore, this analysis demonstrates that the dominant effect

of improving model resolution in the North Atlantic is to focus

low-frequency variability in eddying regions and to lengthen

the time scale of that variability.

In the North Pacific, substantial differences in the EOF

patterns between the 18 model and the higher-resolution

models are found once again. The EOFs of the 18 model

emerge as planetary waves traveling across the Pacific, while

the higher-resolution models show patterns associated with the

Kuroshio. The eddy-rich 0.18 model shows patterns of vari-

ability with nonzonal character compared with the eddy-

present 0.258 model. Again, the frequency power spectrum of

the principal components shows a shift toward lower fre-

quencies for the eddy-rich model compared with the eddy-

present model. Furthermore, the spectral peak in Figs. 5e and

5h is between 15 and 25 years.

The patterns of variability in the Indian Ocean for the 18
model with parameterized eddies are planetary waves, while

FIG. 5. Regional EOF analysis for the North Pacific Ocean (158–708N, 908E–1008W). (a),(b) Percentage and the area-integrated ex-

plained variance for the first 10 EOFs over the region. (c)–(h) (top) The spatial structure of the EOF and the frequency power spectrum of

the principal component (PC) time series of the corresponding EOF and (bottom) the first EOF for each model resolution and also an

additional EOF selected to emphasize a mode that is qualitatively different from EOF1. Contours for the EOF maps in (c)–(h) are

saturated at values 6(1/2)maxjEOFj.

3 The first baroclinic Rossby radius of deformation decreases as

we move poleward, and, consequently, this results in smaller typ-

ical sizes for eddies closer to the poles (Hallberg 2013).

1 AUGUST 2021 CONSTANT INOU AND HOGG 6183

Brought to you by AUSTRALIAN NATIONAL UNVERSITY | Unauthenticated | Downloaded 06/25/21 07:50 PM UTC



the patterns for the higher-resolution models seem to be associ-

ated with the Agulhas retroflection and the Southern Ocean

fronts (Fig. 6). Long baroclinic Rossby wave patterns, similar to

those seen in the subtropical Indian Ocean for the 18 model

(Figs. 6c,f) and at the same location, dominate the variability in a

18 resolution coupled climate model (Wolfe et al. 2017; Chapman

et al. 2020). That we find these patterns emerging out of the EOF

analysis of the repeat-year forced ocean–sea ice model, argues

that these long baroclinic Rossby waves are, at least to some

extent, a result of the ocean’s intrinsic variability rather than from

the coupled ocean–atmosphere interaction. We were not able,

however, to see similar patterns emerging in the higher-resolution

repeat-year-forced models (RYF 0.258 and 0.108) in the first 30

EOFs. This result suggests that at least the intrinsic oceanic

component of the long baroclinic waves discussed byWolfe et al.

(2017) and Chapman et al. (2020) is a feature of models with

resolution that require oceanic eddies to be parameterized.

Another feature of Fig. 6 is the similarity between the EOF

patterns at eddy-present and eddy-rich resolutions. In both

cases, the primary mode of variability is a broadband mode

that manifests in variations in the zonal position of theAgulhas

retroflection. The other mode shown in Figs. 6g and 6h reveals

lower-frequency variability in the meander downstream of the

Agulhas region. The similarity of these patterns suggests

FIG. 6. Regional EOF analysis for the Indian Ocean (108–708S, 58–1208E). (a),(b) Percentage and the area-integrated explained

variance for the first 10 EOFs over the region. (c)–(h) (top) The spatial structure of the EOF and the frequency power spectrum of

the principal component (PC) time series of the corresponding EOF and (bottom) the first EOF for each model resolution and also

an additional EOF selected to emphasize a mode that is qualitatively different from EOF1. Contours for the EOF maps in (c)–(h)

are saturated at values 6(1/2)maxjEOFj.
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that 0.258 resolutionmay be sufficient to represent the primary

modes of low-frequency variability in this region.

Last, the EOF analysis in the South Atlantic Ocean region

(Fig. 7) argues that the main pattern of variability is related to

the Malvinas Current region, with the higher-resolution models

showing a tendency for a peak of the principal component power

spectrum at longer time scales. For the 18 model, the low-

frequency variance is almost negligible (Fig. 7b) and, once

again, planetary-wave patterns dominate the variability.

