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Abstract. Despite the nonlinear nature of wall turbulence, there is evidence that the energy-

injection mechanisms sustaining wall turbulence can be ascribed to linear processes. The di↵erent

scenarios stem from linear stability theory and comprise exponential instabilities from mean-flow

inflection points, transient growth from non-normal operators, and parametric instabilities from

temporal mean-flow variations, among others. These mechanisms, each potentially capable of

leading to the observed turbulence structure, are rooted in simplified theories and conceptual

arguments. Whether the flow follows any or a combination of them remains unclear. In the

present study, we devise a collection of numerical experiments in which the Navier–Stokes

equations are sensibly modified to quantify the role of the di↵erent linear mechanisms. This

is achieved by direct numerical simulation of turbulent channel flows with constrained energy

extraction from the streamwise-averaged mean-flow. We demonstrate that (i) transient growth

alone is not su�cient to sustain wall turbulence and (ii) the flow remains turbulent when

the exponential instabilities are suppressed. On the other hand, we show that (iii) transient

growth combined with the parametric instability of the time-varying mean-flow is able to sustain

turbulence.

1. Introduction: linear theories of self-sustaining wall turbulence
Turbulence is a primary example of a highly nonlinear phenomenon. Nevertheless, there is
ample agreement that the energy-injection mechanisms sustaining wall turbulence can be
partially attributed to linear processes [1]. The di↵erent mechanisms have their origins in
linear stability theory [2, 3, 4, 5, 6, 7, 8] and constitute the foundations of many control and
modeling strategies [9, 10]. Despite the ubiquity of linear theories, the significance of di↵erent
instabilities in fully developed turbulence remains outstanding, and its relevance is consequential
to comprehend, model, and control the structure of wall-bounded turbulence by linear methods
(e.g., Refs. [11, 6, 7, 12]). Here, we devise a collection of numerical experiments of turbulent
flows over a flat wall in which the Navier–Stokes equations are minimally altered to suppress the
energy transfer from the mean flow to the fluctuating velocities via di↵erent linear instabilities.
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Figure 1: Decomposition of the instantaneous flow into a streamwise mean base flow and
fluctuations. Instantaneous isosurface of streamwise velocity for (a) the total flow u, (b) the
streak base flow U , and (c) the absolute value of the fluctuations |u0|. The values of the isosurfaces
are 0.8 (a and b) and 0.1 (c) of the maximum streamwise velocity. Colors represent the distance
to the wall located at y = 0. The arrow in panel (a) indicates the mean flow direction.

Several linear mechanisms have been proposed within the fluid mechanics community as
plausible scenarios to rationalize the transfer of energy from the large-scale mean flow to the
fluctuating velocities. Generally, it is agreed that the ubiquitous streamwise rolls (regions of
rotating fluid) and streaks (regions of low and high streamwise velocity with respect to the
mean) [13, 14] are involved in a quasi-periodic regeneration cycle [15, 16, 17, 18, 19, 20] and
that their space-time structure plays a crucial role in sustaining shear-driven turbulence (e.g.,
Refs. [21, 22, 23, 3, 4, 5, 24, 18, 25, 26, 27]). Accordingly, the flow is often decomposed into two
components: a base flow defined by some averaging procedure over the instantaneous flow, and
the three-dimensional fluctuations (or perturbations) about that base flow. In this manner, the
ultimate cause maintaining turbulence is conceptualized as the energy transfer from the base
flow to the fluctuating flow. Various base flows have been proposed in the literature depending
on the number of flow directions and period of time used to average the instantaneous flow.
Here, we select as base flow the instantaneous streamwise-averaged velocity U(y, z, t) with zero
wall-normal (V = 0) and spanwise (W = 0) flow, where y and z are the wall-normal and spanwise
directions. Figure 1 illustrates this flow decomposition.

The linear mechanisms proposed to explain the energy transfer from the mean to the fluctuating
flow can be categorized into: (i) modal inflectional instability of the mean streamwise flow, (ii) non-
modal transient growth, and (iii) non-modal transient growth assisted by parametric instability
of the time-varying mean streamwise flow.

In mechanism (i), it is hypothesized that the energy is transferred from the mean profile
U(y, z, t) to the fluctuating flow through a modal inflectional instability in the form of strong
spanwise flow variations [3, 4], corrugated vortex sheets [28], or intense localized patches of
low-momentum fluid [29, 30]. Inasmuch as the instantaneous realizations of the streaky flow
are strongly inflectional, the flow U(y, z, t) is invariably unstable at a frozen time t [27]. These
inflectional instabilities are markedly robust and their excitation has been proposed to be the
mechanism that replenishes the perturbation energy of the turbulent flow [3, 4, 29, 28, 31, 30].
Consequently, the exponential instability of the streak is thought to be central to the maintenance
of wall turbulence.

