
manuscript submitted to JAMES

High-level, high-resolution ocean modeling at all scales
with Oceananigans

Gregory L. Wagner1, Simone Silvestri1, Navid C. Constantinou2,3,
Ali Ramadhan4, Jean-Michel Campin1, Chris Hill1, Tomás Chor5,

Jago Strong-Wright6, Xin Kai Lee1, Francis Poulin7, Andre Souza1,
Keaton J. Burns1,8, John Marshall1, and Raffaele Ferrari1

1Massachusetts Institute of Technology, Cambridge, MA, USA
2University of Melbourne, Parkville, VIC, Australia

3ARC Center of Excellence for the Weather of the 21st Century, Australia
4atdepth MRV, Cambridge, MA, USA

5University of Maryland, College Park, MD, USA
6University of Cambridge, Cambridge, United Kingdom

7University of Waterloo, Waterloo, ON, Canada
8Flatiron Institute, New York, NY, USA

Key Points:

• Oceananigans provides a powerful interface for simulating oceanic motion at all scales
with novel parameterizations and numerical methods.

• Combining simple numerics with GPU-enabled high-resolution permits accurate sim-
ulations with accessible code.

• High-level programmable interfaces are crucial to maximize both user and developer
productivity.

–1–

manuscript submitted to JAMES

Abstract

We describe the vision, user interface, governing equations, and numerical methods that
underpin new ocean modeling software called “Oceananigans”. Oceananigans is being devel-
oped by the Climate Modeling Alliance as part of a larger project to build a trainable climate
model with quantifiable uncertainty. We argue that Oceananigans status as a popular, ca-
pable modeling system realizes a vision for accelerating progress in Earth system modeling
that balances demands for model accuracy and performance, needed for state-of-the-art sci-
ence, against accessibility, which is needed to accelerate development. This vision combines
three cooperative elements: (i) a relatively simple finite volume algorithm (ii) optimized for
high-resolution simulations on GPUs which is (iii) exposed behind an expressive, high-level
user interface (using the Julia programming language in our case). We offer evidence for
the vision’s potential by illustrating the creative potential of our user interface, showcasing
Oceananigans physics with example simulations that range from simple classroom prob-
lems to a realistic global ocean simulation spanning all scales of oceanic fluid motion, and
describing advances in parameterization, numerical methods, and computational efficiency.

Plain Language Summary

This paper introduces Oceananigans, a new software tool for simulating ocean currents
and fluid motion. Unlike most existing software for ocean modeling, Oceananigans is writ-
ten in Julia, a modern programming language that makes it easier to install, learn, and
use. Rather than relying on rigid configuration files, users write scripts, giving them more
flexibility and creative control over their simulations. Moreover, Oceananigans can simulate
everything from tiny millimeter-scale turbulence in a small box to planetary-scale ocean cir-
culation. It is also fast and efficient, taking advantage of graphics processing units (GPUs)
to run high-resolution simulations at speeds comparable to lower-resolution models in other
software. Our goal is not just to provide a tool for scientists. Our approach to combine
simple numerics on GPUs with a powerful user interface can accelerate the pace of model
development, and therefore accelerate the pace of scientific progress.

1 Introduction

Computation is fundamental to ocean and climate science, such that software is rate-
limiting for scientific progress. Since the first general circulation models ran on primitive
computers (Phillips, 1956; Bryan, 1969), advances in hardware, numerical methods, and the
approximate parameterization of otherwise unresolved processes have improved the fidelity
of ocean simulations (Griffies et al., 2015). Yet as technology advances, the gap between
potential and practice in ocean modeling is stagnant or widening, to the point that most
software today (i) can no longer use the world’s fastest computers, (ii) relies on outdated
user interfaces, and (iii) is still useful for only a limited subset of the wide variety of ocean
modeling problems.

This paper describes new ocean modeling software written in the Julia programming
language (Bezanson et al., 2017) called Oceananigans. Oceananigans is being developed
by the Climate Modeling Alliance (along with heroic external collaborators) as part of
a larger effort to develop a climate model automatically-calibrated to observations and
high resolution simulations, and with quantified uncertainty. Oceananigans development
is motivated primarily by the need for new capabilities. The most materially pressing
is the need to implement a hierarchical approach to climate model development (Held,
2005), wherein nonhydrostatic large eddy simulations are used to generate synthetic data
for calibrating parameterizations, followed by the refinement of parameters in a hydrostatic
global context against observations. Starting from scratch also allowed us to target GPUs
and CPUs and to lower the bar for future accelerator support, by leveraging the performance
portability offered by Julia’s KernelAbstractions (Churavy, 2024). Using GPUs reduces

–2–

manuscript submitted to JAMES

the computational expense of ensemble calibration, enables higher resolution simulations,
supports the next-generation of AI-based parameterizations, and makes ocean modeling
cheaper and more accessible. Finally, and perhaps most important, we required a tool that
was easy to use — not only for conducting creative science, but for quickly prototyping new
parameterizations (Wagner, Hillier, et al., 2025), new numerical methods (Silvestri, Wagner,
Campin, et al., 2024), and new algorithms for scaling simulations up to hundreds of GPUs
(Silvestri, Wagner, Constantinou, et al., 2024). Our ultimate goal is to accelerate the process
of model development and therefore, through a longer process of collective effort, accelerate
progress in ocean and climate science.

1.1 From millimeters to millennia

The evolution of ocean circulation over millennia is controlled by turbulent mixing
with scales that range down to millimeters. Two distinct systems have evolved to model
and understand this huge range of oceanic motion: “GCMs” (general circulation models)
for hydrostatic regional-to-global scale simulations, and simpler software for nonhydrostatic
large eddy simulations (LESs) with meter-scale resolution that are high-fidelity but limited
in duration and extent. Compared to LES, GCMs usually invoke more elaborate numerical
methods and parameterizations to cope with the global ocean’s complex geometry and the
more significant impacts of unresolved subgrid processes.

Oceananigans began as software for LES (Ramadhan et al., 2020), by perfecting an
approach for hybrid hydrostatic/nonhydrostatic dynamical cores pioneered by MITgcm
(Marshall, Adcroft, et al., 1997) for GPUs. Our nonhydrostatic LES algorithm was then
adapted and optimized for a hydrostatic GCM (Silvestri, Wagner, Constantinou, et al., 2024).
At the same time, we developed LES-inspired, minimally-dissipative numerical methods for
turbulence-resolving simulations (Silvestri, Wagner, Campin, et al., 2024) that automat-
ically adapt to changing resolution. The result is a computationally efficient modeling
system suited to brute force, resolution-forced approach to accuracy for all scales of oceanic
motion. Such a “LES the ocean” strategy is appealingly simple compared to alternatives
relying on explicit dissipation, generalized vertical coordinates (Shchepetkin & McWilliams,
2005; Leclair & Madec, 2011; Petersen et al., 2015), Lagrangian vertical advection (Halliwell,
2004; Griffies et al., 2020), or unstructured horizontal grids (Ringler et al., 2013; Danilov
et al., 2017; Korn et al., 2022). We hypothesize that “resolution everywhere” alleviates the
need for unstructured targeted resolution and will reduce the spurious numerical mixing
that pollutes the fidelity of lower-resolution simulations (Griffies et al., 2000), while yielding
a plethora of additional improvements (Chassignet & Xu, 2017, 2021; Kiss et al., 2020). At
the same time, using simple algorithms preserves the accessibility of our source code and
maximizes the benefits of the Julia programming language.

1.2 Why programmable interfaces matter

In 1984, Cox published the first description of generalizable ocean modeling software
(Cox, 1984; Griffies et al., 2015). The “Cox model” is written in FORTRAN 77 and features
a multi-step user interface for building new models: first, source code modifications are
written to determine, for example, domain geometry and boundary conditions, emplaced
into the “base code”, and compiled. Next, a text-based namelist file is used to determine
parameters like the stop iteration, mixing coefficients, and solver convergence criteria. Cox
(1984) provided three example model configurations to illustrate the user interface.

With forty years of progress in software engineering, numerical methods, and parame-
terization of unresolved processes, and more than a billion times more computational power,
today’s ocean models bear little resemblance to the Cox model — except for their user
interfaces. Current interfaces, though obviously more advanced than Cox’s, still impose
multi-step workflows that invoke several programming paradigms. These multi-step work-
flows typically require the generation of input data using a separate scripting language,

–3–

manuscript submitted to JAMES

configuration of numerous namelists, and source code modifications to change the model
equations in ways not accessible through a change of parameters.

One of our most important contributions is the development of a fundamentally dif-
ferent, programmable user interface that provides a seamless workflow for numerical exper-
iments including setup, execution, analysis, and visualization using a single script. Pro-
grammable interfaces written in scripting languages like Python and Julia are the interface
of choice and engine of progress in countless fields from visualization to machine learning,
and their benefits transfer to ocean modeling. A particularly inspiring example of a produc-
tive user interface for computational fluid dynamics is provided by Dedalus (Burns et al.,
2020), a CPU-based spectral framework for solving partial differential equations in simple
geometries.

A programmable interface shines for simple problems — but doesn’t just help new
users. More importantly, this workflow accelerates the implementation of new numeri-
cal methods and parameterizations by experienced developers. It facilitates writing and
relentlessly refactoring comprehensive test suites. It enables fast prototyping with tight
implementation-evaluation iterations. It makes it easier to collaborate by communicating
concise but evocative code snippets. It makes Oceananigans fun to use. Leveraging this
programmable interface together with the intrinsic productivity of the Julia programming
language, Oceananigans has progressed from a simple system for serial nonhydrostatic mod-
eling (Ramadhan et al., 2020) to parallelized software with capabilities at all scales up
to global hydrostatic simulations with breakthrough performance (Silvestri, Wagner, Con-
stantinou, et al., 2024), using innovative numerical methods (Silvestri, Wagner, Campin,
et al., 2024) and new, automatically-calibrated vertical mixing parameterizations (Wagner,
Hillier, et al., 2025). Users benefit too.

The Julia programming language, which is compiled and productive, has a lot to do
with the feasibility of our design. Unlike functions in pure Python, for example, Julia
functions implemented by users for forcing and boundary conditions can operate even in
high performance contexts on GPUs. Julia enables unique Oceananigans features, such as
interactivity, extensibility, automatic installation on any system, and portability to laptops
and GPUs through advanced Julia community tools (Besard et al., 2018; Churavy, 2024).
Oceananigans achieves breakthrough performance by using GPUs, but remains accessible to
students using personal laptops running Windows or Mac OS. Easy installation on personal
computers facilitates creative computation, since complex numerical experiments can be
prototyped productively in a comfortable personal environment before transferred to a high
performance environment for production runs.

Productive interfaces are only as powerful as the capability they expose. Oceananigans
combines a range of capabilities offered by other systems: a numerical design for modeling
across scales from MITgcm (Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997), a
simple and performant algorithm for LES from PALM and PyCLES (Pressel et al., 2015),
and GPU capabilities like Veros (Häfner et al., 2021), and scripting like Thetis (Kärnä et al.,
2018). Oceananigans assembles these diverse features behind an expressive programmable
interface.

1.3 Outline of this paper

This paper introduces the concepts that underpin Oceananigans’ user interface and
illustrates how a productive user interface can be designed to harness wide-ranging capabil-
ities for high-resolution modeling of any scale of oceanic motion. Our aim is to evidence
and explain Oceananigans tripartite achievement: performance, flexibility, and friendliness
at the same time. We do not attempt to document the specifics of the user interface in
detail or to provide a comprehensive description of all features, however: for that we refer
the reader to Oceananigans documentation.

–4–

manuscript submitted to JAMES

Section 2 begins by explicating the basic innovations of Oceananigans’ programmable
interface using two classroom examples: two-dimensional turbulence, and a forced passive
tracer advected by two-dimensional turbulence. In section 3, we write down the governing
equations that underpin Oceananigans’ nonhydrostatic and hydrostatic models. We build
our case for Oceananigans innovations by progressing from simple direct numerical simu-
lations of freshwater cabbeling and flow around a cylinder, to realistic tidally-forced large
eddy simulations over a headland, to a 1/12th degree eddying global ocean simulation.

