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Abstract

Climate models must simulate hundreds of future scenarios for hundreds of years at coarse
resolutions, and a handful of high resolution decadal simulations to resolve localized extreme
events. Using Oceananigans.jl, written from scratch in Julia, we report several achievements:
First, a global ocean simulation with breakthrough horizontal resolution — 488m — reaching 15
simulated days per day (0.04 simulated years per day; SYPD). Second, Oceananigans simulates
the global ocean at 488m with breakthrough memory efficiency on just 768 Nvidia A100 GPUs,
a fraction of the resources available on current and upcoming exascale supercomputers. Third,
and arguably most significant for climate modeling, Oceananigans achieves breakthrough energy
efficiency reaching 0.95 SYPD at 1.7 km on 576 A100s and 9.9 SYPD at 10 km on 68 A100s —
the latter representing the highest horizontal resolutions employed by current IPCC-class ocean
models. Routine climate simulations with 10 km ocean components are within reach.

1 Justification

Oceananigans.jl — a new ocean model written from scratch in Julia — achieves ocean simulations
with breakthrough resolution, memory and energy efficiency, realizing 0.041 simulated years per day
(SYPD) at 488 m on 768 Nvidia A100s, 0.95 SYPD at 1 km on 576 A100s, and 9.9 SYPD at 10 km
on 68 A100s.
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2 Performance Attributes

Categories Scalability, time-to-solution, energy-to-solution.
Type of method Fully explicit with sub-cycling.

Results basis Whole application excluding I/O.
Numerical precision Both 64- and 32-bit cases measured.

System scale Results measured on full-scale systems.
Measurement mechanism Timers, memory used and energy used.

3 Overview of the Problem

Climate models are essential for predicting where, when, and how climate change threatens Earth’s
ecosystems and human civilization. But current climate models, which capture only the broadest
aspects of global warming, fall far short of providing the needed accuracy and granularity required
to design and implement costly adaptation and mitigation strategies [14]. Significant reduction of
the uncertainty of climate predictions is potentially worth trillions of dollars [20].

Climate models simulate the three-dimensional fluid dynamics, thermodynamics, chemistry, and
biology of the atmosphere, ocean, and land to predict the hydrological cycle, carbon cycle and the net
energy imbalance of the Earth system. While typical climate models use coarse resolutions of 25-100
km to simulate the numerous climate scenarios required by the Intergovernmental Panel on Climate
Change (IPCC) [25], a handful of state-of-the-art climate simulations have been performed at higher
resolutions of O(10 km) at astronomical expense. At either resolution there are many processes, such
as clouds and ocean turbulence, that cannot be explicitly simulated and are instead approximated by
empirical formulae called parameterizations. Biases due to inadequate parameterizations dominate
the uncertainty of climate predictions over the next few decades [34, 23].

The prevailing strategy to reduce climate model uncertainty is to refine model resolution as much as
possible [34]. For example, at horizontal resolutions of 1 km a substantial fraction of atmospheric
convection and ocean turbulence are explicitly modeled by Newton’s laws of motion, greatly reducing
the impact of parameterizations [34]. High-resolution climate modeling is further required to make
predictions for specific regions, providing information for local decision makers on adaptation and
mitigation [14].

Yet the “resolution strategy” is fundamentally limited: even at 1 km resolution many climate-relevant
physical processes remain unresolved [49]. Worse, processes such as sea ice dynamics, biology, or
cloud-aerosol interaction will never be resolved because accurate macroscopic laws do not exist.
Absent theoretical breakthroughs, such “irreducible” uncertainties can be addressed only by leveraging
Earth system observations through advances in data assimilation and machine learning [41]. Data-
driven optimization of climate models requires ensembles of climate predictions, rather than single
predictions at the highest affordable resolution. Ensembles of simulations are also required to explore
emission scenarios and to estimate the impact of initial condition uncertainty and internal variability.

Consequently, reducing the uncertainty of climate predictions demands not just higher resolution,
but more efficient resource utilization to enable hundreds to thousands of relatively high-resolution
simulations. As an example, we consider the computational requirements to enable 100-simulation
ensembles using all 37,888 AMD MI250 GPUs of the Frontier exascale supercomputer: completing an
ensemble of 300-year simulations (200 years of spin-up + 100 years of prediction) within one month
of wall clock time requires a climate model that can achieve 10 simulated years per day (SYPD)
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using 378 GPUs, or 1/100th of Frontier’s resources. Disruptive progress on climate modeling requires
not just scalable performance for a single, high-resolution simulation, but advances in efficiency to
meet this ensemble-based “10 per 100th” benchmark [40].