Mechanism (ii), transient growth, involves the redistribution of fluid near the wall by streamwise
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vortices leading to the formation of streaks via the Orr/lift-up mechanism [32, 33, 23, 34, 18]. In
this case, the mean flow, while exponentially stable, supports the growth of perturbations for
a period of time due to the non-normality of the linear operator that governs the evolution of
fluctuations. This process is referred to as non-modal transient growth (e.g., Refs. [23, 6, 35, 36]).
Additional studies suggest that the generation of streaks is due to the structure-forming properties
of the linearized Navier–Stokes operator, independent of any organized vortices [37], but the
non-modal transient growth is still invoked. The transient growth scenario gained even more
popularity since the work by Schoppa & Hussain [5] (see also Ref. [38]), who argued that
transient growth may be the most relevant mechanism not only for streak formation but also for
their eventual breakdown. Schoppa & Hussain [5] showed that most streaks detected in actual
wall-turbulence simulations are indeed exponentially stable. Instead, the loss of stability of the
streaks is better explained by transient growth of perturbations that leads to vorticity sheet
formation and nonlinear saturation.

Finally, mechanism (iii) has been proposed in recent years by Farrell, Ioannou and
coworkers [24, 26]. They adopted the perspective of statistical state dynamics (SSD) to
develop a tractable theory for the maintenance of wall turbulence. Within the SSD framework,
the perturbations are maintained by an essentially time-dependent, parametric, non-normal
interaction of the fluctuations and the streak, rather than by the inflectional instability of the
streaky flow discussed above (see also Ref. [39]).

The scenarios (i), (ii), and (iii), although consistent with the observed turbulence structure [19],
are rooted in simplified theoretical arguments. Whether the flow follows these or any other
combination of mechanisms for maintaining the turbulent fluctuations is still to be established. In
this study, we evaluate the contribution of each linear mechanism by direct numerical simulation
of channel flows with constrained energy extraction from the mean flow.

The study is organized as follows: Section 2 contains the numerical details of the simulations.
The results are presented in Section 3, which is further subdivided into three subsections, each
of them devoted to the investigation of one linear mechanism. Finally, conclusions and future
directions are o↵ered in Section 4.

2. Numerical experiments of minimal channel units
To investigate the role of di↵erent linear mechanisms, we examine data from spatially and
temporally resolved simulations of an incompressible turbulent channel flow driven by a constant
mean pressure gradient. Hereafter, the streamwise, wall-normal, and spanwise directions of the
channel are denoted by x, y, and z, respectively, and the corresponding flow velocity components
and pressure by u, v, w, and p. The density of the fluid is ⇢ and the channel height is h.
The wall is located at y = 0, where no-slip boundary conditions apply, whereas free-stress and
no-penetration conditions are imposed at y = h. The streamwise and spanwise directions are
periodic. The grid resolution of the simulations in x, y, and z is 64⇥ 90⇥ 64, respectively, which
is fine enough to resolve all the scales of the fluid motion.

The simulations are characterized by the non-dimensional Reynolds number, defined as the
ratio between the largest and the smallest length-scales of the flow, h and �v = ⌫/u⌧ , respectively,
where ⌫ is the kinematic viscosity of the fluid and u⌧ is the characteristic velocity based on the
friction at the wall [40]. The Reynolds number selected is Re⌧ = �/�v ⇡ 180, which provides
a sustained turbulent flow at an a↵ordable computational cost [41]. In all cases, the flow is
simulated for at least 100h/u⌧ units of time, which is orders of magnitude longer than the typical
lifetime of individual energy-containing eddies [42]. The streamwise, wall-normal, and spanwise
sizes of the computational domain are L+

x ⇡ 337, L+
y ⇡ 186, and L+

z ⇡ 168, respectively, where
the ‘+’ superscript denotes quantities normalized by ⌫ and u⌧ . Jimenez & Moin [22] showed that
turbulence in such domains contains an elementary flow unit comprised of a single streamwise
streak and a pair of staggered quasi-streamwise vortices, that reproduce the dynamics of the flow
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in larger domains. Hence, the current numerical experiment provides a fundamental testbed for
studying the self-sustaining cycle of wall turbulence.