Section 4 provides a primer to the finite volume spatial discretization that Oceanani-
gans uses to solve the nonhydrostatic and hydrostatic equations. This section establishes
Oceananigans’ unique suitability for turbulence-resolving simulations that have minimal,
implicitly dissipative advection schemes based on Weighted Essentially Non-Oscillatory
(WENO) reconstruction. We conclude in section 6 by outlining future development work
and anticipating the next major innovations in ocean modeling which, we hope, will someday
render the present work obsolete.

2 Oceananigans, the library

Oceananigans is fundamentally a library of tools for building models by writing pro-
grams called “scripts”. This departs from the usual framework wherein software provides
pre-written monolithic programs that are configured with parameters. For writing scripts,
Oceananigans syntax combines mathematical symbols with natural language. Our goal is
to enable evocative scripting that approaches the effectiveness of writing for communicating
computational science.

2.1 Hello, ocean

The way to learn new ocean modeling software is by building simulations with it. Our
first example in listing 1 sets up, runs, and visualizes a simulation of two-dimensional tur-
bulence. The 22 lines of listing 1 illustrate one of Oceananigans’ main achievements: a
numerical experiment may be completely described by a single script. To execute the code
in listing 1, we need to copy into a file (call this, for example, hello_ocean.jl) and executed
by typing julia hello_ocean.jl at a terminal.

Oceananigans scripts organize into four sections. The first three define the “grid”
“model”, and “simulation”, and conclude with execution of the simulation. The fourth
section, often implemented separately for complex or expensive simulations, performs post-
processing and analysis. In listing 1, the grid defined on lines 4–7 determines the problem
geometry, spatial resolution, and machine architecture. To use a CPU instead of a GPU,
one writes CPU() in place of GPU() on line 5: no other changes to the script are required.

Lines 9–12 define the model, which solves the Navier–Stokes equations in two dimensions
with a 9th-order Weighted, Essentially Non-Oscillatory (WENO) advection scheme (see
section 4 for more information about WENO). The velocity components u, v are initialized
with uniformly distributed random numbers within [−1, 1). The model definition can also
encompass forcing, boundary conditions, and the specification of additional terms in the
momentum and tracer equations such as Coriolis forces or turbulence closures.

Line 14 builds a Simulation with a time-step ∆t = 0.01 which will run until t = 10
(Oceananigans does not assume dimensionality by default, so time is non-dimensional via
user input in this case). Simulation can be used to inject arbitrary user code into the time-
stepping loop in order to log simulation progress or write output to disk. Lines 17-19 analyze
the final state of the simulation by computing vorticity, illustrating Oceananigans’ toolbox
for building expression trees of discrete calculus and arithmetic operations. The same tools
may be used to define online diagnostics to be periodically computed and saved to disk while
the simulation runs. Line 22 concludes the numerical experiment with a visualization. The
result is shown in figure 1.

–5–

manuscript submitted to JAMES

1 using Oceananigans
2
3 # The third dimension is "flattened" to reduce the domain from three to two dimensions.
4 topology = (Periodic, Periodic, Flat)
5 architecture = GPU() # CPU() works just fine too for this small example.
6 x = y = (0, 2π)
7 grid = RectilinearGrid(architecture; size=(256, 256), x, y, topology)
8
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9))
10
11 ϵ(x, y) = 2rand() - 1 # Uniformly-distributed random numbers between [-1, 1).
12 set!(model, u=ϵ, v=ϵ)
13
14 simulation = Simulation(model; Δt=0.01, stop_time=10)
15 run!(simulation)
16
17 u, v, w = model.velocities
18 ζ = ∂x(v) - ∂y(u)
19
20 using CairoMakie
21 heatmap(ζ, colormap=:balance, axis=(; aspect=1))

Listing 1: A Julia script that uses Oceananigans and the Julia plotting library CairoMakie to set up, run,
and visualize a simulation of two-dimensional turbulence on a Graphics Processing Unit (GPU). The initial
velocity field, defined on lines 11-12, consists of random numbers uniformly-distributed between −1 and 1.
The vorticity ζ = ∂xv − ∂yu is defined on line 18. The solution is visualized in figure 1.

1 function circling_source(x, y, t)
2 δ, ω, r = 0.1, 2π/3, 2
3 dx = x + r * cos(ω * t)
4 dy = y + r * sin(ω * t)
5 return exp(-(dx^2 + dy^2) / 2δ^2)
6 end
7
8 forcing = (; c = circling_source)
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9), tracers=:c, forcing)

Listing 2: Implementation of a moving source of passive tracer with a function in a two-dimensional
turbulence simulation. These lines of code replace the model definition on line 9 in listing 1.

2.2 Incorporating user code

With a programmable interface and aided by Julia’s just-in-time compilation, user
functions specifying domain geometry, forcing, boundary conditions, and initial conditions
can be incorporated directly into models without a separate programming environment. To
illustrate function-based forcing, we modify listing 1 with code that adds a passive tracer
which is forced by a moving source that that depends on x, y, t. A visualization of the
vorticity and tracer field generated by listings 1 and 2 are shown in figure 1.

Users can also insert arbitrary functions for more general tasks into the time-stepping
loop. This supports things as mundane as printing a summary of the current model status
or writing output, to more exotic tasks like nudging state variables or updating a diffusion
coefficient based on an externally-implemented model.

2.3 Abstractions for arithmetic and discrete calculus

Abstractions representing unary, binary, and calculus operators produce a system for
building “lazy” expression trees, whose evaluation is delayed until their result is needed to be

–6–

manuscript submitted to JAMES

Figure 1: Vorticity after t = 10 (left) and a passive tracer injected by a moving source at t = 2.5 (right) in
a simulation of two-dimensional turbulence using an implicitly-dissipative advection scheme.

saved to disk during a simulation. Example calculations representing vorticity, ζ = ∂xv−∂yu,
speed s =

√
u2 + v2, and the x-integral of enstrophy Z =

∫ 2π

0
ζ2 dx are shown in listing 3.

1 u, v, w = model.velocities
2
3 # Lazy expression trees and reductions representing computations:
4 ζ = ∂x(v) - ∂y(u)
5 s = √(u^2 + v^2)
6 Z = Integral(ζ^2, dims=1)

Listing 3: “Lazy” abstractions for expression trees and reductions — abstractions that represent
computations to be performed at some future time as needed — support custom online diagnostics.

3 Governing equations and physical parameterizations

Oceananigans implements two “models” for ocean-flavored fluid dynamics: the Hy-
drostaticFreeSurfaceModel, and the NonhydrostaticModel. Each represents a template for
equations that govern the evolution of momentum and tracers. Both models are incompress-
ible and make the Boussinesq approximation, which means that the density of the modeled
fluid is decomposed into a constant reference ρ0 and a small dynamic perturbation ρ′,

ρ(x, t) = ρ0 + ρ′(x, t) where ρ′ ≪ ρ0 , (1)

and x = (x, y, z) is position and t is time.

The relative smallness of ρ′ reduces conservation of mass to a statement of incompress-
ibility called the continuity equation,

∇ · u = 0 , (2)

where
u

def
= u x̂+ v ŷ + w ẑ , (3)

is the three-dimensional velocity field. Within the Boussinesq approximation, the momen-
tum ρ0u varies only with the velocity u. The effect of density variations is encapsulated by

–7–

manuscript submitted to JAMES

a buoyant acceleration,
b

def
= −gρ′

ρ0
, (4)

where g is gravitational acceleration. The “buoyancy” b acts in the direction of gravity.

The total dynamic pressure P is decomposed into

P = ρ0gz + ρ0p(x, t) , (5)

where ρ0gz is the static contribution to pressure that opposes the gravitational force associ-
ated with the reference density ρ0, and ρ0p represents the dynamic anomaly. p is called the
kinematic pressure.

3.1 The NonhydrostaticModel

The NonhydrostaticModel represents the Boussinesq equations formulated without mak-
ing the hydrostatic approximation typical to general circulation models. The Nonhydrostat-
icModel has a three-dimensional prognostic velocity field.

3.1.1 The NonhydrostaticModel momentum equation

The NonhydrostaticModel’s momentum equation incorporates advection by a back-
ground velocity field, Coriolis forces, surface wave effects via the Craik-Leibovich asymptotic
model (Craik & Leibovich, 1976; Huang, 1979), a buoyancy term allowed to be a nonlin-
ear function of tracers and depth, a stress divergence derived from molecular friction or a
turbulence closure, and a user-defined forcing term. Using the Boussinesq approximation
in (1) and the pressure decomposition in (5), the generic form of NonhydrostaticModel’s
momentum equation is

∂tu = −∇p − (u · ∇)u− (ug · ∇)u− (u · ∇)ug︸ ︷︷ ︸
advection

− f × u︸ ︷︷ ︸
Coriolis

+ (∇× us)× u+ ∂tus︸ ︷︷ ︸
Stokes drift

− b ĝ︸︷︷︸
buoyancy

− ∇ · τ︸ ︷︷ ︸
closure

+ Fu︸︷︷︸
forcing

,
(6)

where ug is a prescribed “background” velocity field, p is the kinematic pressure, f is the
background vorticity associated with a rotating frame of reference, us is the Stokes drift
profile associated with a prescribed surface wave field, b is buoyancy, ĝ is the gravitational
unit vector (usually pointing downwards, that is, ĝ = − ẑ), τ is the stress tensor associated
with molecular viscous or subgrid turbulent momentum transport, and Fu is a body force.

To integrate equation (6) while enforcing (2), we use a pressure correction method that
requires solving a three-dimensional Poisson equation to find p, which can be derived from
∇·(6). This Poisson equation is often a computational bottleneck in curvilinear or irregular
domains, and its elimination is the main motivation for making the hydrostatic approxima-
tion when formulating the HydrostaticFreeSurfaceModel, as described in section 3.2. For
rectilinear grids, we solve the Poisson equation using a fast, direct, mixed FFT-tridiagonal
solver (Schumann & Sweet, 1988), providing substantial acceleration over MITgcm’s con-
jugate gradient pressure solver (Marshall, Adcroft, et al., 1997). In irregular domains, we
either use a masking method that permits an approximate solution of the pressure Poisson
equation with the FFT-based method, or a rapidly-converging conjugate gradient iteration
that leverages the FFT-based solver as a preconditioner. The pressure correction scheme is
described further in appendix A2.

Using (2), advection in the NonhydrostaticModel is formulated in the “flux form”, which
is conveniently expressed with indicial notation,

advection = uj∂jui + ugj∂jui + uj∂jugi = ∂j

[(
uj + ugj

)
ui + ujugi

]
, (7)

–8–

manuscript submitted to JAMES

where, for example, the i-th component of the advection term is [(u · ∇)u]i = uj∂jui.

The formulation of the Stokes drift terms means that u is the Lagrangian-mean velocity
when Stokes drift effects are included (see, for example, Wagner et al., 2021). With a
Lagrangian-mean formulation, equations (2) and (6) are consistent only when us is non-
divergent — or equivalently, when us is obtained by projecting the divergence out of the
usual Stokes drift (Vanneste & Young, 2022). As discussed by Wagner et al. (2021), the
Lagrangian-mean formulation of (6) means that closures for LES strictly destroy kinetic
energy, avoiding the inconsistency between resolved and subgrid fluxes affecting typical
LES formulated in terms of the Eulerian-mean velocity (see also Pearson, 2018).