Our submission uses the ocean component of a new climate model being developed by the Climate
Modeling Alliance [44]. The ocean contributes key uncertainty to climate predictions due to its
prominent role in the Earth system’s heat and carbon cycles. At 10 km resolutions, where ocean
model uncertainties are significantly reduced, the ocean often is the most expensive climate model
component [19]. This calls for a step change in ocean model performance.

4 Current State of the Art

We are aware of only three global ocean simulations that have achieved resolutions finer than 5
kilometers — all at tremendous computational expense. In 2014, MITgcm [29] was used to perform
the one year, tidal-forced ice-ocean simulation “LLC4320” [45], which exhibits 2.2 km horizontal
resolution with 90 vertical levels. LLC4320 achieved 0.047 simulated years per day (SYPD) using
70,000 cores of the NASA Pleiades system.

LLC4320

Oceananigans12FP32

COSMO

Atmospheric models

Ocean models
10

2

10
1

10
0

10
−1

10
−2

10
9

10
10

Number of grid points

SY
P

M
W

h

Current state-of-the-art lim
it

10
11

Increasing 
efficiencyIPCC

CMIP
resolution

iHESP

HadGEM3

Increasing 
resolution

Δ~1km Δ~500mΔ~10km

VEROSFP64

LICOM3

Oceananigans12FP64

Oceananigans48FP64

OceananigansAP

Climate models

Figure 1: Simulated years computed by a megawatt-hour of energy
(SWPMWh) versus number of grid points for state-of-the-art atmo-
sphere and ocean models. Stars show the performance of our ocean
model in a realistic and “aqua planet” (AP) setup.

FIO-COM32 [50] ran at ∼2.5 km
(1/32nd degree) horizontal resolu-
tion with 90 vertical levels for 3.5
years. [48] ported LICOM3 to
GPUs to realize 0.51 SYPD at
1/20th horizontal resolution with 60
vertical levels using 384 MI50 AMD
GPUs, and further managed to scale
to 26200 MI50s with strong scaling
efficiency of 8%.

The largest ocean simulations used
in current IPCC-class climate mod-
els, which typically require faster-
time-to-solution to support longer
simulations, have horizontal resolu-
tions of roughly 10 km. [8] describes
output from four 60-year ocean sim-
ulations following the OMIP-2 pro-
tocol with 8 km (1/12th degree),
10 km, and two with 11 km (1/10th

degree). [11] report a 110-year sim-
ulation at 10 km (1/10th degree) horizontal resolution, the longest high resolution OMIP-2-style
run. Some of the highest resolution climate models are the iHESP CESM-based model with 25km-
10km atmosphere-ocean resolution [51], achieving 3.4 SYPD, and the 50km-10km HadGEM3-GC3.1
submission to HighResMIP [18, 37], achieving 0.4 SYPD.

At 3.4 SYPD, the iHESP CESM achieves sufficient time-to-solution for hundreds to thousands of
years of simulated climate. But such a simulation is purchased for a high price, requiring the 40%
of the Sunway TaihuLight supercomputer [51] and 4 million cores consuming 6 MW for hundreds
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of days of wall clock time. Enabling the large ensembles of high-resolution simulations needed to
improve climate prediction requires both performance at scale as well as efficient resource utilization.

Figure 1 plots simulated years per mega-watt-hour (SYPMWh) against resolution for state-of-the-art
ocean models. The SYPMWh metric encodes the efficiency requirement needed to make progress
on climate uncertainty with next-generation climate models: in particular, we require both higher-
resolution models (moving rightwards in figure 1) as well as more efficient models (moving upwards
in figure 1). For completeness, we report SYPMWh also for two GPU-based models: Veros [22], an
ocean model, and COSMO [15], an atmospheric model. The present nomination is shown with stars
from whence we see significant performance gains compared to the existing state-of-the art.