The simulations are performed with a staggered, second-order, finite di↵erences scheme [43] and
a fractional-step method [44] with a third-order Runge-Kutta time-advancing scheme [45]. The
solution is advanced in time using a constant time step such that the Courant–Friedrichs–Lewy
condition is below 0.5. The code has been presented in previous studies on turbulent channel
flows [46, 47, 48]. The streamwise and spanwise resolutions are �x+ ⇡ 6.5 and �z+ ⇡ 3.3,
respectively, and the minimum and maximum wall-normal resolutions are �y+min ⇡ 0.2 and
�y+max ⇡ 6.1. All the simulations were run for at least 100h/u⌧ , after transients.

We focus on the dynamics of the fluctuating velocities u0 ⌘ (u0, v0, w0), defined with respect
to the streak base flow

U(y, z, t) ⌘ 1

Lx

Z Lx

0
u(x, y, z, t) dx, (1)

such that u0 ⌘ u�U , v0 ⌘ v, and w0 ⌘ w. We have not included in the base flow the contributions
from the streamwise average w and w components, as is traditionally done in the study of stability
of the streaky flow [49, 4, 5]. The fluctuating velocity vector u0 ⌘ (u0, v0, w0) is governed by

@u0

@t
= L(U)u0 +N(u0), (2)

where L is the linearized Navier–Stokes operator for the fluctuating state vector about the
instantaneous U(y, z, t) (see Figure 1b) and N collectively denotes the nonlinear terms (which
are quadratic with respect to fluctuating flow fields). Both L and N account for the kinematic
divergence-free condition r · u0 = 0. The corresponding equation of motion for U(y, z, t) is
obtained by averaging the Navier–Stokes equations in the streamwise direction.

We consider three numerical experiments. First, we simulate the Navier–Stokes equations
without any modification, in which the linear instabilities of perturbations are naturally allowed.
We refer to this case as the “regular channel”. The two additional experiments entail a modification
of the Navier–Stokes equations, and are described in the sections below.

3. Wall turbulence with constrained linear mechanisms
3.1. Wall turbulence without exponential instability of the streaks
The exponential instabilities of the instantaneous streamwise mean flow at a given time are
obtained by eigenanalysis of the matrix representation of the operator L about the instantaneous
base flow U ,

L(U) = Q⇤Q�1, (3)

where Q consists of the eigenvectors organized in columns and ⇤ is the diagonal matrix of
associated eigenvalues, �j + i!j . The base flow is unstable when any of the growth rates �j

is positive. Figure 2 shows a representative example of the streamwise velocity of an unstable
eigenmode. The predominant eigenmode has the typical sinuous structure of positive and negative
patches of velocity flanking the velocity streak side by side, which may lead to its subsequent
meandering and breakdown.

Figure 3 shows the probability density functions of the growth rate of the four least stable
eigenvalues of L(U). On average, the operator L contains 2 to 3 unstable eigenmodes at any
given instant. The time-history of the maximum growth rate supported by L, denoted by
�max, is shown in Figure 4(a). The flow is exponentially unstable (�max > 0) 70% of the time.
The corresponding kinetic energy of the perturbations averaged over the channel is shown in
Figure 4(b).

Rigorously, we expect the linear instability to manifest in the flow only when �max is
much larger than the time rate of change of U , defined as �U ⌘ (dEU/dt)/(2EU ) with
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Figure 2: Representative exponential instability of the streak. (a) Instantaneous isosurface
of the base flow U . The value of the isosurface is 0.8 of the maximum. (b) Isosurface of the
instantaneous streamwise velocity for the eigenmode associated with the most unstable eigenvalue
�maxh/u⌧ ⇡ 3 at t = 5.1h/u⌧ . The values of the isosurface are �0.5 (blue) and 0.5 (yellow) of
the maximum streamwise velocity.

Figure 3: Probability density functions of the growth rate of the four least stable eigenvalues of
L(U), �1 > �2 > �3 > �4.

EU ⌘ 1/(LyLz)
R Ly

0

R Lz

0 (1/2)U2 dydz the streak energy. The ratio �max/�U for �max > 0
is on average around 10, i.e., the time-changes of the streak U are ten times slower than the
maximum growth rate predicted by the linear stability analysis. Hence, the exponential growth
of disturbances is supported for a non-negligible fraction of the flow history, and exponential
instabilities stand as a potential mechanism sustaining wall turbulence. Note that the argument
above does not imply that exponential instabilities are necessarily relevant for the flow, but only
that they could be realizable in terms of characteristic time-scales.