The labeled terms in (6) are controlled by arguments to NonhydrostaticModel invoked
in both of listings 1 and 2. For example, “advection” chooses a numerical scheme to ap-
proximate the advection term in (6) and (7). As another example, we consider configuring
the closure term in (6) to represent (i) molecular diffusion by a constant-coefficient Lapla-
cian ScalarDiffusivity, (ii) turbulent stresses approximated by the SmagorinskyLilly eddy
viscosity model (Smagorinsky, 1963; Lilly, 1983) for large eddy simulation, or (iii) omitting
it entirely, which we use with WENO advection schemes (and which is also our default
setting). In these three cases, the closure flux divergence ∇·τ = ∂mτnm in indicial notation
becomes

−∂mτnm =

∂m (ν∂mun) (ScalarDiffusivity)

0 (nothing)

∂m

(
2Cs∆

2|Σ|︸ ︷︷ ︸
νe

Σnm

)
(SmagorinskyLilly)

(8)

where ν is the Laplacian diffusion coefficient, Σnm = ∂mun + ∂num is the strain rate tensor,
|Σ| is the magnitude of the strain rate tensor, Cs is the SmagorinskyLilly model constant,
∆ scales with the local grid spacing, and νe is the eddy viscosity. (ScalarDiffusivity diffusion
coefficients may also vary in time- and space. Other closure options include fourth-order
ScalarBiharmonicDiffusivity, various flavors of DynamicSmagorinsky (Bou-Zeid et al., 2005),
and the AnisotropicMinimumDissipation turbulence closure (Rozema et al., 2015; Vreugden-
hil & Taylor, 2018) for large eddy simulations.)

Listing 4 implements a direct numerical simulation of uniform flow past a cylinder with
no-slip boundary conditions, a molecular ScalarDiffusivity, and a centered second-order
advection scheme. Lines 6–7 embed a cylindrical mask in a RectilinearGrid using a Grid-
FittedBoundary, which generalizes to arbitrary three-dimensional shapes. The no-slip con-
dition is implemented with ValueBoundaryCondition (a synonym for “Dirichlet” boundary
conditions) on lines 11–12. Other choices include GradientBoundaryCondition (Neumann),
FluxBoundaryCondition (direct imposition of fluxes), and OpenBoundaryCondition (for
non-trivial boundary-normal velocity fields).

Results obtained with listing 4 for Re = 100, Re = 1000, and a modified version of
listing 4 for large eddy simulation (Re → ∞) are visualized in figure 2. To adapt listing 4
for LES, the closure is eliminated in favor of a 9th-order WENO advection scheme, and
the no-slip boundary condition is replaced with a quadratic drag boundary condition with
a drag coefficient estimated from similarity theory using a constant estimated roughness
length.

3.1.2 The NonhydrostaticModel tracer conservation equation

The buoyancy term in (6) requires tracers, and can be formulated to use buoyancy itself
as a tracer, or to depend on temperature T and salinity S. For seawater, a 54-term polyno-
mial approximation TEOS10EquationOfState (McDougall & Barker, 2011; Roquet, Madec,
McDougall, & Barker, 2015) is implemented in the auxiliary package SeawaterPolynomials,
along with quadratic approximations to TEOS-10 (Roquet, Madec, Brodeau, & Nycander,

–9–

manuscript submitted to JAMES

Figure 2: Vorticity snapshots in simulations of flow around a cylinder. The top two panels show vorticity
in direct numerical simulations (DNS) that use a molecular ScalarDiffusivity closure and Centered(order=2)
advection. The bottom panel shows a large eddy simulation (LES) with no closure and a WENO(order=9)
advection scheme.

–10–

manuscript submitted to JAMES

1 r, U, Re, Ny = 1/2, 1, 1000, 2048
2
3 grid = RectilinearGrid(GPU(), size=(2Ny, Ny), x=(-3, 21), y=(-6, 6),
4 topology=(Periodic, Bounded, Flat))
5
6 cylinder(x, y) = (x^2 + y^2) ≤ r^2
7 grid = ImmersedBoundaryGrid(grid, GridFittedBoundary(cylinder))
8
9 closure = ScalarDiffusivity(ν=1/Re)
10
11 no_slip = FieldBoundaryConditions(immersed=ValueBoundaryCondition(0))
12 boundary_conditions = (u=no_slip, v=no_slip)
13
14 # Implement a sponge layer on the right side of the domain that
15 # relaxes v → 0 and u → U over a region of thickness δ
16 @inline mask(x, y, δ=3, x₀=21) = max(zero(x), (x - x₀ + δ) / δ)
17 Fu = Relaxation(target=U; mask, rate=1)
18 Fv = Relaxation(target=0; mask, rate=1)
19
20 model = NonhydrostaticModel(; grid, closure, boundary_conditions, forcing=(u=Fu, v=Fv))

Listing 4: Direct numerical simulation of flow past a cylinder at various Reynolds numbers Re. The domain
is periodic in x and a sponge layer on the right side of relaxes the solution to u = u∞ x̂ with u∞ = 1. The
experiment can be converted to a large eddy simulation (thereby sending Re → ∞) by replacing the no-slip
boundary conditions with an appropriate drag model and either (i) using an appropriate turbulence closure
or (ii) using the WENO(order=9) advection scheme with no turbulence closure. Visualizations of the DNS
and LES cases are shown in figure 2.

2015) and a LinearEquationOfState. All tracers — either “active” tracers required to com-
pute the buoyancy term, as well as additional user-defined passive tracers — obey the tracer
conservation equation

∂tc = − (u · ∇) c− (ug · ∇) c− (u · ∇) cg︸ ︷︷ ︸
advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (9)

where c represents any tracer, cg represents a prescribed background tracer concentration
for c, Jc is a tracer flux associated with molecular diffusion or subgrid turbulence, Sc is a
source or sink term associated with biogeochemical transformations (provided, for example,
by external packages like OceanBioME; Strong-Wright et al., 2023), and Fc is a user-defined
source or sink.

A simulation with a passive tracer having a user-defined source term is illustrated by
listing 2 and figure 1. For a second example, we consider freshwater cabbeling. Cabbeling
occurs when two water masses of similar density mix to form a new water mass which,
due to the nonlinearity of the equation of state, is denser than either of its constituents.
Freshwater, for example, is densest at 4 degrees Celsius, while 1- and 7.55-degree water are
lighter with roughly the same density. We implement a direct numerical simulation in which
7.55-degree water overlies 1-degree water, using the TEOS10EquationOfState provided by
the auxiliary package SeawaterPolynomials. The script is shown in listing 5. The resulting
density and temperature fields after 1 minute of simulation are shown in figure 3. Note that
the TEOS10EquationOfState typically depends on both temperature and salinity tracers,
but listing 5 specifies a constant salinity S = 0 and thus avoids allocating memory for or
simulating salinity directly.

1 grid = RectilinearGrid(GPU(), topology = (Bounded, Flat, Bounded),
2 size = (4096, 1024), x = (0, 2), z = (-0.5, 0))
3
4 closure = ScalarDiffusivity(ν=1.15e-6, κ=1e-7)
5

–11–

manuscript submitted to JAMES

6 using SeawaterPolynomials: TEOS10EquationOfState
7 equation_of_state = TEOS10EquationOfState(reference_density=1000)
8
9 buoyancy = SeawaterBuoyancy(gravitational_acceleration = 9.81);
10 constant_salinity = 0, # set S=0 and simulate T only
11 equation_of_state)
12
13 model = NonhydrostaticModel(; grid, buoyancy, closure, tracers=:T)
14
15 Tᵢ(x, z) = z > -0.25 ? 7.55 : 1
16 Ξᵢ(x, z) = 1e-2 * randn()
17 set!(model, T=Tᵢ, u=Ξᵢ, v=Ξᵢ, w=Ξᵢ)

Listing 5: Direct numerical simulation of convective turbulence driven by cabbeling between 1- and 7.55-
degree freshwater. ν denotes viscosity and κ denotes the tracer diffusivity. The diffusivity may also be set
independently for each tracer.

Figure 3: Density and temperature at t = 1 minute in a direct numerical simulation of cabelling in freshwater.
Note that both fields span from x = 0 to x = 2 meters; only the left half of the density field and the right
half of the temperature field are shown.

We next consider a large eddy simulation of the Eady problem (Eady, 1949). In the
Eady problem, perturbations evolve around a basic state with constant shear Λ in thermal
wind balance with a constant meridional buoyancy gradient fΛ, such that

u = Λz︸︷︷︸
def
=U

+u′ , and b = −fΛy︸ ︷︷ ︸
def
=B

+ b′ . (10)

We use Oceananigans’ BackgroundFields to simulate the nonlinear evolution of (u′, v, w)
and b′ expanded around U and B in a doubly-periodic domain. We impose an initially stable
density stratification with b′ = N2z and N2 = 10−7 s−2 superposed with random noise. The
Richardson number of the initial condition is Ri = N2/∂zU = N2/Λ; we choose mean shear
Λ so that Ri = 1, which guarantees the basic state is unstable to baroclinic instability but
stable to symmetric and Kelvin-Helmholtz instability (Stone, 1971). A portion of the script
is shown in listing 6.

Our Eady simulation uses fully-turbulence-resolving resolution with 4 meter horizon-
tal spacing and 2 meter vertical spacing in a 4 km × 4 km × 128m domain and simulates
30 days on a single Nvidia H100 GPU. Four snapshots of vertical vorticity normalized by f
(the Rossby number) are shown in figure 4, illustrating the growth of kilometer-scale vor-
tex motions amid bursts of meter-scale three-dimensional turbulence that develop along thin
filaments of vertical vorticity and vertical shear. This simple configuration captures a compe-
tition between baroclinic instability, which acts to “restratify” or strengthen boundary layer
stratification, and three-dimensional turbulent mixing driven either by a forward cascade
from kilometer-scale motions (Molemaker et al., 2010; Dong et al., 2024) or atmospheric
storms (Boccaletti et al., 2007; Callies & Ferrari, 2018).

–12–

manuscript submitted to JAMES

Figure 4: Surface vertical vorticity in a large eddy simulation of the Eady problem with Ri = 1 initially,
after t = 4.6, 6, 7.7, and 20 days. The grid spacing is 4 × 4 × 2 meters in x, y, z. Part of the script that
produces this simulation is show in listing 6.

–13–

manuscript submitted to JAMES

1 grid = RectilinearGrid(GPU(); size = (1024, 1024, 64),
2 x = (0, 4096), y = (0, 4096), z = (0, 128),
3 topology=(Periodic, Periodic, Bounded))
4
5 f, N², Ri = 1e-4, 1e-7, 1
6 parameters = (f=f, Λ=sqrt(N²/Ri)) # U = Λz, so Ri = N² / ∂z(U) = N² / Λ and Λ = N / √Ri.
7
8 @inline U(x, y, z, t, p) = + p.Λ * z
9 @inline B(x, y, z, t, p) = - p.f * p.Λ * y
10
11 background_fields = (u = BackgroundField(U; parameters),
12 b = BackgroundField(B; parameters))
13
14 model = NonhydrostaticModel(; grid, background_fields,
15 advection = WENO(order=9), coriolis = FPlane(; f),
16 tracers = :b, buoyancy = BuoyancyTracer())
17
18 Δz = minimum_zspacing(grid)
19 bᵢ(x, y, z) = N² * z + 1e-2 * N² * Δz * (2rand() - 1)
20 set!(model, b=bᵢ)

Listing 6: Large eddy simulation of the Eady problem expanded around the background geostrophic shear
with Ri = 1.

Finally, we illustrate Oceananigans’ capabilities for realistic, three-dimensional large
eddy simulations in complex geometries by simulating temperature- and salinity-stratified
tidal flow past a headland, reminiscent of an extensively observed and modeled flow past
Three Tree Point in Puget Sound in the Pacific Northwest of the United States (Pawlak et
al., 2003; Warner & MacCready, 2014). The bathymetry involves a sloping wedge that juts
from a square-sided channel, such that

zb(x, y) = −H

(
1 +

y + |x|
δ

)
, (11)

where δ = L/2 represents the scale of the bathymetry, L is the half-channel width in y (the
total width is 2L), and H = 128m is the depth of the channel, and z = zb(x, y) is the height
of the bottom. The flow is driven by a tidally-oscillating boundary velocity

U(t) = U2 sin
(
2πt

T2

)
(12)

imposed at the east and west boundaries. Here, T2 = 12.421hours is the period of the semi-
diurnal lunar tide, and U2 = 0.15m s−1 is the characteristic tidal velocity around Three
Tree Point. The initial temperature and salinity are

T |t=0 = 12 + 4
z

H
◦C , and S |t=0 = 32 g kg−1 . (13)

A portion of the script that implements this simulation is shown in listing 7.
The oscillatory, turbulent flow is visualized in figure 5. The calculation of Ertel Potential

Vorticity shown in figure 5c uses the companion package Oceanostics (Chor et al., 2025).