5 Innovations

Our achievement is three-fold: first, using new software written in the Julia programming language
called Oceananigans.jl [35], we report a near-global ocean simulation with highest-ever horizontal
resolution (488 m) reaching 15 simulated days per day (0.04 SYPD). Second, Oceananigans performs
this simulation with breakthrough memory efficiency on just 768 NVidia A100 GPUs, and thus a
fraction of the available resources on current and upcoming exascale supercomputers. Third, and
arguably most important, Oceananigans achieves breakthrough energy efficiency, simulating the
global ocean at 0.95 SYPD with 1.7 km resolution on 576 A100s, and at 10 km — the highest
horizontal resolution employed by an IPCC-class ocean model — achieving 9.9 SYPD on 68 Nvidia
A100s. This final milestone proves the feasibility of routine climate simulations with 10 km ocean
components, a crucial resolution threshold at which ocean macroturbulence (the most energetic
ocean motions with scales between 10–100 km) is fully resolved.

We attribute these achievements first and foremost to a high-risk, high-reward strategy to develop
a new ocean model from scratch in Julia with a specific focus on GPU performance and memory
efficiency. Additional crucial ingredients include advances in numerical methods for finite volume
fluid dynamics on the sphere and a novel optimization for simulating ocean free surface dynamics
that achieves unprecedented GPU scalability.

5.1 Starting from scratch with Julia

Oceananigans.jl is an open-source library for ocean-flavored fluid dynamics written from scratch in
Julia [7]. Julia is a dynamic high-level programming language that leverages Just-In-Time (JIT)
compilation and LLVM [24] to achieve performance competitive with traditional HPC languages
like C or Fortran. Julia has gathered interest as potential language for HPC [17, 10, 16, 21, 27] and
provides easy integration with MPI [47, 38]. Most of Oceananigans.jl software is hardware-agnostic
through the Julia package KernelAbstractions.jl [10], which enables performance portability targeting
CPUs and different GPU vendors using the JuliaGPU [6, 5] software stack, similar to the capabilities
provided by Kokkos [9], OCCA [30], and HIP [1].

To our knowledge, Oceananigans is the first ocean model written from scratch for GPUs, rather
than ported from existing CPU code. Starting from scratch and using the Julia programming
language allowed us to rethink the typical patterns used in ocean and atmosphere dynamical cores.
In particular, we developed a system of composable atomic operators that leverages Julia’s functional
programming paradigm and effective inlining capabilities to recursively construct large expression
trees for calculus on staggered finite volume grids. Using this composable operator system, we fuse
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the entire tendency computation for each prognostic variable into a single compute-heavy kernel, each
of which depends on only two intermediate diagnostic variables representing hydrostatic pressure
and vertical diffusivity (which is treated implicitly using a predictor-corrector method).

Such a high degree of abstraction yields a number of innovations: first, kernel fusion maximizes
efficiency on GPUs. Second, almost all intermediate quantities are computed on-the-fly, so that
Oceananigans is extremely memory efficient and can perform global ocean simulations at resolutions
up to 1/4th degree on a single Nvidia V100. Finally, because all compute-heavy kernels rely on a
single “tendency kernel function” applied at each grid index i, j, k, we can easily optimize performance
by rapidly prototyping techniques to overlap computation and communication. The sparsity of
kernels per time-step and small number of temporary variables mean that Oceananigans’ algorithmic
structure is markedly different from current ocean models, which typically allocate 10 to 100 times
the minimum necessary memory [4] and distribute computations across many small kernels [51].
We argue these algorithmic differences are a major factor in Oceananigans’ energy-efficiency and
time-to-solution on GPU systems.

5.2 New numerical methods for finite volume fluid dynamics on the sphere

Our results use Oceananigans.HydrostaticFreeSurfaceModel, which solves the hydrostatic Boussi-
nesq equations in a finite volume framework on staggered C-grids [3]. Oceananigans’ hydrostatic
model employs an implicit-explicit second-order Adams-Bashforth time stepping scheme. Vertically-
implicit diffusion is implemented with a backward Euler time-discretization and tridiagonal solver.

A major innovation is a new adaptive-order scheme based on weighted essentially non-oscillatory
(WENO) reconstructions [42] for advecting momentum and tracers on curvilinear finite-volume
grids [43]. This new scheme automatically adapts to changing spatial resolution and permits stable,
high-fidelity simulations of ocean turbulence without explicit dissipation or hyper-dissipation. This
innovation reduces setup time when changing or increasing resolution while guaranteeing high-fidelity
solutions that exhibit the minimum necessary dissipation of sharp, near-grid scale features.
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Figure 2: Left: time-stepping sequence. Right: different domains over which 2D fast and 3D slow mode updates
take place (here assuming 1 barotropic substep per baroclinic step – halo region of size 1 – and second-order methods –
outer region of size 1)

5.3 Optimization of ocean free surface dynamics for unprecedented GPU scala-
bility

In hydrostatic ocean models with a free surface, the vertically-averaged, two-dimensional “barotropic
mode” has dynamics orders of magnitude faster than the three-dimensional “baroclinic” component,
and must be treated by a special “barotropic solver”. Due to communication overhead, barotropic
solvers in current ocean models — whether implicit or explicit — are a major bottleneck that
accounts for between 40% [22] to 60% [48, 36] of the cost of a typical IPCC-class ocean simulations.