For the second numerical experiment, we modify the operator L so that all the unstable
eigenmodes are rendered neutral for all times. We refer to this case as the “channel with
suppressed exponential instabilities” and we inquire whether turbulence is sustained in this case.
The approach is implemented by replacing L at each time-instance by the exponentially-stable
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Figure 4: (a,c) The time-history of the most unstable eigenvalue �max of (a) L for the regular
channel flow and (c) L̃ for the channel flow with suppressed exponential instabilities. (b,d) The
time-history of the kinetic energy of the perturbations E = u0 · u0/2 averaged over the channel
domain for (b) the regular channel flow and (d) for the channel flow with suppressed exponential
instabilities.

operator
L̃ = Q⇤̃Q�1, (4)

where ⇤̃ is the stabilized version of ⇤ obtained by setting the real part of all unstable eigenvalues
of ⇤ equal to zero. We do not modify the equation of motion for U(y, z, t). The stable counterpart
of L in Eq. (4), L̃, represents the smallest intervention into the system to achieve exponentially
stable wall turbulence at all times while leaving other linear mechanisms almost intact (we discuss
this further in Section 3.2). Figure 4(c) shows the maximum modal growth rate of L̃ at selected
times with the instabilities successfully neutralized. It was verified that turbulence persists when
L is replaced by L̃ (Figure 4d).

The main result of this section is presented in Figure 5, which compares the mean velocity
profiles and turbulence intensities for the regular channel and the channel with suppressed
exponential instabilities. The statistics are compiled for the statistical steady state after any
initial transients. Notably, the turbulent channel flow without exponential instabilities is capable
of sustaining turbulence. The di↵erence of roughly 15%–25% in the turbulence intensities between
the cases indicates that, even if the linear instability of the streak manifests in the flow, it is
not a requisite for maintaining turbulent fluctuations. The new flow equilibrates at a state
with augmented streamwise fluctuations (Figure 5b) and depleted cross flow (Figure 5c,d). The
outcome is consistent with the occasional inhibition of the streak meandering or breakdown via
exponential instability, which enhances the streamwise velocity fluctuations, whereas wall-normal
and spanwise turbulence intensities are diminished due to a lack of vortices succeeding the
collapse of the streak.

3.2. Wall turbulence exclusively supported by transient growth
We quantify the transient growth supported by U(y, z, t0) at a fixed time t0 as the mechanism
energizing the fluctuating velocities. The potential e↵ectiveness of transient growth is
characterized by the optimal gain, G, defined as

G(t = T ) =
u0† exp(L†T ) exp(LT )u0

u0†u0 , (5)
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(b)

(c)
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Figure 5: (a) Streamwise mean velocity profile as a function of the wall-normal distance and (b)
streamwise, (c) wall-normal, and (d) spanwise root-mean-squared fluctuating velocities for the
regular channel ( ) and the channel with suppressed exponential instabilities ( ). The
Reynolds number of both simulations is Re⌧ = 186. Angle brackets represent averaging in the
homogeneous directions and time.

where (·)† denotes conjugate transpose, and T is the time-horizon for optimal gain. The square
of the largest singular value of the linear propagator

exp(LT ) = M⌃N†, (6)

provides the maximum gain, Gmax, where the columns of M and of N are the input modes (or
left-singular vectors) and output modes (or right-singular vectors) of exp(LT ), respectively, and
⌃ is a diagonal matrix, whose entries are the singular values of exp(LT ) denoted by �j [23, 50].

Figure 6 provides a visual representation of the input and output modes associated with
the maximum optimal gain for one selected instant. The example displays a backwards-leaning
perturbation (input mode) tilted forward by the mean shear (output mode). The process
is reminiscent of the linear Orr/lift-up mechanism driven by continuity and the wall-normal
transport of momentum characteristic of the bursting process and streak formation [51, 52, 34, 1].

The maximum optimal gain for T = 0.5h/u⌧ is included in Figure 7 as a function of the
reference time t0. The results are for the channel with suppressed exponential instabilities,
which are on average 10% lower than the maximum optimal gains for the regular channel (as
discussed below). The gain attains amplification values of the input mode of the order of 100.
Therefore, transient growth supported by the “frozen” mean streamwise flow U stands as a
tenable candidate to sustain wall turbulence. It is worth noting that the gains Gmax due to the
non-normality of an instantaneous mean flow with spanwise/crosstream structure U(y, z, t) are
remarkably large. This is in contrast with the gains traditionally reported for the mean velocity
profile defined as the average streamwise velocity in all homogeneous directions and time, for
which Gmax is limited to a more modest factor of 10 [6, 53].
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Figure 6: Representative input and output modes associated with transient growth of the streak.
Isosurfaces of (a) the input and (b) the output wall-normal velocity mode associated with the
largest singular value of L(U) at t = 5h/u⌧ . The isosurface are �0.5 (blue) and 0.5 (yellow)
of the maximum wall-normal velocity. The gain is Gmax = 110. The result is for the regular
channel.