3.2 Hydrostatic model with a free surface

The HydrostaticFreeSurfaceModel solves the hydrostatic, rotating Boussinesq equations
with a free surface. The hydrostatic approximation, inherent to the HydrostaticFreeSurface-
Model, means that the vertical momentum equation used by NonhydrostaticModel, ẑ · (6),
is replaced by a statement of hydrostatic balance,

∂zp = b , (14)

–14–

manuscript submitted to JAMES

1 H, L = 256meters, 1024meters
2 δ = L / 2
3 x, y, z = (-3L, 3L), (-L, L), (-H, 0)
4 Nz = 64
5
6 grid = RectilinearGrid(GPU(); size=(6Nz, 2Nz, Nz), halo=(6, 6, 6),
7 x, y, z, topology=(Bounded, Bounded, Bounded))
8
9 wedge(x, y) = -H *(1 + (y + abs(x)) / δ)
10 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(wedge))
11
12 T₂ = 12.421hours
13 U₂ = 0.1 # m/s
14
15 @inline Fu(x, y, z, t, p) = 2π * p.U₂ / p.T₂ * cos(2π * t / p.T₂)
16 @inline U(x, y, z, t, p) = p.U₂ * sin(2π * t / p.T₂)
17 @inline U(y, z, t, p) = U(zero(y), y, z, t, p)
18
19 open_bc = PerturbationAdvectionOpenBoundaryCondition(U; inflow_timescale = 2minutes,
20 outflow_timescale = 2minutes,
21 parameters=(; U₂, T₂))
22
23 u_bcs = FieldBoundaryConditions(east = open_bc, west = open_bc)
24
25 @inline ambient_temperature(x, z, t, H) = 12 + 4z/H
26 @inline ambient_temperature(x, y, z, t, H) = ambient_temperature(x, z, t, H)
27 ambient_temperature_bc = ValueBoundaryCondition(ambient_temperature; parameters = H)
28 T_bcs = FieldBoundaryConditions(east = ambient_temperature_bc,
29 west = ambient_temperature_bc)
30
31 ambient_salinity_bc = ValueBoundaryCondition(32)
32 S_bcs = FieldBoundaryConditions(east = ambient_salinity_bc, west = ambient_salinity_bc)
33
34 buoyancy = SeawaterBuoyancy(equation_of_state=TEOS10EquationOfState())
35
36 model = NonhydrostaticModel(; grid, buoyancy,
37 tracers = (:T, :S),
38 advection = WENO(order=9),
39 coriolis = FPlane(latitude=47.5),
40 boundary_conditions = (; T=T_bcs, u = u_bcs, S = S_bcs))
41
42 Tᵢ(x, y, z) = ambient_temperature(x, y, z, 0, H)
43
44 set!(model, T=Tᵢ, S=32, u=U(0, 0, 0, 0, (; U₂, T₂)))

Listing 7: Large eddy simulation of flow past a headland reminiscent of Three Tree Point in the Pacific
Northwest (see Pawlak et al., 2003; Warner & MacCready, 2014).

–15–

manuscript submitted to JAMES

Figure 5: Along-channel velocity, temperature, and Ertel potential vorticity in a tidally-forced flow past an
idealized headland with open boundaries. The tidal flow occurs in the x-directions and the snapshot depicts
the flow just after the tide has turned to the negative-x direction.

–16–

manuscript submitted to JAMES

while the vertical velocity is obtained diagnostically from the continuity equation,

∂zw = −∇h · uh . (15)

As a result, time-stepping the HydrostaticFreeSurfaceModel does require solving a three-
dimensional Poisson equation for pressure. Moreover, the HydrostaticFreeSurfaceModel
introduces a free surface displacement η, which obeys the linearized equation

∂tη = w|z=0 . (16)

Equation (16) replaces the rigid-lid impenetrability condition w|z=0 = 0 typically applied at
top boundaries in the NonhydrostaticModel. The numerical algorithms and computational
performance of the HydrostaticFreeSurfaceModel are described in more detail by Silvestri,
Wagner, Constantinou, et al. (2024).

In the HydrostaticFreeSurfaceModel, the horizontal momentum uh = u x̂+ v ŷ evolves
according to

∂tuh = −∇hp− g∇hη︸ ︷︷ ︸
free surface

− (u · ∇)uh︸ ︷︷ ︸
momentum
advection

− f × u︸ ︷︷ ︸
Coriolis

− ∇ · τ︸ ︷︷ ︸
closure

+ Fuh︸︷︷︸
forcing

, (17)

where p is the hydrostatic kinematic pressure anomaly, η is the free surface displacement,
u = u x̂+v ŷ+w ẑ is the three-dimensional velocity, f is the background vorticity associated
with a rotating frame of reference, τ is the stress associated with subgrid turbulent horizontal
momentum transport, and Fuh is a body force. Momentum advection can be formulated in
three ways,

(u · ∇) · uh =

∇ · (uuh) “flux form” ,

ζ ẑ × uh + w ∂zuh +∇h
1
2 |uh|2 VectorInvariant ,

ζ ẑ × uh − uh ∂zw + ∂z (wuh) +∇h
1
2 |uh|2 WENOVectorInvariant ,

(18)
where the “flux form” treats momentum advection in the same way as for the Nonhydrostat-
icModel. The numerical implementation of the WENOVectorInvariant formulation, which
leverages Weighted Essentially Non-Oscillatory (WENO) reconstructions to selectively and
minimally dissipate enstrophy and the variance of divergence (see section 4), is described
by Silvestri, Wagner, Campin, et al. (2024).

Tracer evolution is governed by the conservation law

∂tc = − (u · ∇) c︸ ︷︷ ︸
tracer advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (19)

which is identical to NonhydrostaticModel except that background fields are not supported.
Additionally, the velocity field u can be prescribed rather than evolved.

Listing 8 implements a simulation of tidally-forced stratified flow over a series of
randomly-positioned Gaussian seamounts. Results are plotted in figure 6.

3.2.1 Vertical mixing parameterizations

Oceananigans’ vertical mixing parameterizations are closures that predict the vertical
fluxes of tracers and momentum. Depending on the parameterization, the evolution of aux-
iliary tracers like turbulent kinetic energy and the turbulent kinetic energy dissipation rate
may also be simulated. Vertical mixing parameterizations are useful for hydrostatic simula-
tions where vertical mixing is otherwise unresolved due to a coarse horizontal grid spacing.
For example, such regional and global configurations, horizontal grid spacing typically varies
from O(100m) to O(100 km).

–17–

manuscript submitted to JAMES

1 using Oceananigans, Oceananigans.Units
2
3 grid = RectilinearGrid(size = (2000, 200),
4 x = (-1000kilometers, 1000kilometers),
5 z = (-2kilometers, 0),
6 halo = (4, 4),
7 topology = (Periodic, Flat, Bounded))
8
9 h₀ = 100 # typical mountain height (m)
10 δ = 20kilometers # mountain width (m)
11 seamounts = 42
12 W = grid.Lx - 4δ
13 x₀ = W .* (rand(seamounts) .- 1/2) # mountains' positions ∈ [-Lx/2+2δ, Lx/2-2δ]
14 h = h₀ .* (1 .+ rand(seamounts)) # mountains' heights ∈ [h₀, 2h₀]
15
16 bottom(x) = -grid.Lz + sum(h[s] * exp(-(x - x₀[s])^2 / 2δ^2) for s = 1:seamounts)
17 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bottom))
18
19 T₂ = 12.421hours # period of M₂ tide constituent
20 @inline tidal_forcing(x, z, t, p) = p.U₂ * 2π / p.T₂ * sin(2π / p.T₂ * t)
21 u_forcing = Forcing(tidal_forcing, parameters=(; U₂=0.1, T₂=T₂))
22
23 model = HydrostaticFreeSurfaceModel(; grid, tracers=:b, buoyancy=BuoyancyTracer(),
24 momentum_advection = WENO(),
25 tracer_advection = WENO(),
26 forcing = (; u = u_forcing))
27
28 bᵢ(x, z) = 1e-5 * z
29 set!(model, b=bᵢ)

Listing 8: Two-dimensional simulation of tidally-forced stratified flow over a superposition of randomly-
positioned Gaussian seamounts. Results are shown in Figure 6.

Figure 6: Vertical velocity of an internal wave field excited by tidally-forced stratified flow over superposition
of randomly-positioned Gaussian seamounts, after 16 tidal periods.

Listing 9 implements a simulation of wind-driven vertical mixing in a single column
model using two parameterizations: CATKE (Wagner, Hillier, et al., 2025), which has one
additional equation for the evolution of turbulent kinetic energy (TKE), and k-ϵ (Umlauf &
Burchard, 2005), which has two additional equations for TKE and the TKE dissipation rate.
Figure 7 plots the result, showing how k-ϵ undermixes compared to CATKE. This discrep-
ancy in mixing rates is likely due to differences in how the models are calibrated. While all of
CATKE’s parameters are jointly calibrated to 35 large eddy simulations (LES) that include
surface wave effects (Wagner, Hillier, et al., 2025), k-ϵ parameters are calibrated one-by-one
by referencing laboratory experiments and observations of increasing complexity (Umlauf &
Burchard, 2003). Calibrating k-ϵ parameters similarly to CATKE is an interesting direction
for future work.

3.3 Global ocean simulations with ClimaOcean

The HydrostaticFreeSurfaceModel can be used to simulate regional or global ocean cir-
culation on rectilinear grids, latitude-longitude grids, and the tripolar grid (Murray, 1996)
to cover the entirety of Earth’s global ocean. To illustrate global simulation with the Hy-
drostaticFreeSurfaceModel, we implement a near-global simulation on a latitude-longitude

–18–

manuscript submitted to JAMES

1 using Oceananigans
2 using Oceananigans.Units
3
4 function vertical_mixing_simulation(closure; N²=1e-5, Jb=1e-7, tx=-5e-4)
5 grid = RectilinearGrid(size=50, z=(-200, 0), topology=(Flat, Flat, Bounded))
6 buoyancy = BuoyancyTracer()
7
8 b_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(Jb))
9 u_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(tx))
10
11 if closure isa CATKEVerticalDiffusivity
12 tracers = (:b, :e)
13 elseif closure isa TKEDissipationVerticalDiffusivity
14 tracers = (:b, :e, :ϵ)
15 end
16
17 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers, buoyancy,
18 boundary_conditions=(u=u_bcs, b=b_bcs))
19
20 bᵢ(z) = N² * z
21 set!(model, b=bᵢ)
22
23 simulation = Simulation(model, Δt=1minute, stop_time=24hours)
24 return run!(simulation)
25 end

Listing 9: Comparison of two vertical mixing parameterizations in the evolution of an initially linearly
stratified boundary layer subjected to stationary surface fluxes of buoyancy and momentum. Results are
shown in Figure 7.

Figure 7: Results from two vertical mixing parameterizations: CATKE and k-ϵ, implemented as described
in Listing 9.