Oceananigans’ excellent scalability is enabled by an innovative optimization of the parallel barotropic
solver. An increase in computation is traded in for decreased communication latency by leveraging
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the two-dimensionality of the barotropic problem. Our new barotropic solver is based on explicit
subcycling of the barotropic mode. Increasing the width of the barotropic halo to equal the number
of explicit subcycles (typically between 10–30) greatly decreases the frequency of communication.
As a result, communication is required once per time-step rather than every subcycle, reducing the
frequency of communication by a factor of 10 to 30. The cost of the barotropic solver is therefore
less than 10% of the total cost of a time step. Due to the sparsity of communication enabled by
our novel barotropic solver, all communication operations can be overlapped with computational
workloads as sketched in figure 2.

6 How performance was measured

The Oceananigans model performance is estimated for two near-global ocean simulations with
different domains: a realistic (R) domain and an aqua planet (AP) domain. Both domains span the
entire longitudinal extent of the sphere and cover a latitude range of 75◦S to 75◦N.

The Realistic domain has realistic bathymetry and is forced by realistic surface momentum, heat,
and salinity fluxes derived from the ECCO2 state estimate[31] at three resolutions:

• OceananigansR12 with 1/12th degree horizontal resolution (∼7 km) and 48 vertical levels

• OceananigansR24 with 1/24th degree horizontal resolution (∼3.4 km) and 100 vertical levels

• OceananigansR48 with 1/48th degree horizontal resolution (∼1.7 km) and 100 vertical levels

Figure 3 shows surface vertical vorticity after one year integration of OceananigansR12 and
OceananigansR48 over the global ocean and also for selected regions to show further detail. Both
OceananigansR48 and OceananigansR12 exhibit macroscale turbulent ocean features that are
currently unresolved by most IPCC-class models. The OceananigansR48 solution exhibits fronts,
filaments, and other “submesoscale” vorticity features realized only a handful of times in global
simulations.

The idealized OceananigansAP suite of simulations [13], which has idealized bathymetry and
surface forcing that does not require interpolation to different resolutions, is used for weak scaling
experiments. All OceananigansAP experiments have 100 vertical levels and two latitudinal ridges
that divide the world ocean into two basins. We vary the horizontal resolution of OceananigansAP
from 1/6th of a degree (∼14 km) to 1/196th of a degree (∼488 m).

None of our simulations require explicit horizontal diffusion of momentum or tracers owing to the
adaptive WENO advection scheme described in section 5.2. All simulations use a Richardson-number-
based parameterization for vertical mixing due to unresolved shear and convective turbulence at
1–100 m scales.

To assess the time-to-solution for each experiment in simulated years per day (SYPD), we measure
average wall clock time per time-step. Wall clock time is sampled through NVIDIA’s Nsight System
and recorded by NVIDIA Tool Extension Library via the NVTX.jl Julia package.

To assess the efficiency of each solution in simulated years per mega-watt-hour (SYPMWh), we
combine SYPD with an estimate of the mean power draw over the duration of an experiment. On
MIT Satori [2], which has 256 Nvidia V100s, we have access to precise, billing-grade power metering.
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For all simulations with Nvidia A100s we estimate power consumption P with

P = 250D + 300N Watts , (1)

where D is the number of A100s and N is the number of nodes.

We further note that power estimates are provided by LICOM3 and COSMO, but not for LLC4320 or
Veros. To estimate the power consumption of LLC4320, we assume that each of the 1000 dual CPU
nodes draws 500W. We estimate the power consumption of iHESP CESM [51] and HadGCM3 [37]
as a percentage of the peak power consumption of their respective clusters. We use equation (1) to
estimate Veros’ power consumption on 1 node with 16 A100s.