Figure 7: Maximum optimal gain (Gmax) supported by U(y, z, t0) as a function of the fixed
time t0 and for a time horizon T = 0.5u⌧/h. The results are for the channel with suppressed
exponential instabilities. The vertical dashed line represents the time selected for Fig. 8.

The e↵ect of non-modal transient growth as a main source for energy injection to the fluctuating
velocities is assessed by “freezing” the base flow U(y, z, t0) at the instant t0. In order to steer
clear of the e↵ect of exponential instabilities, the numerical experiment is performed for the
channel with suppressed exponential instabilities. Simulations are then continued for t > t0.
This procedure was repeated for 100 di↵erent t0. The set-up disposes of energy transfers that
are due to both modal and parametric instabilities, while maintaining the transient growth of
perturbations. The expected scenario consistent with sustained turbulence [5] is the non-modal
amplification of perturbations until saturation followed by nonlinear scattering and generation of
new disturbances.

The evolution of the root-mean-squared fluctuating velocities for one of the experiments is
shown in Figure 8, which contains instances from t = t0 to t = t0 + 10h/u⌧ . The particular t0
selected is highlighted in Figure 7 and corresponds to a gain of ⇠150. After freezing the base flow,
turbulence decays and reaches a quasi-laminar state with residual turbulence intensities required
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Figure 8: Turbulent channel exclusively supported by transient growth. Root-mean-squared
(a) streamwise, (b) wall-normal, and (c) spanwise fluctuating velocities. The dashed line is for
the regular channel and solid lines represent di↵erent times of a turbulent channel exclusively
supported by transient growth from t = t0 to t = t0 + 10h/u⌧ , where t0 is the instant at which
the mean flow is frozen in time. The arrow indicates the direction of time.

to support the prescribed U(y, z, t0). This behavior was observed for all of the one hundred
cases investigated. Although not shown here, another hundred additional cases were investigated
again by fixing U(y, z, t0), but initializing the flow field with random perturbations, rather than
utilizing as initial condition the already-existing fluctuating velocities at t = t0. The intensities of
the random perturbations were adjusted to be 10% higher than their values in the regular channel.
All the additional simulations decayed similarly to the cases reported above. Consequently, our
results suggest that turbulence is not exclusively supported by transient growth, at least when the
magnitude of the perturbations corresponds to those typically encountered at the low Reynolds
number used here. The outcome of this experiment does not imply that transient growth is
inconsequential for wall turbulence, but merely that additional linear ingredients are needed to
attain fully self-sustaining turbulence.

To finalize our analysis on transient growth, we discuss briefly the implications of stabilizing the
eigenvalues of L as discussed in Section 3.1. Due to the non-normal nature of L, the suppression
of exponential instabilities by Eq. (4) inevitably entails the modification of the non-normal
characteristics of the operator. The impact on the amount of transient growth supported by L is
quantified in Figure 9, which shows the maximum gain of L and L̃ for di↵erent time horizons T .
The decrease in the maximum gain is about 15% for T ⇡ 0.6h/u⌧ , but negligible for T < 0.4h/u⌧ .
In a preliminary work [27], we had proposed to incorporate the linear friction �µu0 into Eq. (2)
in an attempt to damp all the unstable eigenvalues of L. The results in Ref. [27] showed that
turbulence was not sustained for the values of µ necessary to stabilize L. However, a detailed
analysis of the impact of the linear damping on transient growth shows that the decrease in
the gains of L due to the drag term �µu0 is proportional to exp(�2µT ). Hence, values of µ
necessary to neutralize the exponential instabilities of L are highly disruptive of the transient
growth, which might be the cause for the lack of sustained turbulence in Ref. [27]. The maximum
gain of L� µI, where I is the identity operator, is also included in Figure 9.

3.3. The parametric instability: transient growth enhancement
The maintenance of turbulence by transient growth assisted by parametric instability was
demonstrated in Section 3.1. Here, we review some aspects of the parametric amplification
mechanisms by analyzing the results from the channel with suppressed exponential instabilities.