–19–

manuscript submitted to JAMES

1 Nx, Ny, Nz = 4320, 1800, 40 # 1/12th degree
2 z_faces = ClimaOcean.exponential_z_faces(; Nz, depth=6000)
3 partition = Partition(8) # Distribute simulation across 8 GPUs
4 arch = Distributed(GPU(); partition)
5 grid = LatitudeLongitudeGrid(arch; size=(Nx, Ny, Nz), halo=(7, 7, 7),
6 longitude=(0, 360), latitude=(-75, 75), z=z_faces)
7
8 bathymetry = ClimaOcean.regrid_bathymetry(grid) # based on ETOPO1
9 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bathymetry))
10
11 # Build an ocean simulation initialized to the ECCO state estimate on Jan 1, 1993
12 ocean = ClimaOcean.ocean_simulation(grid)
13 date = CFTime.DateTimeProlepticGregorian(1993, 1, 1)
14 set!(ocean.model, T = ClimaOcean.ECCOMetadata(:temperature; date),
15 S = ClimaOcean.ECCOMetadata(:salinity; date))
16
17 # Near-global ocean simulation without no sea ice, forced by JRA55 reanalysis
18 backend = ClimaOcean.JRA55NetCDFBackend(41))
19 atmosphere = ClimaOcean.JRA55_prescribed_atmosphere(arch; backend)
20 coupled_model = ClimaOcean.OceanSeaIceModel(ocean; atmosphere)

Listing 10: A near-global simulation on a LatitudeLongitudeGrid distributed across 8 GPUs, leveraging
ClimaOcean.

grid using ClimaOcean (Wagner, Silvestri, et al., 2025), which is a second package that
provides capabilities to compute interfacial fluxes between a prescribed atmosphere, a sea
ice model, and a hydrostatic ocean simulation implemented using Oceananigans. In Cli-
maOcean, turbulent interfacial fluxes are computed using Monin–Obhukov similarity theory
(Monin, n.d.) following (Edson et al., 2014) for air-sea fluxes and (Grachev et al., 2007) for
air-ice fluxes. ClimaOcean additionally provides utilities for downloading and interfacing
with JRA55 reanalysis data (Tsujino et al., 2018), building grids based on Earth bathymetry
and initializing simulations from the ECCO state estimate (Forget et al., 2015).

Part of a code that implements a near-global simulation with horizontal resolution of
1/12th degree, distributed over 8 GPUs, forced by JRA55 reanalysis and initialized from
the ECCO state estimate is shown in listing 10. The surface speed generated after 180 days
of simulation time is shown in figure 8. For more information about Oceananigans GPU
performance in global configurations, see Silvestri, Wagner, Constantinou, et al. (2024).

4 Finite volume spatial discretization

Oceananigans uses a finite volume method in which fields are represented discretely by
their average value over small local regions or “finite volumes” of the domain. Listing 11
discretizes c = exy on three different grids that cover the unit square. At the finest resolution,
each cell-averaged value cfine

ij is computed approximately using set! to evaluate exy at the
center of each finite volume, where i, j denote the x and y indices of the finite volumes.
At medium and coarse resolution, the cmedium

ij and ccoarse
ij are computed by averaging or

“regridding” fields discretized at a higher resolution. This computation produces three fields
with identical integrals over the unit square. For example, integrals are computed exactly
by summing discrete fields over all cells,∫

c dx dy =

1024,1024∑
i,j

Vfine
ij cfine

ij =

16,16∑
i,j

Vmedium
ij cmedium

ij =

4,4∑
i,j

Vcoarse
ij ccoarse

ij , (20)

where Vij is the “volume” of the cell with indices i, j (more accurately an “area” in this
two-dimensional situation). Figure 9 visualizes the three fields.

–20–

manuscript submitted to JAMES

Figure 8: Surface speed in a near-global ocean simulation at 1/12th degree forced by JRA55 atmospheric
reanalysis (Tsujino et al., 2018) initialized from the ECCO state estimate (Forget et al., 2015). Oceananigans
can also cover the entirety of Earth’s global ocean using a tripolar grid (Murray, 1996).

1 topology = (Bounded, Bounded, Flat)
2 x = y = (0, 1)
3 c(x, y) = exp(x) * y
4
5 fine_grid = RectilinearGrid(size=(1024, 1024); x, y, topology)
6 c_fine = CenterField(fine_grid)
7 set!(c_fine, c)
8
9 medium_grid = RectilinearGrid(size=(16, 16); x, y, topology)
10 c_medium = CenterField(medium_grid)
11 regrid!(c_medium, c_fine)
12
13 coarse_grid = RectilinearGrid(size=(4, 4); x, y, topology)
14 c_coarse = CenterField(coarse_grid)
15 regrid!(c_coarse, c_medium)

Listing 11: Finite volume discretization of exy on three grids over the unit square. The fields are visualized
in figure 9. The meaning of the “Center” in “CenterField” is discussed below.

The discrete calculus and arithmetic operations required to solve the governing equa-
tions of the NonhydrostaticModel and HydrostaticFreeSurfaceModel use the system of “stag-
gered grids” described by Arakawa (1977). Both models use “C-grid” staggering, where
cells for tracers, pressure, and the divergence of the velocity field ∇ · u are co-located, and
cells for velocity components u = (u, v, w) are staggered by half a cell width in the x-,
y-, and z-direction, respectively. Listing 12 illustrates grid construction and notation for
a one-dimensional staggered grid with unevenly-spaced cells. Figure 10 visualizes 2- and
3-dimensional staggered grids, indicating the location of certain variables.

1 using Oceananigans
2
3 grid = RectilinearGrid(topology=(Bounded, Flat, Flat), size=4, x=[0, 0.2, 0.3, 0.7, 1])
4
5 u = Field{Face, Center, Center}(grid)
6 c = Field{Center, Center, Center}(grid)
7
8 xnodes(u) # [0.0, 0.2, 0.3, 0.7, 1.0]
9 xnodes(c) # [0.1, 0.25, 0.5, 0.85]
10 location(∂x(c)) # (Face, Center, Center)

–21–

manuscript submitted to JAMES

Figure 9: Finite volume discretization of exy on the unit square at three different resolutions.

Listing 12: A one-dimensional staggered grid.

a) b)

x

y

x
yz

ui, j
ui-1, j

vi, j

vi, j-1

Ti, j

Ti+1, j+1

vi+1, j

ui, j+1ui-1, j+1 Ti, j+1

vi+1, j-1

Ti+1, j

wi, j, k-1

vi, j, k

ui-1, j, k

wi, j, k

vi, j, k+1

ui-1, j, k

wi-1, j, k

vi-1, j, k+1

ui-2, j, k

wi, j+1, k

vi, j+1, k+1

ui-1, j+1, k+1

Figure 10: Locations of cell centers and interfaces on a two-dimensional (a) and three-dimensional (b)
staggered grid. In (a), the red and blue shaded regions highlight the volumes in the dual u-grid and v-
grid, located at (Face, Center, Center) and (Center, Face, Center), respectively. In (b), the shaded regions
highlight the facial areas used in the fluxes computations, denoted with Ax, Ay , and Az .

4.1 A system of composable operators

A convention for indexing is associated with staggered locations. Face indices are “left”
of cell indices. This means that difference operators acting on fields at cells differ from
those that act on face fields. To illustrate this we introduce Oceananigans-like difference
operators,

1 δxᶠᶜᶜ(i, j, k, grid, c) = c[i, j, k] - c[i-1, j, k]
2 δxᶜᶜᶜ(i, j, k, grid, u) = u[i+1, j, k] - u[i, j, k]

where superscripts denote the location of the result of the operation. For example, the dif-
ference δfcc

x acts on fields located at ccc (meaning cell Center in the x, y and z directions

–22–

manuscript submitted to JAMES

respectively). Complementary to the difference operators are reconstruction of “interpola-
tion” operators,

1 ℑxᶠᶜᶜ(i, j, k, grid, c) = (c[i, j, k] + c[i-1, j, k]) / 2
2 ℑxᶜᶜᶜ(i, j, k, grid, u) = (u[i+1, j, k] + u[i, j, k]) / 2

The prefix arguments i, j, k, grid are more than convention: the prefix enables
system for composing operators. For example, defining

1 δxᶠᶜᶜ(i, j, k, grid, f::Function, args...) =
2 f(i, j, k, grid, args...) - f(i-1, j, k, grid, args...)
3
4 δxᶜᶜᶜ(i, j, k, grid, f::Function, args...) =
5 f(i+1, j, k, grid, args...) - f(i, j, k, grid, args...)

leads to a concise definition of the second-difference operator:

1 δ²xᶜᶜᶜ(i, j, k, grid, f::Function, a...) = δxᶜᶜᶜ(i, j, k, grid, δxᶠᶜᶜ, f, a...)

Operator composition is used throughout Oceananigans source code to implement stencil
operations.

4.2 Tracer flux divergences, advection schemes, and reconstruction

The divergence of a tracer flux J = Jx x̂ + Jy ŷ + Jz ẑ is discretized conservatively by
the finite volume method via

∇ · J ≈ 1

Vc

[
δx
(
AxJx︸ ︷︷ ︸

fcc

)
+ δy

(
AyJy︸ ︷︷ ︸

cfc

)
+ δz

(
AzJz︸ ︷︷ ︸

ccf

)]
, (21)

where δx, δy, δz are difference operators in x, y, z, Vc denotes the volume of the tracer cells,
Ax, Ay, and Az denote the areas of the tracer cell faces with surface normals x̂, ŷ, and
ẑ, respectively. Equation (21) indicates the location of each flux component: fluxes into
tracers cell at ccc are computed at the cell faces located at fcc, cfc, and ccf.

The advective tracer flux in (9) is written in “conservative form” using incompressibil-
ity (2), and then discretized similarly to (21) to form

u · ∇c = ∇ · (uc) ≈ 1

Vc

[
δx
(
Axu

⌊
c
⌉
x

)
+ δy

(
Ayv

⌊
c
⌉
y

)
+ δz

(
Azw

⌊
c
⌉
z

)]
, (22)

where
⌊
c
⌉
x

denotes a reconstruction of c in the x-direction from its native location ccc to
the tracer cell interface at fcc;

⌊
c
⌉
y

and
⌊
c
⌉
z

in (22) are defined similarly.

The advective fluxes uc must be computed on interfaces between tracer cells, where
the approximate value of c must be reconstructed. (Velocity components like u must also
be reconstructed on interfaces. Within the C-grid framework, we approximate u on tracer
cell interfaces directly using the values uijk, which represent u averaged over a region en-
compassing the interface.) The simplest kind of reconstruction is Centered(order=2), which
is equivalent to taking the average between adjacent cells,

⟨c⟩i = 1
2 (ci + ci−1) , (23)

where ⟨c⟩i denotes the centered reconstruction of c on the interface at x = xi−1/2. Also
in (23) the j, k indices are implied and we have suppressed the direction x to lighten the
notation. Reconstructions stencils for Center(order=N) are automatically generated for

–23–

manuscript submitted to JAMES

even N up to Nmax = 12, where Nmax is an adjustable parameter in the source code. All
subsequent reconstructions are described in the x-direction only.

Centered schemes should be used when explicit dissipation justified by a physical ration-
ale dominates at the grid scale. In scenarios where dissipation is needed solely for artificial
reasons, we find applications for UpwindBiased schemes, which use an odd-order stencil
biased against the direction of flow. For example, UpwindBiased(order=1) and UpwindBi-
ased(order=3) schemes are written

u[c]1x =

u ci−1 if u > 0 ,

u ci if u < 0 ,
and u[c]3x =

u 1
6 (−ci−2 + 5ci−1 + 2ci) if u > 0 ,

u 1
6 (2ci−1 + 5ci − ci+1) if u < 0 ,

(24)

where [c]Nx denotes N th-order upwind reconstruction in the x-direction. (Note that u[c]Nx = 0
if u = 0.)

The compact form of equations (24) demonstrates how upwind schemes introduce vari-
ance dissipation through numerical discretization. In particular, an UpwindBiased(order=1)
reconstruction can be rewritten as a sum of a Centered(order=2) discrete advective flux and
a discrete diffusive flux

u[c]1x = u
ci + ci−1

2
− κ1

ci − ci−1

∆x
, where κ1 =

|u|∆x

2
. (25)

Reordering the UpwindBiased(order=3) advective flux in the same manner recovers a sum
of a Centered(order=4) advective flux and a 4th-order hyperdiffusive flux, equivalent to a
finite volume approximation of

uc+ κ3
∂3c

∂x3
, where κ3 =

|u|∆x3

12
. (26)

UpwindBiased reconstruction can be always reordered to expose a sum of Centered recon-
struction and a high-order diffusive flux with a velocity-dependent diffusivity. The diffusive
operator associated with UpwindBiased(order=1) and UpwindBiased(order=3) is enough to
offset the dispersive errors of the Centered component and, therefore, eliminate the artificial
explicit diffusion needed for stability purposes. However, this approach does not scale to
high order since the diffusive operator associated with a high order UpwindBiased scheme
(5th, 7th, and so on), becomes quickly insufficient to eliminate spurious errors associated
with the Centered component (Godunov, 1959).