The North Pacific, South Atlantic, and Indian Ocean EOF

analyses reveal striking differences between the 18 model with

parameterized ocean eddies and the other two resolutions. In

these regions, the explained variance of the 18 is less than the

eddy-present/eddy-rich models. The 18 EOFs show wavelike

patterns, which may be a signature of baroclinic Rossby waves

(see, e.g., Fig. 5c). On the other hand, when eddies are at least

partially resolved, these long waves are replaced with patterns

that mirror the eddy effect on large-scale circulation patterns

(e.g., the Kuroshio in Fig. 5e).

4. Discussion

The ocean’s larger heat capacity, compared with that of the

atmosphere, is commonly viewed as the cause of the ocean

FIG. 7. Regional EOF analysis for the South Atlantic Ocean (108–758S, 708W–108E). (a),(b) Percentage and the area-integrated ex-

plained variance for the first 10 EOFs over the region. (c)–(h) (top) The spatial structure of the EOF and the frequency power spectrum of

the principal component (PC) time series of the corresponding EOF and (bottom) the first EOF for each model resolution and also an

additional EOF selected to emphasize a mode that is qualitatively different from EOF1. Contours for the EOF maps in (c)–(h) are

saturated at values 6(1/2)maxjEOFj.
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acting as an ‘‘integrator’’ for atmospheric high-frequency

synoptic variability, reddening the power spectrum of motions—in

other words, enhancing power at low frequencies, that is with

decadal time scales (null hypothesis; Hasselmann 1976;

Frankignoul and Hasselmann 1977). In this work, we investi-

gated whether the ocean’s intrinsic dynamics, which give rise to

the rich high-frequency mesoscale and submesoscale oceanic

eddy features, can further enhance the low-frequency vari-

ability of the ocean. In particular, we have focused on whether

higher-resolution ocean simulation show differences in the

low-frequency variability of the upper-ocean heat content at

length scales comparable to or larger than the typical scales of

atmospheric variability. Such low-frequency patterns of upper-

ocean heat content may directly feed back on the atmosphere,

give rise to decadal modes of climate variability, and therefore

potentially affect global climate.

We have assessed the effect of the intrinsic oceanic vari-

ability using a global ocean–sea ice model at three different

resolutions: eddy-rich 0.108, eddy-present 0.258, and with pa-

rameterized eddies at 18. To disentangle the forced from the

intrinsic component of ocean’s variability, we used two dif-

ferent forcing schemes: (i) interannually varying forcing (IAF)

from the JRA55-do atmospheric dataset for 1958–2018 and (ii)

repeat-year forcing (RYF) from May 1990 to April 1991 from

the JRA55-do. Since the RYF does not force any time scales

longer than 1 year, it allows us to directly probe the ocean’s

intrinsic variability at decadal time scales. We have used two

fields to investigate large-scale, low-frequency patterns of in-

trinsic ocean variability: the upper-ocean heat content (top

50m of the ocean) and the sea surface height. The sea surface

height served as a proxy for upper-ocean heat content and

further allowed us to ground truth our model results against

observations from the satellite altimetry record. Despite the

short length of the altimetry record (27 years), which does not

capture well the decadal variability, the comparison of the low-

frequency variance from the interannually forced eddy-rich

model (0.108) model with that from the observations is en-

couraging (see Figs. 1g,j,k).

Our results demonstrate that (i) models that resolve eddies

have much more variance of the upper-ocean heat content at

decadal time scales (section 3a) and, furthermore, (ii) the

spatial patterns of the low-frequency variability of upper-

ocean heat content are limited in models that rely on eddy

parameterizations (see section 3b). The direct effect of the

intrinsic ocean dynamics on the low-frequency variability of

upper-ocean heat content is negligible in the tropical regions

but it is particularly pronounced in the extratropics, where the

ocean’s mesoscale is most active (see Figs. 1 and 2). Eddy-

resolving models not only show enhanced low-frequency var-

iance but, furthermore, EOF analysis reveals that the main

modes of variability have patterns that are aligned with non-

linear flow structures, rather than baroclinic waves or spurious

convection. Last, variability occurs at lower frequencies in

higher-resolution models.

The differences in the low-frequency variability across

model resolutions could be attributed either to changes on the

mean states that the models show (e.g., mean currents or mean

stratification) or to dynamical processes that are enabled with

higher resolution. The mean state of these models across 18,
0.258, and 0.108 resolution is not substantially different (Kiss

et al. 2020) (except, of course, in the Labrador Sea region

where the 18models show spurious convection).We, therefore,

argue that the most likely candidates to explain the changes in

the patterns and the changes in the time scales of the low-

frequency variability we observe are eddy–mean flow interac-

tions (as, for example, the case of the turbulent oscillator;

Berloff et al. 2007), wave–eddy interactions (Sérazin et al.