Parametric instability of the streak relies on an endogenous and essentially non-modal growth
process that is inherent to time-dependent dynamical systems. The mechanism is analogous
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Figure 9: Maximum optimal gain, Gmax, attained at the time t = T for the regular channel (�),
channel with suppressed exponential instabilities (4), and channel with linear damping with
µ = 0.43u⌧/h (⇥).

to the classic instability of a damped harmonic oscillator with periodically varying restoring
force, in which the time-dependent variations of the eigenbasis has the potential to altering the
instantaneous linear stability properties of the system. To clarify this process, let us reformulate
the linear dynamics of Eq. (2) for a time period T > 0 in terms of the propagator Pt!t+T as

u0
linear(t+ T ) = Pt!t+Tu

0(t). (7)

The propagator Pt!t+T represents the cumulative e↵ect along the time T of the linear operator
L̃. As such, it can be obtained by the discrete approximation under the assumption of small �t
as

Pt!t+T ⇡ exp
h
L̃(t+ n�t)�t

i
· · · exp

h
L̃(t+�t)�t

i
exp

h
L̃(t)�t

i
, (8)

where T = n�t, with n a positive integer.
To evaluate the instabilities arising from the parametric mechanism, we reconstruct the

propagator for the channel with suppressed exponential instabilities. A time-series of the base
mean flow was stored and used to estimate Pt!t+T following Eq. (8) with T = h/u⌧ . This
estimation is then used to compute the largest singular value of Pt!t+T , which has a value
equal to �max ⇡ 50. The largest singular value �max can be compared to the non-parametric
counterpart assuming a frozen mean flow

P0
t!t+T = exp

h
L̃(t0)T

i
, (9)

which yields a value of �0
max ⇡ 10. This result reveals the existence of enhanced growth rates

owing to the time-variation of the streak reflected on L̃(t). Moreover, for T ! 1, the growth
rate of P0

t!t+T tends to 0, as the operator L̃(t0) is exponentially stable. On the contrary, a

time-varying L̃ can produce finite exponential growth for an arbitrary T . It is here important to
note that if the operators L̃(t) at each instance were also normal (additionally to being stable),
parametric instability would not arise. This simple but revealing example illustrates how a
time-dependent U together with non-modal growth may provide the additional energy injection
into the fluctuations to attain self-sustaining turbulence.
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4. Conclusions
We have investigated the energy injection from the streamwise-averaged mean flow to the
turbulent fluctuations. This energy transfer is believed to be correctly represented by the
linearized Navier–Stokes equations, and three potential linear mechanisms have been considered,
namely, exponential instability of the streamwise mean U(y, z, t), non-modal transient growth,
and non-modal transient growth supported by parametric instability.

We have devised two numerical experiments of a turbulent channel flow in which the linear
operator is altered to neutralize one or various linear mechanisms for energy extraction. In
the first experiment, the linear operator is modified to render any exponential instabilities
of the streaks stable, thus precluding the energy transfer from the mean to the fluctuations
via exponential growth. In the second experiment, we simulated turbulent channel flows with
prescribed exponentially stable mean streamwise flow frozen in time, suppressing in that manner
any potential parametric and exponential instabilities. Our results establish that wall turbulence
with realistic mean velocity and turbulence intensities persists even when exponential instabilities
are suppressed. On the contrary, turbulence decays when the energy transfer from the base
flow to the fluctuating field occurs only via transient growth. These results argue in favor of
the parametric-instability scenario proposed by Farrell, Ioannou, and co-workers as the basic
mechanism sustaining wall turbulence [24, 26, 39].

Our conclusions are preliminary and refer to the dynamics of wall turbulence in channels
computed using minimal flow units, chosen as simplified representations of naturally occurring
wall turbulence. The approach presented in this study paves the path for future investigations at
high-Reynolds-numbers turbulence obtained for larger unconstraining domains, in addition to
extensions to di↵erent flow configurations in which the role of instabilities remains elusive.
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[26] B. F. Farrell, P. J. Ioannou, J. Jiménez, N. C. Constantinou, A. Lozano-Durán, and M.-A.
Nikolaidis. A statistical state dynamics-based study of the structure and mechanism of
large-scale motions in plane poiseuille flow. J. Fluid Mech., 809:290–315, 2016.

[27] A. Lozano-Durán, M. Karp, and N. C. Constantinou. Wall turbulence with constrained
energy extraction from the mean flow. Center for Turbulence Research - Annual Research
Briefs, pages 209–220, 2018.
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