The inability to achieve high order and, therefore, low dissipation motivated the imple-
mentation of Weighted, Essentially Non-Oscillatory (WENO) reconstruction (C. Shu, 1997;
C.-W. Shu, 2009). WENO is a non-linear reconstruction scheme that combines a set of
odd-order linear reconstructions obtained by stencils that are shifted by a value s relative to
the canonical UpwindBiased stencil, using a weighting scheme for each stencil that depends
on the smoothness of the reconstructed field c. Since the constituent stencils are lower-
order than the WENO order, this strategy yields a scheme whose order of accuracy adapts
depending on the smoothness of the reconstructed field. In smooth regions high-order is
retained, while the order quickly decreases in the presence of noisy regions, decreasing the or-
der of the associated diffusive operator. WENO proves especially useful for high-resolution,
turbulence-resolving simulations (either at meter or planetary scales) without requiring any
additional explicit artificial dissipation (Pressel et al., 2017; Silvestri, Wagner, Campin, et
al., 2024).

To illustrate how WENO works we consider a fifth-order WENO scheme for u > 0,

{c}5 = γ0[c]
3,0 + γ1[c]

3,1 + γ2[c]
3,2 , (27)

–24–

manuscript submitted to JAMES

where the notation [c]3,s denotes an UpwindBiased stencil shifted by s indices, such that
[c]3

def
= [c]3,0. The shifted upwind stencils [c]N,s

i evaluated at index i are defined

[c]3,si =
1

6

−ci−1 + 5ci + 2ci+1 for s = −1 ,

2ci−2 + 5ci−1 − ci for s = 0 ,

2ci−3 − 7ci−2 + 11ci−1 for s = 2 .

(28)

The weights γs(c) are determined by a smoothness metric that produces {c}5 ≈ [c]5 when c is
smooth, but limits to the more diffusive {c}5 ≈ [c]3 when c changes abruptly. Thus WENO
adaptively introduces dissipation as needed based on the smoothness of c, yielding stable
simulations with a high effective resolution that require no artificial dissipation. WENO
can alternatively be interpreted as adding an implicit hyperviscosity that adapts from low-
to high-order depending on the local nature of the solution. To compute the weights γs(c),
we use the WENO-Z formulation (Balsara & Shu, 2000).

The properties of Centered, UpwindBiased, and WENO reconstruction are investigated
by listing 13, which simulates the advection of a top hat tracer distribution. The results are
plotted in figure 11.

1 using Oceananigans
2
3 grid = RectilinearGrid(size=128; x=(-4, 8), halo=6, topology=(Periodic, Flat, Flat))
4 advection = WENO(order=9) # Centered(order=2), UpwindBiased(order=3)
5 velocities = PrescribedVelocityFields(u=1)
6 model = HydrostaticFreeSurfaceModel(; grid, velocities, advection, tracers=:c)
7
8 top_hat(x) = abs(x) > 1 ? 0 : 1
9 set!(model, c = top_hat)
10
11 simulation = Simulation(model, Δt=1/grid.Nx, stop_time=4)
12 run!(simulation)

Listing 13: A script that advects a top hat tracer profile in one-dimension with a constant prescribed velocity.
We use halo=6 to accommodate schemes up to WENO(order=11).

Figure 11: Advection of a top hat tracer distribution in one-dimension using various advection schemes.
Centered and Upwind

4.2.1 Discretization of momentum advection

The discretization of momentum advection with a flux form similar to (22) is more com-
plex than the tracer case because both the advecting velocity and advected velocity require
reconstruction. We use the method described by Ghosh and Baeder (2012) and Pressel et

–25–

manuscript submitted to JAMES

x
y

z

FFT in z FFT in xFFT in y

transpose z to y transpose y to x

iFFT in z iFFT in xiFFT in y

transpose y to z transpose x to y

Solve Poisson equation
in Fourier space

Figure 12: A schematic showing the distributed Poisson solver procedure with a pencil parallelization that
divides the domain in two ranks in both x and y. The schematic highlights the data layout in the ranks
during each operation.

al. (2015), wherein advecting velocities are constructed with a high-order Centered scheme
when the advected velocity component is reconstructed with a high-order UpwindBiased
or WENO scheme. We have also developed a novel WENO-based method for discretizing
momentum advection in the rotational or “vector invariant” form especially appropriate for
representing mesoscale and submesoscale turbulent advection on curvilinear grids (Silvestri,
Wagner, Campin, et al., 2024).

5 Parallelization

Oceananigans supports distributed computations with slab and pencil domain decom-
position. The interior domain is extended using “halo” or “ghost” cells that hold the results
of interprocessor boundaries. “halo” cells are updated before the computation of tendencies
through asynchronous send / receive operations using the message passing interface (MPI)
Julia library (Byrne et al., 2021). For a detailed description of the parallelization strategy of
the HydrostaticFreeSurfaceModel; see Silvestri, Wagner, Constantinou, et al. (2024). The
NonhydrostaticModel implements the same overlap of communication and computation for
halo exchange before the calculation of tendencies. For the FFT-based three-dimensional
pressure solver, we implement a transpose algorithm that switches between x-local, y-local,
and z-local configurations to compute efficiently the discrete transforms. The transpose
algorithm for the distributed FFT solver is shown in figure 12.

6 Conclusions

This paper describes GPU-based ocean modeling software called “Oceananigans” writ-
ten in the high-level Julia programming language. Oceananigans enables high resolution
simulations of oceanic motion at any scale with an innovative user interface design that
makes simple simulations easy and complex, creative simulations possible. The current
state of Oceananigans realizes a particular strategy for improving dynamical cores: simple,
C-grid, WENO numerics for turbulence resolving simulations coupled to the raw power of
GPU acceleration.

Using GPUs enables high-resolution simulations on few resources — such as a single
GPU instance on the cloud — increasing access to ocean modeling. But it also enables a new
class of very high resolution simulations. For example, on the Perlmutter supercomputer
(National Energy Research Scientific Computing Center, 2025), it is currently possible to
complete a 100-member ensemble of century-long global ocean simulations at 10 kilome-

–26–

manuscript submitted to JAMES

ter resolution in 10 days of wall time — thereby resolving mesoscale turbulent mixing, a
prominent bias in ocean models and a fundamental process missing from most climate simu-
lations today. These new capabilities address uncertainty in ocean heat and carbon uptake
in climate projections.

Oceananigans is designed for composition with external packages, which has fostered the
development of a number of auxiliary packages. For example, OceanBioME (Strong-Wright
et al., 2023) implements Oceananigans-compatible biogeochemistry models, oriented towards
ecosystem dynamics and compatible with both the hydrostatic and nonhydrostatic models.
A second biogeochemistry package is also under development for climate simulations. The
Oceanostics (Chor et al., 2025) package implements complex diagnostics in Oceananigans
syntax, useful for online and offline analysis of large eddy simulations.

A next step is to couple ocean models built with Oceananigans to prognostic atmosphere
models, including the Climate Modeling Alliance atmosphere dynamical core (Yatunin et al.,
2025) and the simpler SpeedyWeather (Klöwer et al., 2024). A further possibility, enabled
by Oceananigans GPU capabilities, is to couple to hybrid physics/AI atmosphere models
(Kochkov et al., 2023), or fully-AI atmosphere models like ACE (Watt-Meyer et al., 2023,
2024) and GraphCast (Lam et al., 2023). A sea ice model called ClimaSeaIce, which uses
the same finite volume engine underpinning Oceananigans, is under active development to
support coupled ocean-sea-ice simulations. There is also an ongoing effort to use Enzyme
(Moses et al., 2021) to develop an adjoint for Oceananigans, and to more generally use
autodifferentiation to compute the gradients of cost functions that invoke Oceananigans
simulations.

Each achievement — groundbreaking performance, physics flexibility, or an innovative
design — would, on their own, enable scientific breakthroughs. This matters because ocean
modeling software will have to continue to evolve rapidly to keep pace with the advancing
state of computational science to remain cutting-edge: to continue to use the world’s largest
supercomputers, to present the most productive possible abstractions for both users and
developers, and to enable the next generation of parameterizations and AI-based model
components.

Appendix A Time stepping and time discretization

In this section we describe time stepping methods and time discretization options for
the NonhydrostaticModel and the HydrostaticFreeSurfaceModel.

A1 Time discretization for tracers

Tracers are stepped forward with similar schemes in the NonhydrostaticModel and the
HydrostaticFreeSurfaceModel, each of which includes optional implicit treatment of vertical
diffusion terms. Equation (9) is abstracted into two components,

∂tc = Gc + ∂z (κz∂zc) , (A1)

where, if specified, κz is the vertical diffusivity of c to be treated with a VerticallyIm-
plicitTimeDiscretization, and Gc is the remaining component of the tracer tendency from
equation 9. (Vertical diffusion treated with an ExplicitTimeDiscretization is also absorbed
into Gc.) We apply a semi-implicit time discretization of vertical diffusion to approximate
integral of (A1) from tm to tm+1,

(1−∆t ∂z κ
m
z ∂z) c

m+1 = cm +

∫ tm+1

tm
Gc dt , (A2)

where ∆t
def
= tm+1 − tm. The tendency integral

∫ tm+1

tm
Gc dt is evaluated either using a

“quasi”-second order Adams-Bashforth scheme (QAB2, which is actually first-order lets add

–27–

manuscript submitted to JAMES

a reference), or a low-storage third-order Runge-Kutta scheme (RK3). For QAB2, the
integral in (A2) spans the entire time-step and takes the form

1

∆t

∫ tm+1

tm
Gc dt ≈

(
3
2 + χ

)
Gm

c −
(
1
2 + χ

)
Gm−1

c , (A3)

where χ is a small parameter, chosen by default to be χ = 0.1. QAB2 requires one tendency
evaluation per time-step. For RK3, the indices m = (1, 2, 3) correspond to substages, and
the integral in (A2) takes the form

1

∆t

∫ tm+1

tm
Gc dt ≈ γmGm

c − ζmGm−1
c , (A4)

where γ = (8/15, 5/12, 3/4) and ζ = (0, 17/60, 5/12) for m = (1, 2, 3) respectively. RK3
requires three evaluations of the tendency Gc per time-step. RK3 is self-starting because
ζ1 = 0, while QAB2 must be started with a forward-backwards Euler step (the choice
χ = −1/2 in (A3)). Equation (A2) is solved with a tridiagonal algorithm following a second-
order spatial discretization of ∂zκn

z ∂zc
m+1 — either once per time-step for QAB2, or three

times for each of the RK3’s three stages.

VerticallyImplicitTimeDiscretization permits longer time-steps when using fine vertical
spacing. Listing 14 illustrates the differences between vertically-implicit and explicit time
discretization using one-dimensional diffusion of by a top-hat diffusivity profile. The results
are shown in figure A1.

1 using Oceananigans
2
3 grid = RectilinearGrid(size=20, z=(-2, 2), topology=(Flat, Flat, Bounded))
4 time_discretization = VerticallyImplicitTimeDiscretization()
5 κ(z, t) = exp(-z^2)
6 closure = VerticalScalarDiffusivity(time_discretization; κ)
7 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers=:c)

Listing 14: Diffusion of a tracer by a top hat tracer diffusivity profile using various time steps and time
discretizations.

Figure A1: Simulations of tracer diffusion by a top hat diffusivity profile using various choices of time-
discretization and time-step size. With a long time-step of ∆t = 0.5, ExplicitTimeDiscretization is unstable
while VerticallyImplicitTimeDiscretization is stable. Let the vertically-implicit solution depends on the long
time-step ∆t = 0.5, as revealed by comparison with ExplicitTimeDiscretization using ∆t = 10−4.