2018), or eddy–eddy interactions.

The above-mentioned results may be used to infer a role for

the extratropical ocean in generating modes of low-frequency

climate variability such as the North Atlantic Oscillation

(NAO; Hurrell et al. 2001) or the interdecadal Pacific oscilla-

tion (IPO; Mantua and Hare 2002). For example, in the Pacific

Ocean, the time scale of dominant modes of variability for the

eddy-rich model at 0.108 is between 10 and 20 years (see

Figs. 5e, h), which is similar to the time scale of the IPO.Recent

Earth system simulations revealed that the IPO is in better

agreement with observations in simulations with higher lateral

resolution (Chang et al. 2020). The IPO is a much broader

pattern of variability than the EOF patterns we see in Fig. 5.

However, a viable hypothesis may be that intrinsic oceanic

variability in the extratropics could be amplified at the

surface by ocean–atmosphere feedback mechanisms such

as the wind–evaporation–sea surface temperature feed-

back (Xie and Philander 1994) and conveyed to the tropics

through dynamics known as Pacific meridional modes

(Alexander et al. 2010; Di Lorenzo et al. 2015; Amaya

2019). Once they propagate into the tropics these sea

surface temperature anomalies can modulate ENSO dy-

namics at interdecadal frequencies and feed back to the

extratropics via ENSO teleconnections (Newman et al.

2003; Alexander et al. 2002), hence explaining the broader

signature of the main low-frequency mode of variability of

the Pacific Ocean, the IPO. In summary, the results we

presented in this paper argue that (i) that oceanic dynamics

are largely responsible for the better agreement compared

to observations seen in higher-resolution simulations and

(ii) we further speculate that the extratropical oceans may

provide the low-frequency trigger that might help to ex-

plain the IPO.

In view of the discussion above, we conclude that resolving

the oceanic eddies in the eddy-active regions, and thus better

capturing the low-frequency variability induced by intrinsic

ocean dynamics in the extratropics, has global implications for

modeling decadal variability and hence decadal predictions

and climate projections. These results may have ramifications

for our interpretation of model output and, in turn, affect fu-

ture climate predictions. The large majority of CMIP6 cli-

mate models used for climate projections have an ocean

component with a 18 resolution that is too coarse to resolve

ocean eddies. Our results, thus, suggest that in those CMIP6

climate models, the ocean’s input to atmospheric variability

is weaker (cf. Figs. 2b and 2h) and also has different spatial

patterns than when eddies are represented; for example,

compare Figs. 3c,e with Figs. 3e,h. Correctly capturing these

large-scale, low-frequency patterns of variability that force
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the atmosphere is crucial not only for predicting climate

modes of variability at decadal time scales (El Niño, inter-
decadal Pacific oscillation, North Atlantic Oscillation, Indian

Ocean dipole) but also for future climate predictions. Our

results suggest the imperative for moving toward coupled

climate models with an ocean component with, at least, an

eddy-present lateral resolution.
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APPENDIX

EOF Analysis: Error Bars and Robustness

The standard error of the EOF analysis eigenvalues is

computed using the criterion by North et al. (1982). This

standard error is shown in both panels (a) and (b) in Figs. 3–7.

It is generally small enough to be barely distinguishable over

the marker size.

For the power spectra shown in panels (c) to (h) in Figs. 3–7,

we split the principal component time series into four consec-

utive segments (55 years long at least) and then computed the

mean power spectrum of each segment. The error bars were

obtained using the x2 criterion with a 95% confidence interval.

The robustness of the spatial patterns of the EOF analysis

was checked by comparing the patterns of EOF analysis from

(i) full times series, (ii) the first 60% of the time series, and (iii)

the last 60% of the time series. For the regions presented here

we, typically, find that the EOF patterns 1 and 2 were found to

be the same. Sometimes EOF patterns 3–5 come in different

order (e.g., what was EOF3 using the full time series could be

EOF4 when using the first 60% of the time series).

Jupyter notebooks that reproduce the EOF-analysis sensi-

tivity tests can be found at the GitHub repository https://

github.com/navidcy/IntrinsicOceanicLFVariabilityUOHC.
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