Surface vertical voriticity (Sep 1st) OceananigansR48

6

-6

Surface vertical voriticity (Sep 1st) OceananigansR12
x10-5
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Figure 3: Vertical vorticity as simulated by Oceananigans12 (top left) and Oceananigans48 (bottom left) after
a one year integration on September 1st. To the right, insets zoom on particularly energetic current systems: the
Aghulas and the East Australian Currents. While major ocean currents with widths of 10-100 km are resolved in
both simulations, the sharp density fronts and associated currents that develop at the ocean surface in winter at
scales between 1-10 km (the ocean weather) are only resolved by Oceananigans48. On September 1 — spring in the
southern hemisphere, fall in the northern hemisphere — such sharp frontal features populate the southern ocean but
are suppressed in the north.

7 Performance Results

We report both scaling results via time-to-solution in SYPD and efficiency results via energy-to-
solution in SYPMWh.
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7.1 Scaling Results
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Figure 4: Strong scaling tests for the realistic setups OceananigansR12 (1/12◦), OceananigansR24 (1/24◦),
and OceananigansR48 (1/48◦). The left plot reports simulated years per wall clock day (SYPD) while the right
plot wall clock milliseconds per time steps. All results are averaged over 1500 time steps.

Realistic ocean simulations (Satori and Engaging clusters). We report strong scaling tests
using the realistic global setup shown in figure 3 on two clusters: (i) the MIT Satori cluster [2], a
high-performance Power 9 system composed of 64 Power 9 nodes hosting four Nvidia V100 GPUs
with 32GBs memory each, and (ii) the Engaging MIT cluster, using 8 nodes that host 4 NVlinked
A100s with 80GBs memory each. The resulting wall clock time per time step, averaged over 1500
time steps, is presented in Figure 4 for both single precision (FP32) and double precision (FP64)
computations. On a single node, OceananigansR12 attains 0.9 SYPD in double precision and
1.4 SYPD in single precision, with a wall clock time per time step ranging from 330 to 550 ms.
When increasing the number of nodes up to 16 (64 GPUs), the communication overhead increases,
resulting in 12.4 SYPD in single precision and 7.75 SYPD in double precision. We measure a strong
scaling efficiency of 52% in single precision and 55% in double precision over 64 GPUs, because
the computational workload (40 ms wall clock time per time-step) eventually becomes too short to
completely mask the communication overhead.

For higher-resolution ocean weather-permitting simulations, the scaling is almost ideal across the
range we investigate. For OceananigansR24 (FP64-V100) and OceananigansR48 (FP32-V100),
we measure larger than ideal scaling. This counter-intuitive result is a product of a load balance
improvement as the number of GPUs increases. In summary, we attain 1.94 SYPD on 120 V100
GPUs with a kilometer-scale resolution (OceananigansR24) and 0.33 SYPD with an ocean weather-
resolving simulation (OceananigansR48). Finally, we have tested the OceananigansR48 setup
on 144 Perlmutter nodes (576 A100 GPUs), reaching the 0.95 SYPD. This is the first instance of a
kilometer-scale ocean achieving ∼1 SYPD. We have also tested the OceananigansR12 setup on 17
nodes obtaining 9.9 SYPD (see fig. 5).

Aqua-planet simulation (Perlmutter cluster). We report weak scaling tests on the NERSC
supercomputer (Perlmutter). Perlmutter is a HPE (Hewlett Packard Enterprise) Cray EX super-
computer that hosts four A100 GPUs with 40GB per node, linked through a NVLink3 interconnect.
All weak scaling tests are performed using the OceananigansAP setup on double precision. We
allocate two different horizontal resolutions (1/12 and 1/6 of a degree), progressively increasing them
with the number of GPUs while maintaining 100 vertical levels. As shown in figure 5, we obtain
100% weak scaling efficiency for the whole investigated range (1 to 196 nodes – 4 to 768 A100s).
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7.2 Energy efficiency

In table 1 we summarize the energy metrics for our computations as well as the other investigated
models. Figure 1 is derived from the data outlined in this table. HadGEM3 and iHRES entries are
estimated by including the whole coupled climate model (atmosphere and ocean). Unavailable data
is marked with −. Our Oceananigans simulations are the highest in each of their columns. This
reflects our attention to memory and energy efficiency.