–28–

manuscript submitted to JAMES

A2 The pressure correction method for momentum in NonhydrostaticModel

The NonhydrostaticModel uses a pressure correction method for the momentum equa-
tion (6) that ensures ∇ · u = 0. We rewrite (6) as

∂tu = −∇p+ b ẑ +Gu + ∂z (νz∂zu) , (A5)

where, if specified, νz is the vertical component of the viscosity that will be treated with a
vertically-implicit time discretization, ∇p is the total pressure gradient, and Gu is the rest
of the momentum tendency. We decompose p into a “hydrostatic anomaly” p′ tied to the
density anomaly ρ′, and a nonhydrostatic component p̃, such that

p = p̃+ p′ , where ∂zp
′ def
= b . (A6)

By computing ph in (A6), we recast (A5) without b and with ∇p = ∇pn + ∇hph. Next,
integrating (A5) in time from tm to tm+1 yields

um+1 = um +

∫ tm+1

tm
[Gu −∇p̃+ ∂z (νz∂zu)] dt . (A7)

Next we introduce the predictor velocity ũ, defined such that

(1−∆t ∂zν
m
z ∂z) ũ = um +

∫ tm+1

tm
Gu dt , (A8)

or in other words, defined as a velocity-like field that cannot feel nonhydrostatic pressure
gradient ∇p̃. Equation (A8) uses a semi-implicit treatment of vertical momentum diffusion
which is similar but slightly different to the treatment of tracer diffusion in (A2),∫ tm+1

tm
∂z (νz∂zu) dt ≈ ∆t ∂z (ν

m
z ∂zũ) . (A9)

The integral in (A8) is evaluated with the same methods used for tracers — either (A3) for
QAB2 or (A4) when using RK3. With a second-order discretization of vertical momentum
diffusion, the predictor velocity in (A8) may be computed with a tridiagonal solver.

Introducing a fully-implicit time discretization for p̃,∫ tm+1

tm
∇p̃ dt ≈ ∆t∇p̃m+1 , (A10)

and inserting (A10) into (A8), we derive the pressure correction to the predictor velocity,

um+1 − ũ = −∆t∇p̃m+1 . (A11)

The final ingredient needed to complete the pressure correction scheme is an equation
for the nonhydrostatic pressure p̃m+1

n . For this we form ∇· (A11) and use ∇·um+1 = 0 to
obtain a Poisson equation for p̃m+1

n ,

∇2p̃m+1 =
∇ · ũ
∆t

. (A12)

Boundary conditions for equation (A12) may be derived by evaluating n̂ · (A7) on the
boundary of the domain.

On RectilinearGrids, we solve (A12) using an eigenfunction expansion of the discrete
second-order Poisson operator ∇2 evaluated via the fast Fourier transform (FFT) in eq-
uispaced directions (Schumann & Sweet, 1988) plus a tridiagonal solve in variably-spaced
directions. With the FFT-based solver, boundary conditions on p̃m+1 are accounted for
by enforcing n̂ · ũ = n̂ · um+1 on boundary cells — which is additional and separate

–29–

manuscript submitted to JAMES

from the definition ũ in (A9). This alteration of ũ on the boundary implicitly contributes
the appropriate terms that account for inhomogeneous boundary-normal pressure gradients
n̂ · ∇p̃m+1 ̸= 0 to the right-hand-side of (A12) during the computation of ∇ · ũ.

A preconditioned conjugate gradient iteration may be used on non-rectilinear grids,
including complex domains. For domains that immerse an irregular boundary within a
RectilinearGrid, we have implemented an efficient, rapidly-converging preconditioner that
leverages the FFT-based solver with masking applied to immersed cells. The FFT-based
preconditioner for solving the Poisson equation in irregular domains will be described in a
forthcoming paper.

A3 Time discretization of the HydrostaticFreeSurfaceModel

The HydrostaticFreeSurfaceModel uses a linear free surface formulation paired with
a geopotential vertical coordinate that may be integrated in time using either a fully Ex-
plicitFreeSurface, an ImplicitFreeSurface utilizing a two-dimensional elliptical solve, or a
SplitExplicitFreeSurface. The latter free surface solver can also be used to solve the primi-
tive equations with a non-linear free surface formulation and a free-surface following vertical
coordinate (the z⋆ vertical coordinate, Adcroft & Campin, 2004). For brevity, we describe
here only the SplitExplicitFreeSurface, which is the most generally useful method. The
SplitExplicitFreeSurface substeps the depth-integrated or “barotropic” horizontal velocity
Uh along with the free surface displacement η using a short time step while and the depth-
dependent, “baroclinic” velocities, along with tracers, are relatively stationary.

The barotropic horizontal transport Uh is defined

Uh
def
=

∫ η

−H

uh dz , (A13)

where uh = (u, v) is the total horizontal velocity and H is the depth of the fluid.

Similarly integrating the horizontal momentum equations (17) from z = −H to z = η
yields an evolution equation for Uh,

∂tUh = −g(H + η)∇hη +

∫ η

−H

Guh dz , (A14)

where Guh includes all the tendency terms that evolve “slowly” compared to the barotropic
mode:

Guh = −(u · ∇)uh − f × u−∇ · τ + Fh . (A15)
The evolution equation for the free surface is obtained by integrating the continuity equa-
tion (15) in z to obtain ∇ ·Uh = −w|z=η, and inserting this into (16) to find

∂tη = −∇h ·Uh . (A16)

The pair of equations (A14) and (A16) characterize the evolution of the barotropic mode,
which involves faster time-scales than the baroclinic mode evolution described by equations
(17). To resolve both modes, we use a split-explicit algorithm where the barotropic mode is
advanced in time using a smaller time-step than the one used for three-dimensional baroclinic
variables. In particular, a predictor three-dimensional velocity is evolved without accounting
for the barotropic mode evolution, using the QAB2 scheme described by A3. We denote
this “predictor” velocity, again, with a tilde as done in section A2.

(1−∆t ∂zν
m
z ∂z)ũh − um

h ≈
∫ tm+1

tm
Guh dt . (A17)

We then compute the barotropic mode evolution by sub-stepping M times the barotropic
equations using a forward-backward time-stepping scheme and a time-step ∆τ = ∆t/N ,

ηn+1 − ηn = −∆τ∇h ·Un
h , (A18)

–30–

manuscript submitted to JAMES

Un+1
h −Un

h = −∆τ

[
g(H + η)∇hη

n+1 − 1

∆t

∫ η

−H

∫ tm+1

tm
Guh dtdz

]
. (A19)

The slow tendency terms are frozen in time during substepping. The barotropic quantities
are averaged within the sub-stepping with

Ūh =

M∑
n=1

anU
n
h , η̄ =

M∑
n=1

anη
n , (A20)

where M is the number of substeps per baroclinic step, and an are the weights are calculated
from the provided averaging kernel. The default choice of averaging kernel is the minimal
dispersion filters developed by Shchepetkin and McWilliams (2005). The number of substeps
M is calculated to center the averaging kernel at tm+1. As a result, the barotropic subcycling
overshoots the baroclinic step, i.e. M > N with a maximum of M = 2N . Finally, the
barotropic mode is reconciled to the baroclinic mode with a correction step

um+1
h = ũh +

1

H + η

(
Ūh −

∫ η

−H

ũh dz
)

. (A21)

The barotropic variables are then reinitialized for evolution in the next barotropic mode
evolution using the time-averaged η̄ and Ūh.

Appendix B Table of numerical examples

Description Code Visualization

2D turbulence using WENO(order=9) advection listing 1 fig. 1

2D turbulence with moving tracer source listing 2 fig. 1

DNS and LES of flow around a cylinder at various Re listing 4 fig. 2

DNS of cabbeling in freshwater listing 5 fig. 3

LES of the Eady problem with WENO(order=9) listing 6 fig. 4

Tidally-oscillating flow past Three Tree Point listing 7 fig. 5

Internal waves generated by tidal forcing over bathymetry listing 8 fig. 6

Comparison of vertical mixing parameterizations listing 9 fig. 7

Near-global ocean simulation with ClimaOcean listing 10 fig. 8

Visualization of the finite volume discretization listing 11 fig. 9

One-dimensional advection of a top-hat tracer profile listing 13 fig. 11

Tracer diffusion with various time discretizations listing 14 fig. A1

Open Research Section

Oceananigans is available at the GitHub repository github.com/CliMA/Oceananigans.jl.
Oceananigans documentation lives at https://clima.github.io/OceananigansDocumentation.
All the scripts that reproduce the simulations and figures in this paper are available at the
GitHub repository github.com/glwagner/OceananigansPaper. Visualizations were made us-
ing Makie.jl (Danisch & Krumbiegel, 2021).

Acknowledgments
This project is supported by Schmidt Sciences, LLC and by the National Science Foundation
grant AGS-1835576. N.C.C. is additionally supported by the Australian Research Council

–31–

https://github.com/CliMA/Oceananigans.jl
https://clima.github.io/OceananigansDocumentation
https://github.com/glwagner/OceananigansPaper

manuscript submitted to JAMES

under the Center of Excellence for the Weather of the 21st Century CE230100012 and the
Discovery Project DP240101274.

References

Adcroft, A., & Campin, J.-M. (2004). Rescaled height coordinates for accurate repre-
sentation of free-surface flows in ocean circulation models. Ocean Modelling, 7(3-4),
269–284.

Arakawa, A. (1977). Computational design of the basic dynamical processes of the UCLA
general circulation model. Methods in Computational Physics/Academic Press.

Balsara, D., & Shu, C. (2000). Monotonicity preserving weighted essentially non-oscillatory
schemes with increasingly high order of accuracy. Journal of Computational Physics,
160(2), 405-452. doi: 10.1006/jcph.2000.6443

Besard, T., Foket, C., & De Sutter, B. (2018). Effective extensible programming: unleashing
Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems, 30(4), 827–
841.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM review, 59(1), 65–98.

Boccaletti, G., Ferrari, R., & Fox-Kemper, B. (2007). Mixed layer instabilities and restrat-
ification. Journal of Physical Oceanography, 37(9), 2228–2250.

Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent lagrangian dynamic
model for large eddy simulation of complex turbulent flows. Physics of fluids, 17(2).

Bryan, K. (1969). A numerical method for the study of the circulation of the world ocean.
Journal of Computational Physics, 135(2), 154–169.

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A
flexible framework for numerical simulations with spectral methods. Physical Review
Research, 2(2), 023068.

Byrne, S., Wilcox, L. C., & Churavy, V. (2021). MPI.jl: Julia bindings for the Message
Passing Interface. In Proceedings of the JuliaCon Conferences (Vol. 1, p. 68). doi:
10.21105/jcon.00068

Callies, J., & Ferrari, R. (2018). Baroclinic instability in the presence of convection. Journal
of Physical Oceanography, 48(1), 45–60.

Chassignet, E. P., & Xu, X. (2017). Impact of horizontal resolution (1/12 to 1/50) on Gulf
Stream separation, penetration, and variability. Journal of Physical Oceanography,
47(8), 1999–2021.

Chassignet, E. P., & Xu, X. (2021). On the importance of high-resolution in large-scale
ocean models. Advances in Atmospheric Sciences, 38, 1621–1634.

Chor, T., Constantinou, N. C., Bisits, J. I., Wagner, G. L., Ramadhan, A., Zheng, Z.,
& Whitley, V. (2025). Oceanostics.jl. Zenodo. Retrieved from https://doi.org/
10.5281/zenodo.8280754 doi: 10.5281/zenodo.8280754

Churavy, V. (2024). KernelAbstractions.jl. Zenodo. Retrieved from https://doi.org/
10.5281/zenodo.13773520 doi: 10.5281/zenodo.13773520

Cox, M. D. (1984). A primitive equation, 3-dimensional model of the ocean (Tech. Rep.
No. 1). Princeton, NJ: NOAA Geophysical Fluid Dynamics Laboratory.

Craik, A. D., & Leibovich, S. (1976). A rational model for Langmuir circulations. Journal
of Fluid Mechanics, 73(3), 401–426.

Danilov, S., Sidorenko, D., Wang, Q., & Jung, T. (2017). The finite-volume sea ice–ocean
model (fesom2). Geoscientific Model Development, 10(2), 765–789.

Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization
for Julia. Journal of Open Source Software, 6(65), 3349. doi: 10.21105/joss.03349

Dong, J., Fox-Kemper, B., Wenegrat, J. O., Bodner, A. S., Yu, X., Belcher, S., & Dong,
C. (2024). Submesoscales are a significant turbulence source in global ocean surface
boundary layer. Nature Communications, 15(1), 9566.

Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1(3), 33–52.

–32–

https://doi.org/10.5281/zenodo.8280754
https://doi.org/10.5281/zenodo.8280754
https://doi.org/10.5281/zenodo.13773520
https://doi.org/10.5281/zenodo.13773520

manuscript submitted to JAMES

Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W.,
… Hersbach, H. (2014). On the exchange of momentum over the open ocean. Journal
of Physical Oceanography, 44(9), 1589.

Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., & Wunsch, C. (2015). Ecco
version 4: An integrated framework for non-linear inverse modeling and global ocean
state estimation. Geoscientific Model Development, 8(10), 3071–3104.

Ghosh, D., & Baeder, J. D. (2012). High-order accurate incompressible Navier–Stokes
algorithm for vortex-ring interactions with solid wall. AIAA journal, 50(11), 2408–
2422.

Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution
of hydrodynamic equations. Matematicheskii Sbornik, 47 , 271–306. (Translated by
US Joint Publications Research Service, JPRS 7226, 1969)

Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2007).
Sheba flux–profile relationships in the stable atmospheric boundary layer. Boundary-
layer meteorology, 124, 315–333.

Griffies, S. M., Adcroft, A., & Hallberg, R. W. (2020). A primer on the vertical lagrangian-
remap method in ocean models based on finite volume generalized vertical coordinates.
Journal of Advances in Modeling Earth Systems, 12(10), e2019MS001954.

Griffies, S. M., Pacanowski, R. C., & Hallberg, R. W. (2000). Spurious diapycnal mixing
associated with advection in a z-coordinate ocean model. Monthly Weather Review,
128(3), 538–564.

Griffies, S. M., Stouffer, R. J., Adcroft, A. J., Bryan, K., Dixon, K. W., Hallberg, R., …
Rosati, A. (2015). A historical introduction to MOM. URL https://www. gfdl. noaa.
gov/wp-content/uploads/2019/04/mom_history_2017 , 9.

Häfner, D., Nuterman, R., & Jochum, M. (2021). Fast, cheap, and turbulent—global ocean
modeling with GPU acceleration in Python. Journal of Advances in Modeling Earth
Systems, 13(12), e2021MS002717.

Halliwell, G. R. (2004). Evaluation of vertical coordinate and vertical mixing algorithms in
the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling, 7(3-4), 285–322.

Held, I. M. (2005). The gap between simulation and understanding in climate modeling.
Bulletin of the American Meteorological Society, 86(11), 1609–1614.

Huang, N. E. (1979). On surface drift currents in the ocean. Journal of Fluid Mechanics,
91(1), 191–208.

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., & Baptista, A. M.
(2018). Thetis coastal ocean model: discontinuous Galerkin discretization for the
three-dimensional hydrostatic equations. Geoscientific Model Development, 11(11),
4359–4382.

Kiss, A. E., Hogg, A. M., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain,
M. A., … others (2020). Access-om2 v1. 0: a global ocean–sea ice model at three
resolutions. Geoscientific Model Development, 13(2), 401–442.

Klöwer, M., Gelbrecht, M., Hotta, D., Willmert, J., Silvestri, S., Wagner, G. L., … oth-
ers (2024). Speedyweather. jl: Reinventing atmospheric general circulation models
towards interactivity and extensibility. Journal of Open Source Software, 9(98), 6323.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J. A., Mooers, G., … others
(2023). Neural general circulation models. CoRR.

Korn, P., Brüggemann, N., Jungclaus, J. H., Lorenz, S., Gutjahr, O., Haak, H., … others
(2022). Icon-o: The ocean component of the icon earth system model—global simula-
tion characteristics and local telescoping capability. Journal of Advances in Modeling
Earth Systems, 14(10), e2021MS002952.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., …
others (2023). Learning skillful medium-range global weather forecasting. Science,
382(6677), 1416–1421.

Leclair, M., & Madec, G. (2011). z-coordinate, an arbitrary lagrangian–eulerian coordinate
separating high and low frequency motions. Ocean Modelling, 37(3-4), 139–152.

–33–

manuscript submitted to JAMES

Lilly, D. K. (1983). Stratified turbulence and the mesoscale variability of the atmosphere.
Journal of the Atmospheric Sciences, 40(3), 749–761.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume,
incompressible Navier Stokes model for studies of the ocean on parallel computers.
Journal of Geophysical Research: Oceans, 102(C3), 5753–5766.

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic,
and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans,
102(C3), 5733–5752.

McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the Gibbs
Seawater (GSW) oceanographic toolbox. Scor/iapso WG, 127(532), 1–28.

Molemaker, M. J., McWilliams, J. C., & Capet, X. (2010). Balanced and unbalanced routes
to dissipation in an equilibrated eady flow. Journal of Fluid Mechanics, 654, 35–63.

Monin, A. (n.d.). Basic laws of turbulent mixing in the surface layer of the atmosphere.
Moses, W. S., Churavy, V., Paehler, L., Hückelheim, J., Narayanan, S. H. K., Schanen,

M., & Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization
of gpu kernels via enzyme. In Proceedings of the international conference for high
performance computing, networking, storage and analysis (pp. 1–16).

Murray, R. J. (1996). Explicit generation of orthogonal grids for ocean models. Journal of
Computational Physics, 126(2), 251–273.

National Energy Research Scientific Computing Center. (2025). Perlmutter architecture. Re-
trieved from https://docs.nersc.gov/systems/perlmutter/architecture/ (Ac-
cessed: 2025-02-18)

Pawlak, G., MacCready, P., Edwards, K., & McCabe, R. (2003). Observations on the
evolution of tidal vorticity at a stratified deep water headland. Geophysical Research
Letters, 30(24).

Pearson, B. (2018). Turbulence-induced anti-Stokes flow and the resulting limitations of
large-eddy simulation. Journal of Physical Oceanography, 48(1), 117–122.

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E. (2015).
Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the
MPAS-Ocean model. Ocean Modelling, 86, 93–113.

Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment.
Quarterly Journal of the Royal Meteorological Society, 82(352), 123–164.

Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., & Mishra, S. (2015). Large-eddy
simulation in an anelastic framework with closed water and entropy balances. Journal
of Advances in Modeling Earth Systems, 7(3), 1425–1456.

Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M., & Tan, Z. (2017). Numerics and
subgrid-scale modeling in large eddy simulations of stratocumulus clouds. Journal of
Advances in Modeling Earth Systems, 9(2), 1342–1365.

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., … Marshall,
J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs.
Journal of Open Source Software, 5(53).

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013).
A multi-resolution approach to global ocean modeling. Ocean Modelling, 69, 211–232.

Roquet, F., Madec, G., Brodeau, L., & Nycander, J. (2015). Defining a simplified yet
“realistic” equation of state for seawater. Journal of Physical Oceanography, 45(10),
2564–2579.

Roquet, F., Madec, G., McDougall, T. J., & Barker, P. M. (2015). Accurate polynomial ex-
pressions for the density and specific volume of seawater using the TEOS-10 standard.
Ocean Modelling, 90, 29–43.

Rozema, W., Bae, H. J., Moin, P., & Verstappen, R. (2015). Minimum-dissipation models
for large-eddy simulation. Physics of Fluids, 27(8).

Schumann, U., & Sweet, R. A. (1988). Fast Fourier transforms for direct solution of
Poisson’s equation with staggered boundary conditions. Journal of Computational
Physics, 75(1), 123–137.

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system

–34–

https://docs.nersc.gov/systems/perlmutter/architecture/

manuscript submitted to JAMES

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model.
Ocean modelling, 9(4), 347–404.

Shu, C. (1997). Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws (ICASE Report No. 97-65). Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center.

Shu, C.-W. (2009). High order weighted essentially nonoscillatory schemes for convection
dominated problems. SIAM review, 51(1), 82–126.

Silvestri, S., Wagner, G. L., Campin, J.-M., Constantinou, N. C., Hill, C. N., Souza, A., &
Ferrari, R. (2024). A new WENO-based momentum advection scheme for simulations
of ocean mesoscale turbulence. Journal of Advances in Modeling Earth Systems, 16(7),
e2023MS004130.

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., …
Ferrari, R. (2024). A GPU-based ocean dynamical core for routine mesoscale-resolving
climate simulations. Authorea Preprints. doi: 10.22541/essoar.171708158.82342448/
v1

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I.
The basic experiment. Monthly weather review, 91(3), 99–164.

Stone, P. H. (1971). Baroclinic stability under non-hydrostatic conditions. Journal of Fluid
Mechanics, 45(4), 659–671.

Strong-Wright, J., Chen, S., Constantinou, N. C., Silvestri, S., Wagner, G. L., & Taylor, J. R.
(2023). Oceanbiome. jl: A flexible environment for modelling the coupled interactions
between ocean biogeochemistry and physics. Journal of Open Source Software, 8(90),
5669.

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., … others
(2018). JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do).
Ocean Modelling, 130, 79–139.

Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbu-
lence models.

Umlauf, L., & Burchard, H. (2005). Second-order turbulence closure models for geophysical
boundary layers. a review of recent work. Continental Shelf Research, 25(7-8), 795–
827.

Vanneste, J., & Young, W. R. (2022). Stokes drift and its discontents. Philosophical
Transactions of the Royal Society A, 380(2225), 20210032.

Vreugdenhil, C. A., & Taylor, J. R. (2018). Large-eddy simulations of stratified plane
Couette flow using the anisotropic minimum-dissipation model. Physics of Fluids,
30(8).

Wagner, G. L., Chini, G. P., Ramadhan, A., Gallet, B., & Ferrari, R. (2021). Near-inertial
waves and turbulence driven by the growth of swell. Journal of Physical Oceanography,
51(5), 1337–1351.

Wagner, G. L., Hillier, A., Constantinou, N. C., Silvestri, S., Souza, A. N., Burns, K., … oth-
ers (2025). Formulation and calibration of CATKE, a one-equation parameterization
for microscale ocean mixing. Authorea Preprints. doi: 10.48550/arXiv.2306.13204

Wagner, G. L., Silvestri, S., Constantinou, N. C., Strong-Wright, J., Byrne, S., Bozzola, G.,
… Churavy, V. (2025, February). CliMA/ClimaOcean.jl: v0.4.0. Zenodo. Retrieved
from https://doi.org/10.5281/zenodo.14890032 doi: 10.5281/zenodo.14890032

Warner, S. J., & MacCready, P. (2014). The dynamics of pressure and form drag on
a sloping headland: Internal waves versus eddies. Journal of Geophysical Research:
Oceans, 119(3), 1554–1571.

Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K., Henn, B., Duncan, J., … others
(2023). Ace: A fast, skillful learned global atmospheric model for climate prediction.
arXiv preprint arXiv:2310.02074.

Watt-Meyer, O., Henn, B., McGibbon, J., Clark, S. K., Kwa, A., Perkins, W. A., … Brether-
ton, C. S. (2024). Ace2: Accurately learning subseasonal to decadal atmospheric
variability and forced responses. arXiv preprint arXiv:2411.11268.

Yatunin, D., Byrne, S., Kawczynski, C., Kandala, S., Bozzola, G., Sridhar, A., … others

–35–

https://doi.org/10.5281/zenodo.14890032

manuscript submitted to JAMES

(2025). The climate modeling alliance atmosphere dynamical core: Concepts, numerics,
and scaling. Authorea Preprints.

–36–