Model Time step Grid size CPU/GPU SYPD wtime/tstep Power est. In fig 1
HadGEM3FP64 (Climate) [37] - ∼ 7.22× 108 9396 (Cray XC40) 0.4 - 141KW
iHRESFP64 (Climate) [51] - ∼ 6× 108 Sunway TaihuLight 3.7 - 6500KW
LLC4320FP64 (Ocean) 25 s 8.7× 1010 2000 (Intel) 0.041 1.6 500KW
VerosFP64 (Ocean) [22] 180 s 3.5× 108 16 (A100) 0.8 0.62 5.2KW
VerosFP32 (Ocean) [22] 180 s 3.5× 108 16 (A100) 1.3 0.38 5.2KW
LICOM3FP64 (Ocean) [48] 60 s 1.5× 109 384 (MI50) 0.51 0.32 92KW
LICOM3FP64 (Ocean) [48] 60 s 1.5× 109 26200 (MI50) 2.72 0.06 6300KW
COSMOFP64 (Atmos) [15] 6 s 3.46× 1010 4888 (P100) 0.043 0.4 1000KW
OceananigansR12FP32 (Ocean) 180 s 3.7× 108 4 (V100) 1.5 0.33 1.2KW
OceananigansR12FP32 (Ocean) 180 s 3.7× 108 64 (V100) 12.4 0.04 18KW
OceananigansR12FP64 (Ocean) 180 s 3.7× 108 68 (A100) 9.9 0.05 22
OceananigansR48FP32 (Ocean) 45 s 1.24× 1010 120 (V100) 0.33 0.37 36KW
OceananigansR48FP64 (Ocean) 45 s 1.24× 1010 576 (A100) 1.0 0.13 187KW
OceananigansR48FP64 (Ocean) 45 s 1.24× 1010 32 (A100) 0.063 1.9 10.4KW
OceananigansAPFP64 (Ocean) 11 s 2.1× 1011 768 (A100) 0.063 0.81 252KW

Table 1: Performance details of state-of-the are climate, ocean, and atmosphere models. Larger grid sizes correspond
to finer spatial resolution. Computations belonging to this submission are shown in bold.

8 Implications

By developing a new model from scratch specifically for GPUs, and wielding a handful of key
ocean-model-specific innovations, Oceananigans achieves 9.9 SYPD at 10 km resolution using less
than 1% of the resources of current state of the art supercomputers. This achievement means that
most climate model runs submitted to IPCC will be able use 10 km ocean models — precipitating a
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step change in the accuracy of climate prediction.

At scales between 10–100 km, macroscale ocean turbulence exerts a key control on ocean carbon and
heat uptake. However, attempts to accurately parameterize this key process in coarse resolution
models have frustrated generations of oceanographers. The inadequacies of macroscale parameteriza-
tions are associated with major biases and uncertainty in climate predictions [33, 39]. At resolutions
of 10 km, the need for macroscale turbulence parameterization is eliminated, and ocean simulations
capture key ocean features such as sharp sea surface temperature gradients supporting the formation
of marine stratus clouds above narrow eastern boundary currents like the California and Benguela
Current [28], and changes in the meridional overturning circulation due to the effect of Antarctic
meltwater on deep convection in austral winter [26].

Additionally, by achieving 0.95 SYPD at 1.7 km resolution, we pave the way for decadal ocean
simulations of the ocean “submesoscale” — the ocean analogue to atmospheric weather — which
exhibits hourly fluctuations, high spatial and seasonal variability, and which exerts a strong control
on ocean air-sea fluxes, biological productivity and fish stocks [46]. The granularity and accuracy
provided by 1.7 km resolution is further required to plan local mitigation strategies and predict local
extreme events.

Third, the unparalleled speed of execution and memory efficiency of Oceananigans allows global
computations at never-before-seen sub-kilometer resolutions. The capacity for ultra-high-resolution
simulations aligns with current advancements in resolution of ocean sampling platforms from
satellites [32, 12] to fleets of floats and drones. While this wealth of data is likely to provide new
insights and scientific knowledge about the nature of small scale processes, global high-resolution
ocean simulations will be needed to explore their impact on global climate scales.

Finally, our results pave the way for marked increase in energy efficiency of climate simulations. The
very reason to develop climate models, as stated by the Coupled Model Intercomparison Project
(CMIP), for example, is to provide the necessary information to effectively reduce emissions and
mitigate the effects of global warming — while, counterproductively, the carbon footprint of climate
simulations that contribute to CMIP increases rapidly. Oceananigans’ achievements represent a
milestone towards decreased energy consumption by climate modeling efforts.
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